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 ABSTRACT 

 In the present manuscript, we investigated a two dimensional 

axisymmetric problem of nonlocal micro stretch thermoelastic circular 

plate subjected to thermomechanical sources. An eigenvalue approach is 

proposed to analyze the problem. Laplace and Hankel transforms are 

used to obtain the transformed solutions for the displacements, micro 

rotation, micro stretch, temperature distribution and stresses. The results 

are obtained in the physical domain by applying the numerical inversion 

technique of transforms. The results of the physical quantities have been 

obtained numerically and illustrated graphically. The results show the 

effect of nonlocal in the cases of Lord Shulman (LS), Green Lindsay 

(GL) and Coupled Thermoelasticity (CT) on all the physical quantities.    

                      © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE nonlocal elasticity theory can be traced from Kroner [1] who formulated a continuum theory for elastic 

materials with long range cohesive forces. Eringen [2, 3, 4], Edelen, Green and Laws [5] and Eringen and 

Edelen [6] developed the nonlocal elasticity theories in the presence of nonlocality residuals of fields like body 

force, mass, entropy and internal energy and also determined these residuals along with constitutive laws. Eringen 

and Kim [7], Eringen, Speziale and Kim [8] and Eringen [9, 10] simplified the above mentioned theories for 

nonlocal elastic solids in such a way that the nonlocal theory differs from the classical one in the stress-strain 

constitutive relations only and the elastic moduli is the function of the Euclidean distance between the stress and the 

strain points. Reid and Gooding [11] presented the problem of incorporating an inclusion in a two dimensional linear 

elastic solid including the nonlocal interactions and strain gradient contributions and also determined an analytical 

solution for the strain field that minimizes the elastic energy. Gao [12] developed an asymmetric theory of nonlocal 

elasticity with nonlocal body couple in the context of nonlocal continuum field theory. Sharma and Ganti [13] 

described the elastic stress state of inclusions having eigenstrains in an infinite nonlocal media. Paola, Failla and 

Zingales [14] represents the generalization of a three dimensional case of a mechanically based approach for 

nonlocal elasticity theory. Salehipour, Shahidi and Nahvi [15] presented a modified nonlocal elasticity theory by 
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introducing an imaginary nonlocal strain tensor which is used to obtain nonlocal stress tensor. In this modified 

nonlocal theory, free vibration of functionally graded rectangular micro/Nano plates with simply supported 

boundary conditions based on the first order plate theory and three dimensional elasticity theory are investigated. 

Peng, Li, Tang and Shen [16] presented the influence of a nonlocal scale parameter on the deflection of a nonlocal 

Nano beam and crack growth. Sumelka, Zaera and Fernandez-Saez [17] discussed a theoretical analysis of free axial 

vibration of rods described in terms of fractional continuum mechanics in the context of Eringen nonlocal elasticity 

theory. Vasiliev and Lurie [18] presented the nonlocal elasticity theories which are the models of a media with 

defect fields, gradient elasticity theories and hybrid nonlocal elasticity theories. Chen and Liu [19] established a 

nonlocal lattice particle method for three dimensional elasticity and fracture simulation of isotropic solids. Singh, 

Kaur and Tomar [20] investigated the propagation of plane harmonic waves in nonlocal elastic solid with voids. 

Eringen [21] obtained the constitutive equations of the displacement and the temperature fields of the linear theory 

of thermoelastic solids together with the balance laws of nonlocal continuum mechanics. Balta and Suhubi [22] 

developed the nonlocal generalized Thermoelasticity theory within the framework of the nonlocal continuum 

mechanics. Altan [23] introduced the field equations in a suitable form and defined a class of initial boundary value 

problems for nonlocal linear Thermoelasticity. Wang and Dhaliwal [24] derived the work and energy equations for 

generalized nonlocal Thermoelasticity and also proved that the initial boundary value problem has a unique solution. 

Zenkour and Abouelregal [25] constructed a model of nonlocal Thermoelasticity beam theory with phase lags 

subjected to a harmonically varying heat. Zenkour and Abouelregal [26] used a unified nonlocal generalized 

Thermoelasticity model with one relaxation time to study the vibration phenomenon of a Nano beams subjected to a 

sinusoidal pulse varying heat. Yu, Tian and Xiong [27] established a size dependent thermoelastic model for higher 

order simple material by adopting the size effect of heat conduction and elasticity with the aids of extended 

irreversible thermodynamics and generalized free energy. 

In the present investigation, we studied the effect of nonlocal in the cases of LS, GL and CT in an isotropic, 

homogeneous nonlocal micro stretch thermoelastic circular plate. The problem has been solved using eigenvalue 

approach. The Laplace and Hankel transforms are applied to obtain the results in the transformed domain. The 

solution is obtained in the physical domain by applying the numerical inversion method. We have presented the 

numerical results of displacements, micro rotation, micro stretch, temperature distribution and stresses graphically in 

the presence and absence of nonlocal. 

2    BASIC EQUATIONS 

Following Eringen [28, 29] and Lord and Shulman [30], the constitutive relations for nonlocal microstretch 

thermoelastic medium in the absence of body forces, body couples, heat sources and extrinsic equilibrated body 

force are taken as: 
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The quantities  
C

klt , 
C

klm , 
C

k  
and  

c
s t are given by Eringen [29] for classical local micro stretch elastic 

solid. Equations of motion for a nonlocal isotropic micro stretch solid are given by Eringen [31]. 
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where 1f  is the applied body force density, 
ll is the body moment density and l is applied scalar microstretch 

tensor. Now using the constitutive relations (1)-(6) into the equations of motion (7)-(10), we obtain 
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where ,   are Lame’s constants, , , ,K   are constants of local micro polarity, 
0 0 0 1 0, , , , ,m b j    are constants of 

local micro stretch elasticity, u is the displacement vector,   is the micro rotation vector,   is the scalar micro 

stretch, 
0e a 

 
is a nonlocal parameter, 

0e  is a material constant and a  being the internal characteristic length. The 

internal characteristic length a  is the interatomic distance or lattice distance,  3 2 ,tK       
t  is the 

coefficient of linear thermal expansion, C  is the specific heat at constant strain, 
1K   is the coefficient of thermal 

conductivity, 0 1,   are thermal relaxation times, T  is the change in temperature of the medium at any time, 

,ij ijt m and ij   are the stress tensor, couple stress tensor and Kronecker delta and 
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3    FORMULATION OF THE PROBLEM 

A homogeneous and isotropic nonlocal micro stretch thermoelastic circular plate of thickness 2d is considered. The 

plate occupied the region 0 , .r d z d       We consider cylindrical polar coordinate system  , ,r z  with 

symmetry about z-axis. The origin of the coordinate system  , ,r z   is taken as the middle surface of the plate. We 

assume that the z-axis is normal to the plate along its thickness. The thick circular plate initially has constant 

temperature 
0T .  

For two dimensional problem, let 
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Define the Laplace and Hankel transforms as: 
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with the aid of (16) -(19), Eqs. (11) -(14), becomes 
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The system of Eqs. (20) -(24) can be written as: 
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We take the solution of (25) as: 
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i i

i i

j i

i i

i i

s

qa

qb

qX

qd

qe

 

 
 
 
 
 

  
 
 
 
 
 







  5, ;
i

j i q q   
  

1,2,3,4,5,i   

 

 

where ,
ia  ,

ib  
id  and 

ie  are given in Appendix II. 

We take the solution of Eq. (25) as: 

 

 
5

1

( , , ) , cosh( ),
ii i

i

W z s s zqN X 


  
 

(28) 

 

where 
1 2 3 4
, , ,N N N N and 

5N are arbitrary constants. 

4    BOUNDARY CONDITIONS 

The boundary conditions at the surface z d   of the plate is given by 

(i) A thermal Source 

 

0
( , ),

dT
F r z

dz
g   

 

(29) 

 

where 
2

( , ) ,
r

F r z ez


  0,  ( , )F r z is a function that increases in the axial direction symmetrically and falls 

off exponentially as one moves away from the centre of the plate along the radial direction. 
0

g  is the constant 

temperature applied on the boundary. 

(ii) A Concentrated normal force. 

1
( , ) ,

i i

i

i

i

i

s

qa

b
X

d

e

 

 
 
 
 

  
 
 
 
  



  A Problem of Axisymmetric Vibration of Nonlocal Microstretch ….                   7 
 

© 2019 IAU, Arak Branch 

( ) ( ),
C

zz
r tt    (30) 

 

where ()   is the Dirac delta function. 

(iii) Vanishing of shear stress component 

 

0.
C

zrt   (31) 

 

(iv) Vanishing of couple shear stress component 

 

0.
C

zm 
  (32) 

 

(v) Vanishing of micro stress component 

 

* 0,
C

z   
(33) 

 

where  2 2
1 ,

C

zz zzt t     2 2
1 ,

C

zr zrt t     2 2
1 ,

C

z zm m      2 2 ** 1
C

z z     are given by 

 

 
1 0

2 1 ,
C z r r

zz
K T

z r r t

u u u
t      

    
               

 
 

(34) 

 

  ,
C r z

zr
K K

z r

u u
t 

  
 

   
 

 
 

(35) 

 

0
,

C

z r z
bm









 
 

 

 

(36) 

 

0

* ,
C

z
b

z z

 
 


 

 
 

 

(37) 

 

The expressions of displacements, micro rotation, micro stretch, temperature distribution and stresses are 

obtained in the transformed domain with the aid of (1) -(3), (16) -(19) and (28) -(37) as: 

 

   
5

1 1

1
, , , , , , , , cosh( ),

ir z i i i ii i
T zq qu u a b d e


 



 

   

 

(38) 

 

   
5

1 1

1
, , , , cosh( ),

z i i i izz zr i
zqm L M Pt t 





   

 

(39) 

 

where 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

,

S S S S S
T T T T T
U U U U U
V V V V V
W W W W W

   
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and  1,2,3,4,5
i  are obtained from    by replacing  i

th
 column of    with ,, ,0,0,0

tr

Q R  also 

 

 sinh ,
i i i i

dq qS e   cosh ,
i i i

dqT L     cosh ,
ii i

dqU M   
,5,4,3,2,1i  

 cosh ,V ii i
dqP    sinh ,

i i i
dqQW    ,5,4,3,2,1i  

 

2

30
2

,

22

Q zg

z





 



   
0

,R J   

    
222

2 10

1

1 1 ,
i i

i i i ii i
s

qa
q p qs d e bL

c




 

 
       
 
 

  ,5,4,3,2,1i
 

2

2 2 2

1 1 1

,i

i i i

Kb qaM
c c c

   

  

  
     

  
  

  ,5,4,3,2,1i  

 
2

4 0

1

*
,

i i i
p qdP

c






 
   
 
 

  ,5,4,3,2,1i  

 

2

4 0 0

1

*

,i

ii

q
Q d b

c





    ,5,4,3,2,1i  

 

 

5    PARTICULAR CASES 

 

In the absence of nonlocality, i.e., we take 0,  then the results are obtained for local micro stretch thermoelastic 

elastic solid. In the manuscript, we have discussed LS, GL and CT theories in the absence and presence of nonlocal 

elasticity. 

In the absence of nonlocal and micro stretch parameter, we obtain the corresponding results for axisymmetric 

thermoelastic circular plate with thermal sources (without mechanical). These results are similar as obtained by 

Tripathi et al. [32]. 

6    INVERSION OF THE TRANSFORMS 

We have to obtain the transformed displacements, micro rotation, micro stretch, temperature distribution and 

stresses in the physical domain, so, we invert the transforms in the resulting expressions (38) -(39). All these 

expressions are functions of the form  , , .f z s  Therefore, we get the function  , ,f r z t  by using the inversion of 

the Hankel and Laplace transforms are defined by 

 

     
0

, , , , ,
n

f z s f z s r dJ    


   
 

(40) 

 

 
1

, , ( , , ) ,
2

c
st

c

f r z t f r z s dse





 


 

   
 

(41) 

 

where c  is an arbitrary constant greater than all real parts of the singularities of ( , , )f r z t . 
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7    NUMERICAL RESULTS AND DISCUSSIONS 

The analysis is conducted for aluminum epoxy materials. Following Kiris and Inan [33]and Tomar and Khurana 

[34], the values for aluminum epoxy materials as nonlocal micro stretch elastic solid are given by 

 
9 27.59 10 ,Nm   9 241.90 10 ,Nm     5 21.3234 10 ,K Nm    32192 ,kgm 

 6 2

0, 0.196 10 ,j j m   
0 0.39,e    90.5 10 ,a m    8.3255 10 ,N   30.10282 10 ,N    

90.779 10 ,N    3

0 15.947 10 ,N    6

0 0.096 10 ,b N   3

0 0.57702 10 ,N   3

1 34.650 10 .N    

 

 

 

Following Dhaliwal and Singh [35] give the values for thermal parameters as: 

 
3 1 11.04 10 ,C JKg K     6 1 1 1

1 1.7 10 ,K Jm s K      5 12.33 10 ,t K    13

0 6.131 10 sec,    
13

1 8.765 10 sec,    3

0 0.298 10 ,T K   10 2 11.13849 10 ,m Nm K    0.01sec.t   

 

 

 

Figs. 1-5 represent the variations of normal stress, shear stress, couple shear stress, micro stretch and temperature 

distribution with distance r in case of nonlocal micro stretch thermoelastic for Lord Shulman theory (NMLS), micro 

stretch thermoelastic for Lord Shulman theory (MLS), nonlocal micro stretch thermoelastic for Green Lindsay 

theory (NMGL), micro stretch thermoelastic for Green Lindsay theory (MGL), nonlocal micro stretch coupled 

Thermoelasticity (NMCT) and Micro stretch Coupled Thermoelasticity (MCT). In all these figures, NMLS, MLS, 

NMGL, MGL, NMCT and MCT corresponding to solid line (——), solid line with centered symbol ( ) , 

dash line(-------), dash line with centered symbol (- - - - -),  dash line (   -   -) and dash line with centered 

symbol  (   -   -  ) respectively. 

Fig. 1 displays that the values of 
zzt   initially increasing for 1 1.4,r  decreasing for 1.4 3.3r    and again 

increasing for 3.3 4r   for NMLS and NMCT. Its values are decreasing for 1 1.7r   increasing for 

1.7 3.5r   and become stationary for 3.5 4r   for MLS, MGL and MCT. Also, the variation is small in case of 

NMGL. However, the variation of 
zzt  for NMLS, NMGL and NMCT is opposite to the variation for MLS, MGL 

and MCT for 1 4.r    
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Fig.1 

Variations of Normal Stress 
zzt . 

 

 

Fig.2 exhibits that the value of zrt  initially decreasing for1 2.5r   and increasing for 2.5 4r    for NMLS, 

MLS, MGL, NMCT and MCT. The reverse behaviour is noticed in the case of NMGL. The maximum values are 

obtained for MGL and minimum values are obtained for NMGL near the application of the source. The values are 

similar for MLS and MCT for 1 4r   with slightly different magnitude. 
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Fig.2 

Variations of Shear Stress 
zrt . 

 

Fig. 3 declares that the values of 
zm   initially deceasing for 1 2.5r    and then increasing 2.5 4r    for 

MLS, MGL and NMCT. A decreasing trend of variation is exhibited in the case of NMLS. However, the variation is 

small for MCT. The values of 
zm   initially increase and then decrease smoothly for NMGL. The variation of 

NMGL is opposite to MLS, MGL and NMCT. 
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Fig.3 

Variations of couple shear stress 
zm  . 

 

Fig. 4 shows that the values of   initially increasing for 1 1.6,r    decreasing sharply for 1.6 3.5,r   and 

then again increasing for 3.5 4r     for NMLS, NMGL, NMCT. For MLS and MGL, the values of    are 

initially increasing for 1 1.7,r  decreasing for 1.7 3.7r   and its value become stationary for 3.7 4.r    For 

MCT, its value initially increasing for 1 1.3,r    decreasing for 1.3 3r    and again increasing for 3 4.r    

Away from the sources, all the quantities have similar behavior. 
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Fig.4 

Variations of micro stretch  . 
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Fig. 5 exhibits that the values of T initially increasing for  1 1.7,r    decreasing for 1.7 3.6r    and its 

values become stationary for 3.6 4r   for MLS, MGL, NMCT and MCT. It is noticed that the variation of T 

corresponding to the case NMGL remains the small over the whole range in comparison to the other cases. Its value 

initially decreasing for  1 1.5,r   increasing for 1.5 3.4r  and again decreasing for 3.4 4.r    
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Fig.5 

Variations of temperature distribution T. 

8    CONCLUSIONS 

In the present investigation, we studied a two dimensional axisymmetric problem of nonlocal micro stretch 

thermoelastic circular plate due to thermomechanical sources. Generalized theories of Thermoelasticity with one 

relaxation time [30] and two relaxation times [36] are used to investigate the problem. An eigenvalue approach is 

used to analyze the problem. Laplace and Hankel transforms are used to obtain the solutions in the transformed 

domain. The results are obtained in the physical domain by applying the numerical inversion of transforms. The 

effect of nonlocal for LS, GL and CT theories on normal stress, shear stress, couple shear stress, micro stretch and 

temperature distribution are shown graphically. The main conclusions of the paper are given below: 

1. The variations of all the physical quantities are more uniform in nature.  

2. The behaviour of temperature distribution is similar for all the cases except for NMLS. For normal stress, 

the variation is similar for NMLS, NMGL and NMCT and reversed behaviour is observed for MLS, MGL 

and MCT. The similar behaviour is also observed for couple shear stress for MLS, MGL and NMCT 

whereas a small variation is noticed for MCT. All the quantities have similar behaviour for micro stretch. 

3. The presence of nonlocal in micro stretch thermoelastic solid plays an important role on the resulting 

quantities. 

4. The nonlocal has significant effect on all the field quantities for LS, GL and CT theories. 

5. The results obtained in this paper can be used to design various homogeneous thermoelastic elements to 

meet special engineering requirements. Such types of problems in nonlocal micro stretch thermoelastic 

medium will find great applications in many dynamical systems and industries. 

APPENDIX I 

 1 11 22 33 44 55 12 21 13 31 25 52 24 42
,a a a a a b b b b b b b b          
 

2 14 41 33 55 44 55 11 55 22 55 33 44 11 33 22 33a a a a a a a a a a a a a a a a         
 

 11 44 22 44 11 22 15 51 45 54 23 32 33 44 55 12 21a a a a a a a a a a a a a a a b b         
     14 42 15 52 32 13 21 11 33 55 42 24 11 33 44 25 52a b a b a b b a a a b b a a a b b        

 
   41 24 23 31 51 25 12 22 44 55 42 24 25 52 31 13a b a b a b b a a a b b b b b b       

45 52 24 54 42 25
,a b b a b b   

    3 11 22 22 55 33 44 23 32 11 44 55a a a a a a a a a a a      
 

     11 55 22 33 44 33 44 11 22 55 45 54 11 22 33a a a a a a a a a a a a a a a         
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   14 41 22 33 55 15 51 22 33 44 42 25a a a a a a a a a a b b      
 

   14 51 11 54 33 54 52 25 14 41 11 33 14 44 33 44a a a a a a b b a a a a a a a a      
 

   52 24 15 41 11 45 33 45 12 25 33 51 44 51 41 54b b a a a a a a b b a a a a a a     
 

   12 24 33 41 45 51 41 55 42 24 15 51 11 33 11 55 33 55b b a a a a a a b b a a a a a a a a        

APPENDIX II 

  
2 22 *2

1 2 3 310

*1
i

i

p pa r r r r


  
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    45 54 44 55 32 21 13 22 31 13 33 12 24 45 51 41 55a a a a a b b a b b a b b a a a a    
 

   33 42 24 15 51 11 55 32 13 24 41 55 45 51a b b a a a a a b b a a a a     
    41 54 44 51 33 12 25 32 13 25 33 42 25 14 51 11 54a a a a a b b a b b a b b a a a a    

 
   33 52 25 11 44 14 41 15 51 23 32 22 33 22 44 33 44a b b a a a a a a a a a a a a a a     

 
   14 45 51 22 33 15 41 54 22 33 45 54 23 32 11 22 11 33

(a a a a a a a a a a a a a a a a a a      
 

   22 33 14 41 23 32 22 33 22 55 33 55 11 23 32 44 55
)a a a a a a a a a a a a a a a a a      

 
     

55 11 22 33 23 32 44 11 22 44 33 55 33 44 55 11 22a a a a a a a a a a a a a a a a a      15 41 11 45 33 24 52
,a a a a a b b 
 

  5 22 33 23 32 11 44 55 11 45 54 14 45 51a a a a a a a a a a a a a    
 

    15 54 14 55 22 33 41 23 32 41 23 32 22 33 15 44 51
.a a a a a a a a a a a a a a a a a      
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