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ABSTRACT 
In this investigation Rayleigh-Ritz variational method has been applied to determine the least 
natural frequency coefficient for the title problem. Classical plate theory assumptions have been 
used to calculate strain energy and kinetic energy. Coordinate functions are combination of 
polynomials which satisfy boundary conditions at the outer boundary and trigonometric terms. In 
the second part of this study ABAQUS software is used to compute vibration natural frequency for 
some special combinations of geometrical and mechanical parameters. Then results of Rayleigh-
Ritz method have been obtained for the mentioned special cases. It can be seen that the agreement 
between them is acceptable. 

© 2009 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

RING the past four decades, vibration of plates has become an important subject in engineering applications. 
There are several papers about plate vibrations in open technical literature. Circular plates have many 

engineering applications. These are commonly found in spacecrafts, missiles, land base vehicles, off-shore 
platforms, and underwater acoustic transducers. In many situations there are mechanical or electro mechanical or 
electronic systems attached to circular plates. Hole eccentricity may be caused by human inaccuracy. In other cases 
it may have practical reasons. Consequently, it is considerable to compute fundamental dynamic parameters such as 
lower natural frequencies of these structures.  

Various methods have been applied to determine natural frequency coefficients of vibrating plates. Jacout and 
Lindsay [1] presented the influence of Poisson’s Ratio on the lower natural frequencies of vibrating circular plates. 
Laura and Grossi [2] expanded the previous study by changing thickness and edge type. Circular plates supporting 
masses distributed over a finite area has been studied by Gutierrez and Laura in 1977 [3]. Transverse vibration of 
simply supported circular plates having partial elastic constraints is considered in the work done by Navita and 
Leissa [4]. Laura et al. [5] analyzed the vibration and stability of circular plates elastically restrained against 
rotation. The effect of support flexibility on free and forced vibration of plates has been investigated by Laura et al. 
[6]. Irie et al. [7] considered the case of circular plates elastically restrained along some radial segments. Grossi and 
Laura [8] have used Rayleigh-Schmidt technique to compute lower frequency coefficients of polar orthotropic 
circular plates carrying concentrated masses. Free vibration of solid circular plates of linearly varying thickness and 
attached to a Winkler foundation has been solved by Laura and Gutierrez [9]. Bercin [10] have obtained the natural 
frequency coefficients for clamped orthotropic plates by applying Kantorovich method. Ranjan and Gosh have 
discussed transverse vibration of thin solid and annular circular plate with attached discrete masses using finite 
element analysis [11]. Vibration of polar orthotropic circular plates, making use of Rayleigh-Ritz method, has been 
studied by Kang et al. in 2004 [12]. Using the Hamilton’s principle, Park [13] derived frequency equation for the in-
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plane vibration of a clamped circular plate. Avalos and Larrondo [14] studied circular plates with a concentric 
square hole in 1997. Bambill et al. [15] have applied Rayleigh-Ritz method to investigate about vibration of circular 
and annular plates with an attached concentrated mass. Vibration of circular plates with an eccentric perforation has 
been considered by Laura et al [16]. To the authors’ knowledge, circular plates with eccentric circular perforation 
and attached concentrated mass have not been apparently studied in open literature. 

2    FORMULATION 

Fig. 1 shows the vibrating system of the studied problem. The plate transverse displacement can be written as: 
 

terWtrW ωθθ i),(),,( ′′=′′  (1) 
  
where the displacement amplitude is assumed to be: 
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Here, jkA  are constant coefficients. The coefficient α  and β  are determined by applying the governing boundary 
conditions at the outer boundary. For clamped edge, the boundary conditions are: 
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Simply supported edge boundary conditions can be written as: 
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where a  is the radius of circular plate. To study the frequency response of the plate the Rayleigh-Ritz variational 
method is applied. This method needs to minimize energy functional. 
 

[ ] [ ] [ ] [ ]WTWTWUWJ ′−′−′=′ 21  (5) 
                                                     
where [ ]WU ′  is the strain energy, [ ]WT ′1  is the plate kinetic energy, and [ ]WT ′2  is the concentrated mass kinetic 
energy. We can compute strain energy with the next relation: 
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Fig. 1 
Vibrating system. 
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Using the classical plate theory assumptions we have:  
  

∫∫∫ ++=
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The strains are expressed as:  
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Additionally the stresses are defined by: 
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Substituting Eqs. (8) and (9) into Eq. (7) leads to the following equation: 
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Substituting the transformation relations from rectangular coordinates to polar coordinates into (10) we obtain:  
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where A  is the area of the plate under study, D  is plate flexural rigidity, and υ  is the Poisson’s ratio. For the plate 
kinetic energy we have: 
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where ρ  is the density of plate, h  is its thickness, and ω  is the natural frequency. The concentrated mass kinetic 
energy can be expressed as: 
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where M  is the quantity of concentrated mass, and ),( 11 θr′  is the concentrated mass position. Substituting Eqs. 
(11)-(13) into (5) results in the energy functional relation: 
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Minimizing the governing function using the Rayleigh-Ritz variational method with respect to jkA  produce 
linear system of equations. 
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Non-triviality condition yields an equation in natural frequency coefficients. For generality and convenience of 

the mathematical formulation, the following dimensionless parameters are introduced as: 
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In this study the least natural frequency coefficient is determined for different cases.                 

3    RESULTS AND DISCUSSION 

By employing the Rayleigh-Ritz variational method, numerical solutions have been obtained. To calculate the 
natural frequency coefficients for the title problem there are several parameters which should be considered. 

:1a radius of perforation, e : eccentricity, M: quantity of concentrated mass, ),( 11 θr  : position of concentrated 
mass. The Poisson’s ratio coefficient υ  is assumed to be 0.3 in all cases. Two boundary conditions are considered to 
analyze the vibrating system. Table 1 shows the variation of non-dimensional natural frequency coefficients, 1Ω  for 
a simply supported circular plate. Table 2 demonstrated the same results for a clamped circular plate. In these tables 
we took .1.0/ ,1.0/1 == aeaa  Note that pM  refers to the plate mass )).(( 2

1
2 aahM p −= πρ   

In the second part of this study (tables 3-6), to investigate the accuracy of the present formulation, comparison 
studies are carried out with the finite element analysis. A computer program is developed and the results are 
obtained by ABAQUS software. The material of the circular plate under study in this part is assumed to be stainless 
steel with the following material properties: the Young’s modulus is considered GPa 200=E  and the density is 
considered as .kg/m 7800 3=ρ  Tables 3 and 4 show the frequency variations for circular plates under simply 
supported and clamped boundary conditions, respectively and m 1=a , m 1.0,m 1.01 == ea  and cm. 2=h  Tables 5 
and 6 show the frequency variations for circular plates under simply supported and clamped boundary conditions, 
respectively and m 1=a , m 2.0,m 1.01 == ea , kg100=M  and cm. 2=h  
 
 
Table 1 
Non-dimensional natural frequency coefficients 1Ω  for a simply supported circular plate 

 
 

pM

M
 Mass Position, 1r  1θ (ₒ) 

0 45 90 135 180 
0.05 0.2 4.504 4.510 4.519 4.522 4.521 

 0.4 4.608 4.615 4.620 4.619 4.615 
 0.6 4.738 4.741 4.742 4.741 4.738 
 0.8 4.840 4.840 4.841 4.841 4.840 
       

0.1 0.2 4.169 4.210 4.227 4.230 4.225 
 0.4 4.368 4.386 4.397 4.394 4.380 
 0.6 4.603 4.613 4.615 4.613 4.603 
 0.8 4.802 4.804 4.805 4.804 4.803 
       

0.2 0.2 3.721 3.747 3.776 3.777 3.763 
 0.4 3.965 4.008 4.030 4.021 3.985 
 0.6 4.347 4.378 4.385 4.378 4.347 
 0.8 4.726 4.732 4.732 4.733 4.727 
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Table 2 
Non-dimensional natural frequency coefficients 1Ω  for a clamped circular plate 

 
 
 

Table 3 
Natural frequency coefficient 1ω  in hertz for simply supported circular plate m 1.0=e  

Mass (kg) Mass position, 1r ′ (m)  1θ (ₒ) 
0 90 180 

100 
0.2 

ABAQUS 110.735 113.016 113.656 
 Analytical 113.374 115.122 114.723 
 Error (%)          2.3 1.8 0.9 
 

0.4 
ABAQUS 119.983 120.618 120.932 

 Analytical 121.012 123.067 121.595 
 Error (%) 0.8 1.9 0.5 
 

0.6 
ABAQUS 131.695 131.984 132.129 

 Analytical 132.914 133.803 132.883 
 Error (%) 0.9 1.3 0.5 
      

200 0.2 
 

ABAQUS  91.156 94.053   94.832 
 Analytical  94.233 96.779   95.889 
 Error (%)          3.2          2.8 1.1 
 0.4 

 

ABAQUS 101.957 102.787 103.163 
 Analytical 103.067 106.748 103.865 
 Error (%)      1 3.7 0.7 
 

0.6 
ABAQUS 117.420 117.870 118.061 

 Analytical 119.141 122.177 119.141 
 Error (%) 1.4 3.5 0.9 

 
 

In order to show the deflection of the circular plate of title problem, 3D mode shapes are depicted in Figs. 2-4. 
From tables 1-2 it is found that in most cases the maximum and minimum natural frequencies have happened at 

901 =θ  and ,01 =θ  respectively. The results show that the natural frequencies are decreased with an increase of 

the ratio pMM /  and this decrease for clamped circular plates is more than the simply supported circular plates. It is 

clear that in all cases by increasing 1r  (concentrated mass position) natural frequency coefficient increases. As it can 

be seen in tables 3-6 most of minimum frequencies occurred at 01 =θ  while the maximum frequencies always 

happened at .901 =θ  The error percentage for clamped plates are higher than the simply supported ones. 

 

pM

M  Mass Position, 1r  1θ (ₒ) 

0 45 90 135 180 
0.05 0.2   9.050   9.094   9.139   9.142   9.121 

 0.4   9.521   9.563   9.583   9.574   9.540 
 0.6   9.989   9.998   9.996   9.994   9.984 
 0.8 10.175 10.177 10.173 10.174 10.175 
       

0.1 0.2   8.156   8.251   8.340   8.332   8.275 
 0.4   8.890   9.008   9.054   9.031   8.924 
 0.6   9.768   9.802   9.801   9.795   9.757 
 0.8 10.158 10.156 10.153 10.150 10.157 
       

0.2 0.2   6.902   7.060   7.203   7.174   7.062 
 0.4   7.831   8.100   8.197   8.137   7.886 
 0.6   9.282   9.418   9.420   9.407   9.264 
 0.8 10.119 10.123 10.122 10.123 10.120 
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Table 4 
Natural frequency coefficient 1ω in hertz for clamped circular plate m 1.0=e  

Mass (kg) Mass position, 1r ′ (m)  1θ (ₒ) 
0 90 180 

100 
0.2 

ABAQUS 200.151 210.298 212.497 
 Analytical 209.877 219.263 214.907 
 Error (%) 4.6      4      1 
 

0.4 
ABAQUS 235.097 237.328 237.900 

 Analytical 238.558 250.030 240.214 
 Error (%) 1.4      5 0.9 
 

0.6 
ABAQUS 279.168 280.110 279.985 

 Analytical 283.282 288.220 283.282 
 Error (%) 1.4 2.8 1.2 
      

200 0.2 
 

ABAQUS 155.665 166.667 169.005 
 Analytical 166.073 177.668 171.472 
 Error (%) 6.3 6.1 1.4 
 0.4 

 

ABAQUS 190.192 192.743 193.289 
 Analytical 194.846 212.852 196.871 
 Error (%) 1.8 9.5 1.8 
 

0.6 
ABAQUS 242.279 243.944 243.385 

 Analytical 252.668 265.981 252.02 
 Error (%) 4.1 8.3 3.4 

 
 

Table 5 
Natural frequency coefficient 1ω in hertz for simply supported circular plate m 2.0=e , kg 100=M  

Mass position, 1r ′ (m) 
 1θ (ₒ) 

0 90 180 
0.1 ABAQUS 109.321 111.564 112.193 

Analytical 113.639 114.659 113.901 
Error (%) 3.8 2.7 1.5 

0.3 ABAQUS 113.411 116.698 117.251 
Analytical 115.489 120.557 118.555 
Error (%) 1.8 3.2 1.1 

0.6 ABAQUS 131.451 132.110 132.387 
Analytical 134.271 135.776 133.589 
Error (%) 2.1 2.7 0.9 

 
Table 6 
Natural frequency coefficient 1ω  in hertz for clamped circular plate m 2.0=e , kg 100=M  

Mass position, 1r ′ (m) 
 1θ (ₒ) 

0 90 180 
0.1 ABAQUS 195.922 205.686 207.822 

Analytical 206.451 215.378 212.279 
Error (%) 5.1 4.5 2.1 

0.3 ABAQUS 209.311 223.361 224.750 
Analytical 214.677 243.577 228.636 
Error (%) 2.5 8.3 1.7 

0.6 ABAQUS 278.980 280.877 281.355 
Analytical 284.093 292.885 285.060 
Error (%) 1.8 4 1.3 

 
 

By increasing the concentrated mass the error percentage increases, while the natural frequencies decrease. This 
decrease for far positions from the plate center is less than nearer positions to plate center. 
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Fig. 2 
First deformed mode shape and frequency parameter of a 
circular plate with clamped outer boundary 
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Fig. 3 
First deformed mode shape and frequency parameter of a circular 
plate with clamped outer boundary 
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Fig. 4 
First deformed mode shape and frequency parameter of a circular 
plate with clamped outer boundary 
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Tables 3 and 4 depict that if m 4.01 =′r  or m, 6.0 there are the maximum and the minimum error percentages at 

901 =θ  and ,1801 =θ  respectively. These two tables also show that when 2.01 =′r , as 1θ  increases, error 
percentage decreases. Two results can be concluded from tables 5 and 6. Firstly, when mr 3.01 =′  or m6.0 , the 

maximum errors happen at 901 =θ  and the minimum ones occur at .1801 =θ  Secondly, when m 1.01 =′r , by 
increasing 1θ  error percentage decreases. 

4    CONCLSIONS 

Small amplitude transverse vibration of circular plates with an eccentric perforation and a concentrated mass placed 
at any arbitrary position has been investigated in this paper. The following results can be made from this work: 

1. The natural frequency coefficients for clamped circular plate are higher than those for simply supported 
ones.  

2.  When the quantity of concentrated mass increases, the fundamental frequency coefficients decrease. 
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3. It seems that the mathematical model is more suitable for simply supported circular plates than the 
clamped circular plates. That is because of the fact that the difference between results obtained in 
analytical study and ABAQUS software for simply supported plates is less than clamped Circular plates. 

As a general conclusion, it can be expressed that the mathematical model is quite acceptable for the title 
problem.  
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