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 ABSTRACT 

 This paper studies free vibration of simply supported functionally graded beams with piezoelectric 
layers subjected to axial compressive loads. The Young's modulus of beam is assumed to be 
graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing 
equation is established. Resulting equation is solved using the Euler’s Equation. The effects of the 
constituent volume fractions, the influences of applied voltage and axial compressive loads on the 
vibration frequency are presented. To investigate the accuracy of the present analysis, a 
compression study is carried out with a known data. 
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1    INTRODUCTION 

HE mechanics of piezoelectric materials has been an important branch of solid mechanics in recent years. In 
particular, the research of piezoelectric beam, a plate and shell structure has attracted much attention from both 

engineers and scientists [1-3]. Shu'lga [4] utilized separation formulae for displacements and stresses to simplify the 
basic equations of piezoelasticity for spherical isotropy, and obtained two independent classes of vibrations. Chen 
and Ding [5] exactly analyzed a rotating piezoelectric hollow sphere by introducing displacement functions. Chen et 
al. [6] recently investigated the coupled-free vibration problem of a submerged piezoelectric spherical shell.  

Studies on functionally graded material (FGM) have been extensive in the last decade [7]. The dynamic analysis 
of FGM elastic beam, plates and shells has been of particular research interest recently [8, 9]. Based on the three-
dimensional elasticity equations for spherical isotropy, Chen et al. [10] exactly analyzed the coupled-free vibration 
of a fluid-filled FGM hollow sphere. By introducing displacement functions and using the Frobenius power-series 
method, Chen [11] recently considered the vibration problem of spherically isotropic piezoelastic spheres with a 
functionally graded property that the material constants vary with the radial co-ordinate in a power law. It should be 
noted that laminated models have been widely employed to analyze functionally graded materials or structures in the 
study of FGM [7, 12, 13]. However, with the increasing number of involved layers, conventional methods used by 
many authors usually lead to lower numerical exigency. The state-space method has shown to be very effective in 
the analysis of laminated structures because of the associated lower order solving matrix. Its recent applications in 
piezoelectric materials and structures can be found in references [14-17].  

In the present work, the free vibration of a functionally graded beam with piezoelectric actuators subjected to 
axial compressive loads is studied. The elasticity modulus of functionally graded layer is assumed to vary as a power 
form of the thickness coordinate variable. Applying the Hamilton's principle, the governing equation of beam is 
derived and solved. The effects of the applied voltages, axial compressive loads and functionally graded index on 
the vibration frequency of beam are also discussed. 
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2    FORMULATIONS 

Consider a functionally graded beam with piezoelectric actuators and rectangular cross-section as shown in Fig. 1. 
The thickness, length, and width of the beam are denoted, respectively, by , , Lh and .b  Also, Th  and Bh  are the 
thickness of top and bottom of piezoelectric actuators, respectively. The yx −  plane coincides with the midplane of 
the beam and the −z axis located along the thickness direction. The Young's modulus E  is assumed to vary as a 
power form of the thickness coordinate variable )2/2/(  hzhz ≤≤−  as follow [18] 
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where k  is the power law index and the subscripts m  and c  refer to the metal and ceramic constituents, 
respectively. The Poisson’s ratio υ  is assumed to be constant. The beam is assumed to be slender, thus, the Euler-
Bernoulli beam theory is adopted. The piezoelectric layers are also assumed to be polarized along the thickness 
direction. The axial stress and electrical displacement can be written as 
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where  , , , 31eDzxxσ  and 33η  are the normal stress, electrical displacement, piezoelectric elastic stiffness, and 
permittivity coefficient, respectively, and u  and w  are the displacement components in the −x  and −z  directions, 
respectively. The potential energy can be expressed as 
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Substituting Eqs. (2)-(4) into Eq. (5) and neglecting the higher-order terms, we obtain 
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Fig. 1 
Schematic view of the problem studied. 
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The width of beam is assumed to be constant, which is obtained by integrating along y  over .v Then Eq. (6) 
becomes 
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where BT VVDBA  , , , , 111111  and P′  are the extensional stiffness, coupling stiffness, bending stiffness, applied 
voltages on the top and bottom actuators and piezoelectric force, respectively. When the applied voltage is negative, 
the piezoelectric force is tensile. Note that, no residual stresses due to the piezoelectric actuator are considered in the 
present study and the extensional displacement is neglected. Thus, the potential energy can be written as 
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The beam is subjected to the axial compressive loads ,P  as shown in Fig. 2. The work done by the axial 

compressive load can be expressed as 
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The kinetic energy can be expressed as 
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where m  is the mass per unit length of the beam. We apply the Hamilton’s principle to derive the dynamic equation 
of beam, that is 
 

 

 
Fig. 2 
Simply supported beam under periodic loads. 
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Substitution from Eqs. (10), (11), and (12) into Eq. (13) leads to the following dynamic equation 

 

0)( 2

2

4

4

112

2
=

∂
∂′−+

∂
∂

+
∂
∂

x

w
PbP

x

w
bD

t

w
m                                                                                                (14) 

3    VIBRATION ANALYSIS 

For the simply supported boundary condition, the solution of the dynamic equation is assumed to be in the following 
form: 
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where )(tf  is the function of time. Substituting expression (15) into Eq. (14) leads to the following equation: 
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Thus, the thn  free vibration frequency of functionally graded beam with piezoelectric actuators loaded by a 

constant axial force ,P  can be obtained as  
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Eq. (17) is referred to as the thn  free vibration frequency of functionally graded beam with piezoelectric 

actuators loaded by a constant axial force. By setting the power law index equal to zero )0( =k and neglecting the 
piezoelectric effect, the thn  free vibration frequency of homogeneous beams can be written as 
 

k
ka

p

p
*1−=Ω ω                                                                                                                             (20) 

 
where 
 



26                   Karami Khorramabadi / Journal of Solid Mechanics 1 (2009) 22-28 
 

© 2009IAU, Arak Branch  

m

bD

L

n
n

2

⎟
⎠
⎞

⎜
⎝
⎛=
πω  

bD
L

n
Pn

2
* ⎟

⎠
⎞

⎜
⎝
⎛=
π                                                                                                                             (21) 

 
and  
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Eq. (20) has been reported by Bolotin [19]. 

4    NUMERICAL RESULTS 

The free vibrations of functionally graded beams with piezoelectric actuators subjected to axial compressive loads 
are studied in this paper. It is assumed that both the top and bottom piezoelectric layers have the same 
thickness; BT hh =  and the same voltages are applied to both actuators. The material properties of the beam are 
listed in Table 1. The effect of power law index k  on the free vibration frequency for the axial compressive load 

KN10  is shown in Fig. 3.  
 
Table 1 
Material properties 
Property Piezoelectric layer FGM layer 
  Aluminium Alumina 
Young's modulus (GPa)  E                63 70     380 
Poisson's ratio ν                  0.3      0.3         0.3 
Length (m)  L                  0.3          0.4         0.4 
Thickness (m)  h                  0.00005          0.01  0.01 

Density  )(Kgm  -3ρ      2707   3800 

Piezoelectric constant  )(Cm    , -2
3231 ee                17.6 - - 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
Effect of power law index on the free vibration 
frequency. 
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Fig. 4 
Effect of axial compressive load on the free vibration 
frequency. 

 
It is found that, as k  increases, the free vibration frequency decreases. Fig. 4 illustrates the effect of the axial 

compressive load on the free vibration frequency for the applied voltage -40 KV. As the axial compressive load 
increases, the free vibration frequencies decrease. Also, Comparisons of the free vibration frequency for the 
functionally graded beam and isotropic beam are shown in Fig. 4. It is evident that the free vibration frequencies 
decrease when the beam is made of functionally graded materials. 

5    CONCLUSION 

The free vibration analysis of a functionally graded beam with piezoelectric actuators subjected to the axial 
compressive loads has been presented. It was shown that the piezoelectric actuators induce tensile piezoelectric 
force produced by applying negative voltages that significantly affect the free vibration of the functionally graded 
beam with piezoelectric actuators. The free vibration frequency increases when the applied voltage is negative. The 
functionally graded beam with a smaller axial compressive load is more efficient in reducing the chance of 
resonance. The comparison of the stability for the functionally graded beam and isotropic beam shows that the 
functionally graded beam is more stable.  

RFERENCES 

[1] Bisegna P., Maceri F., 1996, An exact three-dimensional solution for simply supported rectangular piezoelectric plates, 
ASME Journal of Applied Mechanics 63: 628-638. 

[2] Kapuria S., Dumir P.C., Sengupta S., 1996, Exact piezothermoelastic axisymmetric solution of a finite transversely 
isotropic cylindrical shell, Computers and Structures 61:1085-1099.  

[3] Ding H.J., Chen W.Q., Guo Y.M., Yang Q.D., 1997, Free vibrations of piezoelectric cylindrical shells filled with 
compressible Fluid, International Journal of Solids and Structures 34: 2025-2034. 

[4] Shul'ga N.A., 1993, Harmonic electroelastic oscillation of spherical bodies, Soviet Applied Mechanics 29: 812-817. 
[5] Chen W.Q., Ding H.J., 1998, Exact static analysis of a rotating piezoelectric spherical shell, Acta Mechanica Sinica 14: 

257-265. 
[6] Chen W.Q., Ding H.J., Xu R.Q., 2001, Three dimensional free vibration analysis of a fluid-filled piezoceramic hollow 

sphere, Computers and Structures 79: 653-663. 
[7] Tanigawa Y., 1995, Some basic thermo elastic problems for nonhomogeneous structural materials, Applied Mechanics 

Reviews 48: 287-300. 
[8] Loy C.T., Lam K.Y., Reddy J.N., 1999, Vibration of functionally graded cylindrical shells, International Journal of 

Mechanical Sciences 41: 309-324. 
[9] Cheng Z.Q., Batra R.C., 2000, Exact correspondence between eigenvalues of membranes and functionally graded 

simply supported polygonal plates, Journal of Sound and Vibration 229: 879-895. 
[10] Chen W.Q., Wang X., Ding H.J., 1999, Free vibration of a fluid-filled hollow sphere of a functionally graded material 

with spherical isotropy, Journal of the Acoustical Society of America 106: 2588-2594.  
[11] Chen W.Q., 2000, Vibration theory of non-homogeneous, spherically isotropic piezoelastic bodies, Journal of Sound 

and Vibration 229: 833-860. 



28                   Karami Khorramabadi / Journal of Solid Mechanics 1 (2009) 22-28 
 

© 2009IAU, Arak Branch  

[12] Ootao Y., Tanigawa Y., 2000, Three-dimensional transient piezothermoelasticity in functionally graded rectangular 
plate bonded to a piezoelectric plate, International Journal of Solids and Structures 37: 4377-4401. 

[13] Wang B.L., Han J.C., Du S.Y., 1999, Functionally graded penny-shaped cracks under dynamic loading, Theoretical 
and Applied Fracture Mechanics 32: 165-175. 

[14] Chen W.Q., Liang J., Ding H.J., 1997, Three dimensional analysis of bending problems of thick piezoelectric 
composite rectangular plates, Acta Materiale Compositae Sinica 14: 108-115 (in Chinese). 

[15] Chen W.Q., Xu R.Q., Ding H.J., 1998, On free vibration of a piezoelectric composite rectangular plate, Journal of 
Sound and Vibration 218: 741-748. 

[16] Ding H.J., Xu R.Q., Guo F.L., 1999, Exact axisymmetric solution of laminated transversely isotropic piezoelectric 
circular plates (I) exact solutions for piezoelectric circular plate, Science in China (E) 42: 388-395. 

[17] Wang J.G., 1999, State vector solutions for nonaxisymmetric problem of multilayered half space piezoelectric medium, 
Science in China (A) 42: 1323-1331. 

[18] Reddy J.N., Praveen G.N., 1998, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal 
plates, International Journal of Solids and Structures 35: 4467-4476. 

[19] Bolotin V.V., 1964, The dynamic Stability of Elastic Systems, Holden Day, San Francisco. 


