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 ABSTRACT 

 Flow induced vibration and smart control of elastically coupled double-nanotube-systems 
(CDNTSs) are investigated based on Eringen’s nonlocal elasticity theory and Euler-Bernoulli 
beam model. The CDNTS is considered to be composed of Carbon Nanotube (CNT) and 
Boron-Nitride Nanotube (BNNT) which are attached by Pasternak media. The BNNT is 
subjected to an applied voltage in the axial direction which actuates on instability control of 
CNT conveying nano-fluid. Polynomial modal expansions are employed for displacement 
components and electric potential and discretized governing equations of motion are derived by 
minimizing total energies of the CDNTS with respect to time-dependent variables of the modal 
expansions. The state-space matrix is implemented to solve the eigen-value problem of motion 
equations and examine frequencies of the CDNTS. It is found that Pasternak media and applied 
voltage have considerable effects on the vibration behavior and stability of the system. Also,  it  
is  found  that  trend  of  figures  have  good  agreement  with  the  other studies. The results of 
this study can be used for design of CDNTS in nano / Micro -electro-mechanical systems. 
                                                                             © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE Boron-Nitride nanotubes (BNNTs) discovered in the mid 1990s, are extensively utilized in the nano-
electro-mechanical (NEMS) and micro-electro-mechanical systems (MEMS) in recent years, according to the 

unique structural properties. Possessing strong piezoelectric characteristic, high elastic modulus and superb 
structural stability respect to Carbon nanotubes (CNTs) are important properties of BNNTs that hasn't observed in 
the other nanostructures [1]. Hence, the wide applications of the BNNTs in the nano sensors and actuators and 
reinforcement in the nano-composites can be mentioned here briefly [2-4].  

Buckling of BNNTs with zigzag atomic structure under combined electro-thermo-mechanical loadings was 
investigated by Salehi-Khojin and Jalili [5]. They suggested that the zigzag structure of BNNTs have longitudinal 
piezoelectricity property and are more stable for axial loadings. Ghorbanpour Arani et al. [6] studied the electro-
thermo-mechanical vibration response of BNNTs. They used nonlocal Timoshenko beam theory in their analysis 
which was not considered for BNNTs in the existed literature. 

Regarding nano and micro structures conveying fluid, analysis of nonlinear vibration of the fluid-conveyed 
CNTs were studied by Kuang et al. [7]. The various aspects of nonlinearity conditions of the considered model were 
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investigated on the vibration responses of the system and it was found that coupling between longitudinal and 
transverse coordinates has significant effect on the amplitude–frequency properties. Fu et al. [8] studied on the 
nonlinear vibration of the embedded CNTs and discussed on the effects of the surrounding elastic medium, van der 
Waals forces and aspect ratio of the CNT on the amplitude frequency response characteristics.In order to consider 
fluid-scale in the nano-structures, validity of the classical fluid velocity profile in nanotubes is assessed by 
Narasimhan [9].  

One of the most important nano-structures is CDNTS that includes connected two or more nanotubes [10]. The 
atomic interactions between nanotubes in the CDNTS are considered often by Van der Waals force and elastic 
medium [11]. The nonlocal effects of the double-nanorod systems on the axial vibration were researched by Murmu 
and Adhikari [12]. In the numerical analysis, they considered nanorod to be CNT and concluded that the 
fundamental natural frequency of axially vibrating nanorods has a decreasing nature with the increasing nonlocal 
parameter.           

In this study, flow-induced instability of a CDNTS, consisting BNNT and CNT which are coupled by Pasternak 
media is investigated. The nanotubes are modeled as nonlocal Euler-Bernoulli beam and steady-state fluid flow is 
considered to be conveyed through the CNT. In order to achieve an active control on the vibration response of the 
system, external electric potential is imposed on the BNNT and considerable effects are observed in this regard. This 
study is commonly used as reference of the CDNTS investigations in NEMS. 

2    NONLOCAL PIEZOELASTICITY THEORY 

Based on the theory of nonlocal piezoelasticity, the stress and the electric displacement at a reference point x  
depend not only on the components of the strain and electric-field at the same position, but also on all other points of 
the body. The nonlocal constitutive equations for BNNT as a piezoelectric material in the occupied region of the 
body V , can be given as follows [13]: 

       x x x , x dV x , x V     BN BN
ij ij

V

t     
(1a) 

       x x x , x dV x , x V      BN BN
i i

V

D     
(1b) 

 
and for the CNT, we have 

       x x x , x dV x , x V     C C
ij ij

V

t     
(2) 

 
where ij  and iD

 
are the components of nonlocal stress and electric displacement tensors, respectively, and 

superscript BN indicate boron-nitride and C indicate carbon nanotube. The kernel function  x x ,    is the 

nonlocal modulus, x x is the Euclidean distance, and 0 /e a l   is defined as the scale coefficient that 

incorporates the small scale factor, where 0e  is a constant appropriate to each material and a and l  are the internal 

and external characteristic length (e.g. crack length, wavelength), respectively. In addition, ijt  and i  imply 

classical stress and classical electric displacement, respectively. According to axially polarization of BNNT 
controller, the nonlocal constitutive equations for BNNT and CNT can be written as [14]: 
 

 2 2
01 ( ) ,  BN BN

ij ije a t  (3a) 
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where 2 represents the Laplace operator. The above implicit relations couple the nonlocalstress and electric 
displacement with the classical stress and electric displacement.To achieve explicit relations, an iterative-based 
method can be suggested for the above equations as follows: 
 

       ,22
0

1

ij

k

ij

k

ij tae 
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(5b) 

 
where k is the iteration number and the first iteration can be started by local results. It is clear that accuracy of the 
nonlocal results will be improved by increasing the number of iterations.  

3    MODELING OF THE PROBLEM 

Consider a vertically coupled nonlocal nanotube system as shown in Fig 1. In the present study, the CNT containing 
steady nano-flow is controlled by a parallel BNNT which is subjected to external electric voltage 0  in axial 
direction. The CNT and BNNT are attached by longitudinal and vertical springs which are simulated by Pasternak 
foundation theory that is capable of both transverse shear loads ( pG ) and normal loads ( wK ). Based on Euler-

Bernoullibeam model, the components of axial and transverse displacement (i.e., ( , , )u x z t and ( , , )w x z t ) for CNT 
and BNNT are expressed as: 
 

( , )
( , , ) ( , )

:

( , , ) ( , )

 
 


 





i
i i

i i

w x t
u x z t u x t z

i C or BNx

w x z t w x t

 

 
 

(6) 

 
u and w  are the components of the middle surface displacement (i.e., displacement at 0z  ) and additionally x  

and z are the coordinates taken along the length and the thickness of the beam. Hence, the strain-displacement 
relationship is given by: 

 
2

2
: .

 
 
 

i i
i
x

u w
z i C or BN

x x
  

 
(7) 

 
The classical constitutive relations of stress and electric displacement for BNNT are expressed as: 
 

11 11 1 ,   BN BN BN BN
x x xt C e E T   (8a) 

11 11 1 ,    BN BN
x x xe E p T  (8b) 

 
where 11 11 11 1, , ,C e  and 1p  denote elastic, piezoelectric, dielectric, pyroelectric coefficients and thermal modulus, 
respectively. And for the CNT, we have 
 

11 1 .  C C C C
x xt C T   (9) 

 
where 11 11 11 1, , ,C e  and 1p  denote elastic, piezoelectric, dielectric, pyroelectric coefficients and thermal modulus, 
respectively. Also, the unidirectional electric field along the axial direction of BNNT in terms of electric potential  
is reduced as: 
 

.


 
xE
x


 

 
(10) 
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The Eqs. (8) to (9) should be inserted into nonlocal equations (Eqs. (5)), in order to evaluate small scale effects 

of the CDNTS.  

4    ENERGY FUNCTIONS 

The total elastic strain energy of CDNTS is consists of elastic strain energy of BNNT subjected to axial electric field 
and CNT as: 

 
0

1
,

2
  

BN

L
BN BN BN BN

x x x x
A

U D E dA dx   
 

(11) 

0

1
.

2
  

C

L
C C C C

x x
A

U dA dx   
 

(12) 

 
The kinetic energy of BNNT and CNT, are given by [15] 
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(13) 

 
Often, the fluid structures interaction problems are considered by the assumption of no-slip boundary conditions, 

although this assumption is no longer valid for nano size problems due to consideration of the small-scale effects 
and the Kn effects. In this regard, Rashidi et al. [16], suggested an average flow velocity correction factor (VCF) as 
follows: 

 

,
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






 
(14) 

 
where   is tangential momentum accommodation coefficient and is taken equal with 0.7 for most practical 
purposes [17], and Kn  is the Knudsen number. It is noted that for the nano-liquid-flow against with nono-gas flow 
the Kn is so small that the effects of viscosity can be ignored. Hence, from now on, we may substitute velocity field 
for slip boundary condition by applying VCF on velocity field for no-slip boundary condition. 

The kinetic energy associated with the fluid flow is expressed as [15] 
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where 


no slipV

 
is the fluid velocity vector can be written as: 
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(16) 

 
where fU is velocity of fluid in CNT. Total energy associated with external works including Pasternak foundation 

between nanotubes and the fluid flow is given by [15] 
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where   r C BNw w w , and f f fm A 

 
is the mass density of fluid per unit length. 

5    MODAL EXPANSION ANALYSIS 

The dimensionless parameters used in this study are defined as: 

( , )
( , ) , , / , / ,

/ , / .

 



   
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(18) 

 
Simply supported geometric boundary conditions are considered for the BNNT and CNT as: 
 

'' ''
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(19) 

 
The displacement components iu and iw can be expanded by following expression (say trial functions), which 

satisfy the geometric boundary conditions (19) of the CDNTS at both ends [18]. 
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(20) 

 
where

 
  j t ,   j t ,   j t  and   j t are time-variant functions and N  is the summation integer that can be 

increased to obtain maximum accuracy and acceptable results. 
Considering longitudinal polarization, the function of electric potential   may be expanded as following 

expression:  
 

 0
1

1 (1 )


    
N

j
j

i

      
 

(21) 

 
where  j is the constant amplitude components of the electric potential and 0  is the imposed electric potential on 

the BNNT cotroller.  
Denoting the unknown dynamic displacement and potential vector: 
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5{ } [{ },{ },{ },{ },{ }] , 1, 2,...,      


d

T
N j j j j j j N



  
 

(22) 

 

where  d  and    introduced respectively, the dynamical displacement and amplitude of electric potential 

vectors. Hence, the dimension of  d  
is 4N  and may be explained as the number of degrees of freedom (DOFs) 

of the system used in the modal expansions. 
The Lagrange equations of motion for the CDNTS are: 
 

 ( ) ( )
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        
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dt    
 

 
(23) 

 
Using mode expansions (20) and (21), all the terms in Eq.(23) are evaluated and a system of discretized 

governing equations is obtained in matrix form as follows: 
 

          0 ,   M C K    (24) 

 

where  M ,  C and  K are the mass, damping and stiffness matrices, respectively. 

The governing equations (Eq. (24)) can be separated for dynamic displacement and potential displacement as: 
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d
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K K



   

  
  

   (25) 

 
Due to existence of static coupling between mechanical and electric displacement, the parts of mass and damping 

matrices associated with   and   are obtained zero. By means of second set of equations of Eq. (25), the 

amplitude of electric field vector can be calculated in terms of displacement vector: 
 

   1    d dK K     (26) 

 
Eliminating   

in Eq. (25) and using Eq. (26), yields the modified equations of motion as: 
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Introducing new vectors 1  dy  and 2  dy  , the modified equations of motion can be written in the following 

state-space form as: 
 

1 1
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(29) 

 
The general solution of Eq. (27) can be expressed as: 
 
     1 2 1 2ˆ ˆ, , exp y y y y t  (30) 
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where   is complex circular frequency containing imaginary and real parts denoting natural and damping 

frequencies, respectively and  1 2ˆ ˆ,y y  are amplitudes of the displacements vector and their time derivatives. 

Applying Eq. (30) in Eq. (29), yields 
 

1 1
1 1

2 2
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      dd M dd dd

y y

y yM K M C
 

 
(31) 

 
where eigenvalues of the state-space matrix are complex frequencies of the system. 

6    RESULTS AND DISCUSSION 

In this section, instability of CDNTS being attached by an elastic media is discussed so that the effects of nonlocal 
parameter, Kn number, mode number, coupled media constants,aspect ratio and external applied voltage on the 
dimensionless natural and damping frequencies of CNT are also considered.The parallel nanotubes are considered to 
be the same length and the simply supported boundary conditions as shown in Fig. 1. The mechanical properties of 
CNT as well as mechanical and electrical properties of BNNT are listed in Table 1. [19-20]. The radius, of BNNT 

BNr  and CNT Cr are taken as 11.43nm and 0.7 nm , respectively. The length of the nanotubes is taken as 20 nm and 
the thicknesses are taken as 0.075nm and 0.34 nm , respectively for BNNT and CNT. Additionally, in order to 
generalize the problem, a range of low to high spring stiffness as different elastic medium must be considered. The 
internal fluid flow density  is taken as 31000 /Kg m .  
 
 
 

 

 

 
 

 
 
 
 
 
 

Fig. 1  
Schematic representation of the coupled 
nanotube system conveying fluid flow. 

Table 1 
DNTS mechanical and electrical properties 

BNNT SWCNT (5,5) 
1.8( )E TPa  0.971( )E TPa  

0.34  0.3  
2
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6 2
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32300 / Kg m   
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The variations of imaginary part of frequency known as natural frequency versus flow velocity for first three 
modes and various summation integers N  in dimensionless forms are shown in Fig. 2. The solid lines, dashed lines 
and dotted lines used in this figure describe the results of summation integer 8, 6 and 4, respectively. It can be found 
that the result obtained by 4N  is valid only for 1st mode and is acceptable for 2nd mode in lower flow velocity. 
The results obtained by 6N  and 8 similarly show that by increasing the summation integer N , the up to / 2N of 
the first modes may be accurate and it is more exact for lower flow velocities asbeing expected. This discussion can 
be observed in Table 2 . for critical flow velocities. From now on and for more accuracy, the number of summation 
integer N is taken as 8. Fig. 2. also showsthat the natural frequency is decreased with increasing flow velocity for 

all modes until reaching the value zero and specially for 1st mode at *
1 0046dU ; in this case, a pitchfork 

bifurcation (divergence instability) occurs due to having a real part of complex frequency (damping frequency) that 
leads to amplifying the amplitude of vibration by absorbing the energy of the CNTs internal flow. After zero-
frequency area the natural frequency becomes increased again and the stability of the system is restored in 

*
1 0.0093rU . Once more for the second time the instability occurs (Flutter instability) by reaching the natural 

frequency value to *
2 0.0137dU . 
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Fig. 2  
Convergence of dimensionless natural frequency versus 
dimensionless flow velocity for first three modes by 
increasing the summation integer N . 

 
Table 2 
Comparison of the results for various modes and summation integer 

N  

Mode 1 Mode 2 Mode 3 
*

1Ud  *
1Ur  *

2Ud  *
1Ud  *

1Ur  *
2Ud  *

1Ud  *
1Ur  *

2Ud  

4 0.0046 0.0093 0.0141 0.0091 0.0141 0.0186 0.0189 --- --- 
6 0.0046 0.0093 0.0139 0.0091 0.0188 0.0198 0.0138 --- --- 
8 0.0046 0.0093 0.0137 0.0092 0.0182 0.0194 0.0137 0.0241 --- 
10 0.0046 0.0093 0.0137 0.0092 0.0182 0.0194 0.0137 0.0241 --- 

 
 

The effects of elastically coupled media are examined in Figs. 3-4 for both Winkler and Pasternak foundations. 
Figs. 3(a) and 3(b) show dimensionless natural and damping frequencies versus Winkler spring modulus for various 
flow velocities. It is observed that increasing Winkler modulus increases natural frequency as well as first critical 

flow velocity (divergence instability, *
1Ud ) of the coupled CNT in the fundamental mode. In addition, the variations 

of natural and damping frequencies versus various flow velocities for different Pasternak modulus are drown in Figs. 
4(a) and 4(b). As expected, increasing elastic media constant can improve the stability of the CDNTS by increasing 
the critical flow velocity of the fundamental vibration mode. From this figure, it is seen that the effect of elastic 
foundation with Pasternak model, is same as Winkler model qualitatively but higher difference is observed in second 

instability ( *
2Ud ). The main difference between these two types of media is observed that the Pasternak foundation 

is considerably more effective than the Winkler foundation in higher flow velocity as shown in
 

*
1Ur  and *

2Ud . 
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(b) 
Fig. 3 
a) Dimensionless natural frequency versus dimensionless flow velocity for various Winkler modulus. b) Dimensionless damping 
frequency versus dimensionless flow velocity for various Winkler modulus. 
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(b) 
Fig. 4 
a) Dimensionless natural frequency versus dimensionless flow velocity for various Pasternak modulus. b) Dimensionless 
damping frequency versus dimensonless flow velocity for various Pasternak modulus. 
 
 

Effect of small scale parameter on natural and damping frequency is investigated in Figs.5(a) and 5(b), 
respectively. It is found that increasing small scale leads to decrease divergence flow velocity inconsiderably as can 
be seen in zoomed sub graph. In addition, flutter instability area is smoothly decreased by increasing considerations 
of the small scale and it is more remarkable at higher flow velocities. From damping frequency variations respect to 
flow velocity, shown in Fig. 5(b), above discussion can be found, similarly. 

Fig. 6(a) shows dimensionless natural frequency versus Kn, number for several modes. It is seen that with 
increasing Kn number the natural frequency is decreased for all modes and flutter instability which is defined for 
Figs. 6(a) and 6(b) can be observed also. A beat phenomenon between 1st and 2nd mode also observed from this 
figure and this is because of so small distance between mode 1 and 2 in the range of 0.132Kn  to 0.191Kn .  
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(b) 
Fig. 5 
a) Effect of small-scale parameter on dimensionless natural frequency with changing flow velocity for 1st to 4st mode. b) Effect 
of small-scale parameter on dimensionless damping frequency with changing flow velocity for 1st to 4st mode. 
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(b) 
Fig. 6 
a) Dimensionless natural frequency versus Knudsen number for 1st to 4st mode. b) Dimensionless damping frequency versus 
Knudsen number for 1st to 4st mode. 
 
 

Effects of external voltage and coupled media simultaneously are investigated in Figs. 7(a) and 7(b). As expected 
for elastic media, the stability of the system is increased by considering Winkler and Pasternak foundation. 
Regarding external voltage, it is observed that the system can be controlled by applying positive potential difference. 
The major effects of elastic media and external voltage can also be found in Fig. 7(b) which shows dimensionless 
damping frequency versus dimensionless flow velocity. On the other hand, quantitative investigation of elastic 
media constants together with applied voltage can be found in Figs.8 and 9.  

Fig. 8 shows natural frequency versus Winkler modulus with and without considering external voltage. It is 
observed that applied voltage has major effect in mode 1 comparison to mode 2 and with increasing Winkler 
modulus, applied voltage becomes more considerable. Similarly for Pasternak modulus, same discussion can be 
found. The effect of aspect ratio on vibration response of the system is shown in Figs. 10(a)and 10(b). The variations 
of natural frequency versus aspect ratio for modes 1 to 4 is illustrated in Fig. 10(a). It is seen that for all modes, 
increasing aspect ratio decreases natural frequency until instability occurs in the system. This statement can be 
concluded from Fig. 10(b) also.   

In order to validate results of the present study with other related publication, we comprise natural and damping 
frequency versus flow velocity with work of Kaviani and Mirdamadi [21] which investigated influence of Knudsen 
number on fluid viscosity for analysis of divergencein fluid conveying nano-tubes as shown in Figs. 11(a )and 11(b). 
Acceptable agreement can be observed from these figures. 
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(b) 
Fig. 7 
a) Dimensionless natural frequency versus dimensionless flow velocity for various magnitudes of imposed electric potential. 
b) Dimensionless damping frequency versus dimensionless flow velocity for various magnitudes of imposed electric potential. 
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Fig. 8 
Effect of applying electric potential on natural frequency with 
changing Winkler modulus for 1st and 2nd mode. 
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Fig. 9 
Effect of applying electric potential on natural frequency with 
changing Pasternak modulus for 1st and 2nd mode. 
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(b) 
Fig. 10 
a) Dimensionless natural frequency versus aspect ratio for 1st to 4st mode. b) Dimensionless damping frequency versus aspect 
ratio for 1st to 4st mode. 
 
 

(a) 

 
 

(b) 
Fig. 11 
a) Comparison of the dimensionless natural frequency versus dimensionless flow velocity for simplified analysis of the present 
work and Ref. [21]. b) Comparison of the dimensionless damping frequency versus dimensionless flow velocity for simplified 
analysis of the present work and Ref. [21]. 

7    CONCLUSION 

Flow-induced instability of a CDNTS, consisting BNNT and CNT which are coupled by Pasternak media has been 
studied in this article. Nonlocal elasticity theory for stress and electric displacement has been implemented. 
Polynomial modal expansions for components of displacement and electric potential have been employed to obtain 
equations of motion. Effects of various parameters including small-scale, fluid-scale, aspect ratio and etc. have been 
studied and incredible role of the BNNT for controlling stability of the fluid-conveying CNT by elastic media 
existed between the nanotubes and external applied voltage have been observed in this regard. Indeed ,applications 
of CDNTS can proper flow-induced instability and use as sensors and actuators in nano-electro-mechanical systems. 

 



34                    Flow-Induced Instability Smart Control of Elastically Coupled Double-Nanotube-Systems 

© 2013 IAU, Arak Branch 

ACKNOWLEDGMENTS 

The authors are grateful to University of Kashan for supporting this work by Grant No. 65475/57. 

REFERENCES 

[1] Vaccarini L., Goze C., Henrard L., Herna´ndez E., Bernier P., Rubio A., 2000, Mechanical and electronic properties of 
carbon and boron–nitride nanotubes, Carbon 38: 1681–1690.  

[2] Lahiri D., Rouzaud F., Richard T., Keshri A.K., Bakshi S.R., Kos L., Agarwal A., 2010, Boron nitride nanotube 
reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with 
osteoblasts and macrophages in vitro, Acta Biomaterialia 6: 3524-3533. 

[3] Ghorbanpour Arani A., Shajari A.R., Atabakhshian V., Amir S., Loghman A., 2013, Nonlinear dynamical response of 
embedded fluid-conveyed micro-tube reinforced by BNNTs, Composites Part B 44: 424–432. 

[4] Ghorbanpour Arani A., Shajari A.R., Amir S., Loghman A., 2012, Electro-thermo-mechanical nonlinear nonlocal 
vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid, Physica E 45: 109-121. 

[5] Salehi-Khojin A., Jalili N., 2008, Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites 
subject to combined electro-thermo-mechanical, Loadings Composites Science and Technology 68: 1489-1501. 

[6] Ghorbanpour Arani A., Atabakhshian V., Loghman A., Shajari A.R., Amir S., 2012, Nonlinear vibration of embedded 
SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Physica B 407: 2549-2555. 

[7] Kuang Y.D., He X.Q., Chen C.Y., Li G.Q., 2009, Analysis of nonlinear vibrations of double-walled carbon nanotubes 
conveying fluid, Computation Materials Science 45: 875-880.  

[8] Fu Y.M., Hong J.W., Wang X.Q., 2006, Analysis of nonlinear vibration for embedded carbon nanotubes, Journal of 
Sound and Vibration 296: 746-756. 

[9] Narasimhan M.N.L., 2010, On the flow of an electrically conducting nonlocal viscous fluid in a circular pipe in the 
presence of a transverse magnetic field in magneto hydro dynamics, International Journal of Fluid Mechanics 
Research 37 (2): 190-199. 

[10] Vu H.V., Ordonez A.M., Karnopp B.H., 2000, Vibration of a double-beam system, Journal of Sound and Vibration 229 
(4): 807-822. 

[11] Lin Q., Rosenberg J., Chang D., Camacho R., Eichenfield M., Vahala K.J., Painter O., 2010, Coherent mixing of 
mechanical excitations in nano-opto-mechanicalstructures, Nature Photonics 4: 236-242. 

[12] Murmu T., Adhikari S., 2010, Nonlocal effects in the longitudinal vibration of double-nanorod systems, Physica E 43: 
415-422. 

[13] Ke L.L., Wang Y.Sh., Wang Zh.D., 2012, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal 
theory, Composite Structures 94: 2038-2047. 

[14] Han J.H., Lee I., 1998, Analysis of composite plates with piezoelectric actuators for vibration control using layerwise 
displacement theory, Composites Part B 29: 621-632. 

[15] Reddy J.N., 2004, Wang C.M., Dynamics of Fluid Conveying Beams: Governing Equations and Finite Element 
Models, Centre for offshore research and engineering national university of singapore. 

[16] Rashidi V., Mirdamadi H.R., Shirani E., 2012, A novel model for vibrations of nanotubes conveying nanoflow, 
Computation Materials Science 51: 347-352. 

[17] Shokouhmand H., Isfahani A.H.M., Shirani E., 2010, Friction and heat transfer coefficient in micro and nano channels 
filled with porous media for wide range of Knudsen number, International Communications in Heat and Mass Transfer 
37: 890-894. 

[18] Ke L.L., Yang J., Kitipornchai S., 2010, Nonlinear free vibration of functionally gradedcarbon nanotube-reinforced 
composite beams, Composite Structures 92: 676-683. 

[19] Nirmala V., Kolandaivel P., 2007, Structure and electronic properties of armchair boron nitride nanotubes, Journal of 
Molecular Structure: Theochem 817: 137-145.  

[20] Yang, J. Ke L.L., Kitipornchai S., 2010, Nonlinear free vibration of single-walled carbonnanotubes using nonlocal 
Timoshenko beam theory, Physica E 42: 1727-1735. 

[21] Kaviani F., Mirdamadi H.R., 2012, Influence of Knudsen number on fluid viscosity for analysis of divergencein fluid 
conveying nano-tubes, Computation Materials Science 61: 270-277. 


