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 ABSTRACT 

 In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders 
under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method 
based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the 
classic coupled equations is presented. The thermal and mechanical boundary conditions, the body 
force, the heat source and magnetic field vector are considered in the most general forms, where no 
limiting assumption is used. This generality allows to simulate a variety of applicable problems. The 
results are presented for thermal and mechanical shock, separately, and compare the effect of 
magnetic field on temperature and displacement. 
                                                                                  © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, coupled thermoelasticity has developed enormously because there are many applications of it in 
industries related to advanced design such as aerospace, turbines, jet motors, nuclear reactors, etc. Therefore it is 

crucial to regard the deformation and temperature distributions in thermal shock cases. In coupled problems of 
thermoelasticity take into account the time rate of change of the first variation invariant of strain tensor in the first 
law of thermodynamics causes the coupling between elastic and thermal field. The mathematical treatment of 
coupled thermoelasticity problems by analytical methods is rather complicate so that only very basic problems have 
been treated in the literature and many works have been done by numerical methods of solution for coupled 
Magneto-thermo-elasticity problems. 

There are some few papers that presented the closed-form or analytical solution for coupled cases. Hetnarski [1] 
found the solution of coupled thermoelasticity in the form of series function. Hetnarski and Ignaczak [2] presented a 
study of the one-dimensional thermoelastic waves produced by an instantaneous plane source of heat in 
homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay type. Also these authors presented an 
analysis of laser-induced waves propagating in an absorbing thermoelastic semi-space of the Green-Lindsay type 
[3]. Georgiadis and Lykotrafitis obtained a three-dimensional transient thermoelastic solution for Rayleigh-type 
disturbances propagating on the surface of a halfspace [4]. Wagner [5] presented the fundamental matrix of a system 
of partial differential operators that governs the diffusion of heat and the strains in elastic media. This method can 
used to predict temperature distribution and the strains by an instantaneous point heat point source of heat or by a 
suddenly applied delat force. 
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Majority of papers focused on numerical methods in coupled problems.Lee [6] considered the problem of three-
dimensional axisymmetric quasi-static coupled magnetothermoelasticity for the laminated circular conical shells 
subjected to magnetic and temperature fields. Laplace transform and finite difference methods are used to analyze 
the problem. He obtained solutions for the temperature and thermal deformation distributions in a transient and 
steady state. Dai and Fu [7] considered the magnetothermoelastic problem of functionally graded material (FGM)                       
hollow structures subjected to mechanical loads. The material stiffness, the thermal expansion coefficient and the 
magnetic permeability are assumed to obey the simple power-law variation through the structures’ wall thickness. 
The aim of their research was to understand the effect of composition on magneto- thermoelastic stresses and to 
design optimum FGM hollow cylinders and hollow spheres. Wang and Dong [8] presented theoretical methods for 
analyzing magnetothermoelastic responses and perturbation of the magnetic field vector in a conducting non-
homogeneous thermoelastic cylinder subjected to thermal shock. By making use of finite Hankle integral 
transforms, the analytical expressions for magnetothermodynamic stress and perturbation response of an axial 
magnetic field vector in a non-homogeneous cylinder are obtained. Dai and Wang [9] presented an analytical 
method to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field 
vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic 
stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and 
Laplace transforms. 

Misra et al. [10] considered the problem of a half-space under the influence of an external primary magnetic field 
and an elevated temperature field arising out of a ramp-type heating of the surface. It is found that the stress 
distribution and the secondary magnetic field are almost independent of thermal relaxation time, but are significantly 
dependent on the mechanical relaxation time. Massalas [11] considered the phenomenological description of the 
magnetothermoelastic interactions in ferromagnetic material in the framework of the generalized theory of 
thermoelasticity proposed by Green and Laws. 

The material is supposed to be homogeneous, anisotropic and elastic undergoing large deformations. The 
analysis is based on the thermodynamic laws of quasi-magnetostatics. Misra et al. [12] presented a solution for the 
induced temperature and stress fields in an infinite transversely isotropic solid continuum with a cylindrical hole 
using the integral transform. The solid medium is considered to be exposed to a magnetic field and the cavity 
surface is assumed to be subjected to a ramp-type heating. Green and Lindsay model is used to account for finite 
velocity of heat conduction. Roy Choudhuri and Roy Chatterjee [13] presented the propagation of magneto-
thermoelastic disturbances produced by a thermal shock in a finitely conducting elastic half-space in contact with a 
vacuum, they used Laplace transform. The temperature-rate dependent theory of thermoelasticity proposed by Green 
and Lindsay is employed. It is found that the temperature and deformation are discontinuous at the wave fronts 
whereas the perturbed magnetic fields suffer delta function singularity at these locations. Paul and Narasimhan [14] 
studied the problem of axisymmetric axial stress wave generation in a thermoelastic circular cylindrical bar in the 
presence of an applied magnetic field. It is assumed that the surface of the cylinder is free from mechanical loadings 
and thermal radiation. A general solution is obtained by perturbation technique and is annihilated to a particular case 
where in the applied magnetic field is constant in space and time. Roy Chatterjee and Roychoudhuri [15] presented 
the magnetothermoelastic disturbances in a perfectly electrically conducting elastic half-space, in contact with a 
vacuum, due to a thermal shock applied on the plane boundary of the half-space. The theory of thermoelasticity 
proposed by Green and Lindsay is used to account for the interaction between the elastic and thermal fields. 
Maruszewsk [16] presented the nonlinear magnetothermoelastic equations in soft ferromagnetic and elastic bodies. 
The symmetry of couplings in these equations is also investigated. Magdy et al. [17] presented the equations of 
magneto-thermoelasticity with two relaxation times and with variable electrical and thermal conductivity for one-
dimensional problems including heat sources that are cast into matrix form, using the state space and Laplace 
transform techniques. The resulting formulation is applied to a problem for the whole conducting space with a plane 
distribution of heat sources. Chen and Lee [18] worked on magnetothermoelasticity by introducing two 
displacement functions and two stress functions. The governing equations of the linear theory of magneto-electro-
thermo-elasticity with transverse isotropy are simplified. The material inhomogeneity along the axis of symmetry 
can be taken into account and an approximate laminate model is employed to facilitate deriving analytical solutions. 
Tianhu et al. [19] reported the theory of generalized thermoelasticity, based on the theory of Lord and Shulman with 
one relaxation time, used to study the electromagneto-thermoelastic interactions in a semi-infinite perfectly 
conducting solid subjected to a thermal shock on its surface when the solid and its adjoining vacuum is subjected to 
a uniform axial magnetic field. He used Laplace transform. The Maxwell's equations are formulated and the 
generalized electromagneto-thermoelastic coupled governing equations are established. Sharma and pal [20] 
investigated the propagation of magnetic-thermoelastic plane wave in an initially unstressed, homogeneous isotropic 
conducting plate under uniform static magnetic field. The generalized theory of thermoelasticity is employed by 
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assuming the electrical behaviour as quasi-static and the mechanical behaviour as dynamic. At short wavelength 
limits, the secular equations for symmetric and skew-symmetric modes reduce, to Rayleigh surface wave frequency 
equation, because a finite thickness plate in such a situation behaves like a semi-infinite medium. Abd-Alla et al. 
[21] have investigated  the stress, temperature, and magnetic field in an isotropic homogeneous viscoelastic medium 
with a spherical cavity in a primary magnetic field, when the curved surface of the spherical cavity subjected to 
periodic loading. The generalized theory of thermoelasticity proposed by Green and Lindsay elasticity is applied to 
account for finite velocity of heat propagation.  

In this work, a full analytical method is proposed to obtain the response of the governing equations of the 
classical coupled magneto thermoelasticity in cylindrical coordinates, where an exact solution is presented. The 
method of solution is based on the Fourier expansion and eigenfunction methods, which is a traditional and routine 
method in solving the partial differential equations. Since the coefficients of equations are not functions of the time 
variable (t), an exponential form is considered for the general solution. For the particular solution, that is, the 
response to mechanical and thermal shocks and magnetic field vector, the eigenfunction method and Laplace 
transformation are used. 

This work is the extension of the previous paper of [22]. 

2    GOVERNING EQATIONS 

A hollow cylinder with inner and outer radius ri and ro made of isotropic material subjected to the radial-symmetric 
mechanical, thermal shock loads and magnetic field vector is considered. The classical theory of coupled magneto 
thermoelasticity for the wave propagation is considered. If u is the displacement component in the radial direction, 
the strain-displacement relations for the radial-symmetric loading conditions are [30]: 

,rr r

u
u

r    (1)

 
where (,) denotes partial derivative. 

The stress-strain relations for plane strain conditions are[30]: 

        

        

rr rr θθ

θθ rr θθ

E Eα
σ 1 ν ε νε T r, t

1 ν 1 2ν 1 2ν

E Eα
σ νε 1 ν ε T r, t

1 ν 1 2υ 1 2ν

       

       

 (2)
 

 
where ij  and ( , , )ij i j r  are the radial and hoop stresses and strain tensor, respectively; ( , )T r t is the temperature 

distribution,  is the coefficient of thermal expansion, E is the modulus of elasticity and   is the Poisson's ratio. 

Assuming that the magnetic permeability, ,  hollow cylinder is equal to the magnetic permeability of the medium 

around it, and also the medium is non-ferromagnetic and non-ferroelectric and ignoring the Thompson effect, the 
simplified Maxwell's equations of electrodynamics for a perfectly conducting elastic medium are [7]: 

( )

0 ( )z

J h h U H

divh J H 

   

 

    

  
 (3)

 

 
Applying an initial magnetic field vector (0,0, )zH H  in cylindrical coordinates to Eq. (3), yields [7]: 
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

 

      



   
(4)

 

where z ,  , H


, J


and h


 are electro-magnetic stress (N/m2), magnetic permeability (H/m), magnetic intensity 

vector, electric current density vector  and perturbation of magnetic field vector, respectively. 
The equation of motion in the radial direct is [30]: 
 

 rr,r rr θθ

1
σ σ σ F(r, t) ρu

r
z

r


    


  (5)

 
where ( , )F r t  is body force in the radial direction Fig 1. 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 
The geometry of a cylinder under a magnetic field, 
Mechanical and thermal shock 

 
Using the relations (1) to (5), the Navier equation in term of the displacement components is obtained as: 

 

 
      
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 

 


          
   

 
  




 (6)
 

 
The coupled heat conduction equation for the radial-symmetric loading condition is [30] : 

 

 ,rr ,r ,r

1 ρc Eα 1 Q(r, t)
T T T T u u

r k k 1 2υ r
          K

    (7)

 
where k ,  , c , T  and ( , )Q r t are the thermal conduction coefficient, the density, the specific heat , initial 

temperature and heat generation source. Mechanical and thermal boundary conditions are [29]: 
 

11 i 12 r i 12 i 1

12 22 r 23 2

31 i 32 r i 3

41 42 r 4

C u(r , t) C u, (r , t) C T(r , t) f (r)

C u(r , t) C u, (r , t) C T(r , t) f (r)

C T(r , t) C T, (r , t) f (r)

C T(r , t) C T, (r , t) f (r)

  
  

 

 

  

 

 (8)
 

 
where Cij are the mechanical and thermal coefficients, ri and ro are inner and outer radius respectively. By assigning 
different values for them, types of mechanical and thermal boundary conditions may be obtained. These boundary 
conditions include the displacement, strain, stress, specified temperature, convection, and heat flux. The initial 
boundary conditions are assumed in general form [22-28]: 
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5

6

7

U(r,0) f (r)

U(r,0) f (r)

T(r,0) f (r)







  (9)
 

3    SOLUTION 

Eqs. (6) and (7) are the system of nonhomogeneous partial differential equations with nonconstant coefficients 
(functions of radius variable r) and with general and particular solutions. 

3.1 General solution with homogeneous boundary conditions 

Since the coefficients of these equations are independent of time variable (t), the exponential function form of the 
time variable may be assumed for the general solution as [22-28]: 

   λt λtu(r, t) U(r)  e T(r, t) (r)  e   (10)
 

where   is eigenvalue and show the natural frequency. Substituting Eq. (10) into homogeneous pares of Eqs. (6) and 

(7), yields: 

2
1 2 52 2

3 4

1 1 1 1
u u u d d λ u d u u u 0

r rr r

1 1
'' ' d λ d λ u u 0

r r



  

             
 

      
 

 (11)
 

 
Eqs.(11) are system of ordinary differential equations, where the prime symbol (') shows differentiation with 

respect to the radius variable (r) and d1-d5 are constant parameters given in appendix .  
The first solutions of 1U (r)  and 1(r)  are considered as [22-28]: 

 

   1 1 1 1 1 0U (r) A J (r) B Jr r     (12)
 

where   shows nodal lines in natural vibrating modes and A1 and B1 are the maximum amplitudes. Substituting Eq. 

(12) in Eq. (11), and using the formulas for derivatives of the Bessel function, such 
as 1( ) / ( ) ( ( ) / )n n ndJ r dr J r n J r r     , yields: 

 

   
   

2 2
5 2 1 1 1 1

2
4 1 3 1 0

1 d λ d 0

λd βA (-β λd )B J 0

d A B J ( r )

r

  



    

  
 (13)

 

 
Eq. (13) shows U1 and 1   can be the solution of Eqs. (11), if only and if: 

 

  2 2
15 2 1

2
14 3

A 01 d λ d β

B 0λd β β λd

d         
     

     
 (14)

 

 
The nontrivial solution of Eq. (14) is obtained by setting the determinant of this equation equal to zero as: 
   

  2 2 2 2
5 2 3 1 4(1 ) 0d d d d d                   (15)
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Eq.(15)  is the first characteristic equation. Thus, it is concluded that the first solution for U1 and  1
 satisfy the 

system of Eq.(11), and they are the first solutions of this system. 
The second solution of the system of ordinary differential equations with nonconstant coefficients Eq. (11) must 

be considered as [22-28]: 
 

   
   

2 2 1 3 2

2 2 0 3 1

U (r) A J A rJ

(r) B J B rJ

r r

r r

 

  

   
   

   (16)
 

 
Substituting Eq. (16) to Eq. (11) yields: 
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2
( (1 d )β λ d )A λ d A d βB J 0

β

A λd β ( β λd )B 2βB J

A λd β( β λd )B rJ 0

r

r

r

r









   

 
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 

   

   

                (17)
 

 
The expressions for 2U  and 2 can be the solution of Eqs. (11), if only and  if: 

 

 
 

2 2
5 2 1 3

2
34 3

(1 )β λ d d β A 0

B 0λd β β λd

d                   

          (18)
 

 

2 2 2
5 2 2 2 3 1 2

2
( (1 )β λ d )A λ d A d βB 0

β
d

 
      

 
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 2
4 2 3 2 3λd βA ( β λd )B 2βB 0      (20)

 
The nonrivial solution of  Eqs. (18) is obtained by setting the determinant equal to zero as:  
 

  2 2 2 2
5 2 3 1 4(1 ) 0d d d d d             (21)

 
The characteristic Eq.(21) is the same as the characteristic Eq. (15). This equality is interesting as it prevents 

mathematical dilemma and complexity, and a single value for the eigenvalue β simultaneously satisfies both 

characteristic Eqs. (15) and (21). Eqs.(19) and (20) give the relation between A2, A3, B2, and B3, and they play as the 
balancing ratios that help Eq. (16) to be the second solution of the system of Eq. (11). Eqs. (19) and (20) are two 
algebraic equations with six unknown A2, A3, B2, B3,β  and  . Since the number of unknowns is more than the 

equations, there is no restriction to bring noncompatibility between Eqs. (18) – (20). The complete general solutions 
for the solid cylinder are [22-28]: 

 

     
     

g
1 1 2 1 1 2

g
1 2 0 2 3 0 4 1
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   
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Those for hollow cylinder are: 

           
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g
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g
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U (r) A J A J ζ rJ A Y A Y ζ rY
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r r r r r r

     

      

           
           

 (23)
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where ζ1 - ζ4 are ratios obtained from Eqs. (14), (19) and (20) and are given in appendix. Substitute Ug and  g in 
homogeneous form of boundary conditions Eq.(8) , four linear algebric equations are obtained as: 
  

1411 12 13 1

221 22 23 24

331 32 33 34

441 42 43 44

μ μ μ μ A 0

A 0μ μ μ μ

A 0μ μ μ μ

0Aμ μ μ μ

     
     

                       

 (24)
 

 
where μij are the coefficients depending on β  and   and are given in appendix. Setting the determinant of 

coefficients of Eq. (24) equal to zero, the second characteristic equation is obtained. A simultaneous solution of this 
equation and Eq. (15), result in an infinite number of tow eigenvalues, βn and λn. Therefore Ug and  g are rewritten 
as [22-28]: 
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g
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     

      

             
             

 (25)
 

 
where ζ5 - ζ15 are eigenvectors can obtained from Eqs (24). Let us show the functions in the brackets of Eqs. (25) by 
functions 1H  and 0H  as: 

 
   
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r r r r r r r

r r r r r r r

      

      

     

     
 (26)

 

 
According to the Sturm-Liouville theories, these functions are orthogonal with respect to the weight function  
p(r) = r as [22-28]: 
 

o

i

r

2n m

r n

0 n m
H(β r)H(β r)rdr

H(β r) n m

    
  

  (27)
 

 
where  ( )nH r  is norm of the H function and equals [22-28]: 

 

o

i

1
r 2

2
n n

r

H(β r) rH (β r)dr
 

  
  
  (28)

 

 
Due to the orthogonality of function H, every piecewise continuous function, such as f(r) can be expanded in 

terms of the function H (either for 1H  or 0H ), and is called the H-Fourier series as [22,23]: 

 

n n
n 1

f(r) e H(β r)




   (29)

 
where en equlas: 
 

o

i

r

n 2
rn

1
e f(r) H(r) r dr

H(β r)
   (30)

 

 
There are three groups for eigenvalues n , where the first n1 is real and negative, and the second and third ones,  
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n2 and n3 , are conjugate complex with a negative real part, - n n   , and an imaginary part, dn . Terms dn  and 

n  are the damped and nondamped thermal-mechanical natural frequencies, and n  is the damping ratio for the nth 

natural mode. Eq. (15) is an algebraic equation in polynomial form, and the determinant of Eq. (24) is an algebraic 
equation in the Bessel function form. The exact analytical solution for this system of nonlinear algebraic equations is 
complicated, and the numerical method of solution is employed in this paper. Since the Bessel functions are 
periodic, the system has an infinite number of roots. 

Using Eqs. (10), (25), and (26), the displacement and temperature distributions due to the general solution 
become [22-28]: 

 

nm

nm

λ tg
nm 1 n

n 1 m 1

λ tg
nm 0 n

n 1 m 1

u (r, t) { a e }H ( r)

T (r, t) { N e }H ( r)

3

3



 


 

 

 

 

 
 (31)

 

 
Using initial conditions Eq.(9) and with the help of  Eqs. (6)and (7)and(29)to(31), unknown constants, anm, Nnm 

are obtained. 

3.2 Particular solution with non-homogeneous boundary conditions 

The general solutions may be used as proper functions to guess the particular solution adopted to the 
nonhomogeneous parts of Eqs. (6) and (7) and the nonhomogeneous boundary conditions Eq. (8) as [22-28]: 
 

 

 

p 2
1n 1 2n 2 5n

n 1

p 2
3n 0 4n 1 6n

n 1

u (r, t) { G (t)J ( ) G (t)rJ ( ) r G (t)}

T (r, t) { G (t)J ( ) G (t)rJ ( ) r G (t)}

n n

n n

r r

r r

 

 









  

  




 (32)

 

 
For solid cylinder, the second type of Bessel function Y is excluded. It is necessary and suitable to expand the 

body force F(r,t) and heat source Q(r,t)  in the H-Fourier expansion form as [22-28]: 
 

n 1
n 1

n 0
n 1

F(r, t) F (t)H ( )

Q(r, t) Q (t)H ( )

n

n

r

r




















 (33)

 

 
where Fn(t) and Qn(t) are 

 

12

1

02

0

1
( ) ( , ) ( )

( )

1
( ) ( , ) ( )

( )

o

i

o

i

r

n n

rn

r

n n

rn

F t F r t H r rdr
H r

Q t Q r t H r rdr
H r














 (34)

 

 
Substituting Eqs.(32) and (33) into nonhomogeneous form of Eq. (6) and (7) yields: 
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(35)
 

 
where 7 19d d  are coefficient of H Expansions and presented in appendix.  

The guessed functions Eq.(32) can satisfy nonhomogeneous part of Eqs.(6) and (7) if only and if: 
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Taking the Laplace transform of Eqs. (36) and using tow boundary conditions of Eqs. (8)  (for solid cylinder 

only the second and forth boundary conditions are applicable), give: 
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Eqs. (37) is a system of algebraic equations and is solved for G1n(t) to G6n(t) by the Cramer methods in the 
Laplace domain where by the inverse Laplace transform the function are transformed into the real time domain. In 
the process of solution, it is necessary to consider the following points. 

1-The initial conditions Eq.(9) are considered only for general solutions Eq.(31) . The initial conditions of   
G1n(t) - G6n(t) for the particular solutions are considered equal to zero. 

2-Eq. (37) is in polynomial form function of the Laplace parameters s (not Bessel functions form of s). Therfore  
the exact inverse Laplace transforms is possible and somehow simple. 

3-For hollow cylinder, it is enough to include the second type of Bessel functions Y(r) in the sequence of 
particular solution as [22-28]: 
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(38)
 

 
Substituting Eqs. (38) in Eqs. (6) and (7), eight equations are obtained where using the four boundary conditions  

Eq.(8), 12 functions  G1n(t) - G12n(t)  are obtained for the hollow cylinder. 

4    RESULTS AND DISCUSSIONS 

As an example, a solid cylinder with 1or m  made of aluminium is considered. The material properties are shown 

in Table1.[7,22-23]: 
 
Table 1 
The initial temperature T  is considered 293º K. 

Material properties of Aluminum  

E=70 (G Pa) 
0.3 

623 10 (1 / )K    
32707( / )kg m   

K=204(W/m K) 

c=903(J/kg K) 
85 10 ( / )Hz A m   Hz=0 & 

 
Now, an instantaneous hot outside surface temperature 3(1, ) 10 ( )T t T t  where ( )t is the unit Dirac function, 

is considered, and the outside radius of the cylinder is assumed to be fixed ( (1, ) 0)u t  .To draw the graphs, a 

nondimensional time ˆ vt
t

r
  is considered, where  (1 ) / 1 (1 2 )v E         is the dilatational-wave velocity 

[31-35]. 
Figs . 2 - 5 show the wave fronts of displacement, temperature, radial and hoop stress with and without magnetic 

field at ˆ 0.2t  . 

As a second example, a mechanical shock wave of the form 12(1, ) 10 ( )u t u t  is applied to the outside surface 

of the cylinder, where the surface is assumed to be at zero temperature ( (1, ) 0)T t   and ( )u r T   is an assumed 

initial displacement at ˆ 0.6t  .  
These figures show the magnetic field increases the stiffness of body and then decreases the temperature and 

displacement.  Figs. 6 - 9 show the wave fronts for the displacement, temperature, radial and hoop stress with and 
without magnetic field distributions along the radial direction. The convergence of the solutions for these examples 
is achieved by consideration of 1200 eigenvalues used for the H-Fourier expansion. More than this number of 
eigenvalues results in the increased round-off and truncation errors, which affect the quality of the graphs. The 
convergence of solution is faster for displacement in comparison with the temperature. The small oscillations in 
Figs. 2 and 4 are due to the convergence of solutions. 
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Fig.2 
Non-dimensional displacement distribution due to input 

3(1, ) 10 ( )T t T t  at non-dimensional time ˆ 0.2t   with and 

without magnetic field. 

  

 
 
 
 
 
 
Fig.3 
Non-dimensional temperature distribution due to input 

3(1, ) 10 ( )T t T t  at non-dimensional time ˆ 0.2t  with and 

without magnetic field. 

  

 

 
 
 
 
 
 
Fig.4 
Non-dimensional radial stress distribution due to input 

3(1, ) 10 ( )T t T t  at non-dimensional time ˆ 0.2t   with and 

without magnetic field. 
 
 
 
 
 
 
 
 
Fig.5 
Non-dimensional hoop stress distribution due to input 

3(1, ) 10 ( )T t T t  at non-dimensional time ˆ 0.2t   with and 

without magnetic field. 

  

 
 
 
 
 
 
 
Fig.6 
Non-dimensional displacement distribution due to input 

12(1, ) 10 ( )u t u t  at non-dimensional time ˆ 0.6t  with 

and without magnetic field . 
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Fig.7 
Non-dimensional temperature distribution due to input 

12(1, ) 10 ( )u t u t  at non-dimensional time ˆ 0.6t   with 

and without magnetic field . 

  

 
 
 
 
 
Fig.8 
Non-dimensional radial stress distribution due to input 

12(1, ) 10 ( )u t u t  at non-dimensional time ˆ 0.6t  with 

and without magnetic field . 

  

 
 
 
 
 
 
Fig.9 
Non-dimensional hoop stress distribution due to input 

12(1, ) 10 ( )u t u t  at non-dimensional time ˆ 0.6t   with 

and without magnetic field. 

5    CONCLUSIONS 

In this paper, an analytical solution for the coupled Magneto-thermo-elasticity of thick cylinders under radial 
temperature or mechanical shock load with and without magnetic field is presented. The method is based on the 
eigenfunction Fourier expansion, which is a classical and traditional method of solution for the typical initial and 
boundary value problems. The strength of this method is its ability to reveal the fundamental mathematical and 
physical properties and the interpretations of the problem under study. 

In the coupled Magnetothermoelastic problem of the radial-symmetric cylinder, the governing equations are a 
system of partial differential equations with two independent variables, the radius (r) and the time (t). The traditional 
procedure to solve this class of problems is to eliminate the time variable by using the Laplace transform. 

The resulting system is a set of ordinary differential equations in terms of the radius variable, which falls into the 
Bessel function family. This method of analysis brings the Laplace parameter (s) in the argument of the Bessel 
functions, causing hardship or complications in carrying out the exact inverse of the Laplace transformation. As a 
result, the numerical inverse of the Laplase transformation is used in the papers dealing with this type of problems in 
literature. In the present paper, to prevent this problem, when the Laplace transform is applied to the particular 
solutions, it is postponed after eliminating the radius variable r by the H-Fourier expansion. Thus, the Laplace 
parameter (s) appears in polynomial function forms, and hence the exact Laplace inversion transformations are 
possible. 
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The method described in this paper is an exact solution of the coupled Magneto-thermo-elasticity of thick 
cylinders with two given boundary conditions. The exact solutions found in literature for the coupled 
thermoelasticity problems are limited to the infinite spaces and half-spaces. The analytical method of solution 
presented in this paper is for a finite domain with specified and given boundary conditions. This is the novelty of the 
paper, where the solution of a popular structural component (a thick cylinder) with two specified boundary 
conditions under the coupled Magneto-thermo-elasticity assumption is given analytically and in terms of the series 
solution. 
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