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ABSTRACT

In the present work, the symmetric thermal buckling behavior of 
shear deformable heterogonous nano/micro circular porous plates 
resting on a two parameter foundation is studied. The material 
behavior of the nano plate is modeled by the modified couple stress 
theory. The plate material properties assumed to be graded across 
the thickness direction according to a simple power law, and have a 
uniform open void porosity. Using Mindlin’s plate theory and the 
nonlinear von-Karman strain field and implementing the energy 
method, the plate stability equations together with the membrane 
equilibrium equation are derived and expressed in terms of the 
displacement field components. Then the nondimensionalized forms 
of the equations are derived using differential quadrature method 
(DQM). The resulting eigenvalue problem is solved to evaluate the 
plate critical buckling temperature difference. Convergence and 
comparative studies are carried out. Also the influences of some 
important parameters including length scale factor, porosity factor 
and Winkler& Pasternak stiffness coefficients are investigated.
                               © 2023 IAU, Arak Branch.All rights reserved.
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1    INTRODUCTION

EGARDING the great stiffness and high temperature resistance, functionally graded materials (FGMs) are  
widely used specially in small scale structures. Nano/micro functionally graded plates are a new generation of 

advanced material systems which have found important applications in different engineering fields. Due to existence 
of nonlocal effects, classical continuum theories cannot accurately model the mechanical behavior of such small 
scale structures. So a number of size-dependent continuum mechanics models have been developed to take into 
account the small scale effects, such as the strain gradient theory (SGT) [1] and the modified couple stress theory 
(MCST) [2].
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In 2009 Duan and Wang [3] investigated the deformation of a single layer, circular, graphene sheet under a 
central point load by carrying out molecular mechanics (MM) simulations. The bending and stretching of the 
grapheme sheet are characterized by using the von Karman plate theory. It is shown that, with properly selected 
parameters, the von Karman plate theory can provide a remarkably accurate prediction of the graphene sheet 
behavior under linear and nonlinear bending and stretching. In 2010 Shen et al. [4] presented nonlinear vibration 
behavior analysis for a simply supported, rectangular, single layer graphene sheet in thermal environments. The 
single layer graphene sheet is modeled as a nonlocal orthotropic plate which contains small scale effects. The 
nonlinear vibration analysis is based on thin plate theory with a von Kármán-type of kinematic nonlinearity. The 
thermal effects are also included and the material properties are assumed to be temperature-dependent and are 
obtained from molecular dynamics simulations. In 2013 Jabbarzadeh et al. [5] studied nonlinear bending behavior of 
single-layered circular graphene sheet using nonlocal continuum mechanics and plate first order shear deformation 
theory (FSDT). Differential quadrature method is used to discretize the equilibrium equations. The effect of nonlocal 
parameter, number of grid points, etc. are investigated on the deflection of graphene sheet. In 2013, Wang et al [6] 
proposed a nonclassical mathematical model and an algorithm for the axisymmetrically nonlinear free vibration 
analysis of a circular microplate, based on the modified couple stress theory and von Kármán geometrically 
nonlinear theory. The numerical results indicate that the microplates modeled by the modified couple stress theory 
cause more stiffness than modeled by the classical continuum plate theory. In 2014 Ghiasian et al. [7] presented an 
exact solution for the bifurcation behavior of moderately thick heated annular plates made of FGMs based on FSDT. 
Properties of the graded plate are distributed across the thickness based on the simple power law form. Temperature-
dependency of the material properties is also taken into account. It is shown that the fundamental buckled 
configuration of annular plates may be asymmetric. Jabbari et al. [8] in 2014 presented the buckling analysis of 
thermal loaded solid circular plate made of porous material. The equations are based on the Sanders non-linear 
strain-displacement relation. Using their mathematical model, they studied the effect of pores distribution and 
thermal distribution on the critical buckling temperature. Ansari et al. [9] in 2015 studied bending, buckling and free 
vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain 
gradient elasticity theory. The size effects are captured through using three higher-order material constants. They 
applied Hamilton’s principle together with linear strain field to derive the governing differential equations. the 
generalized differential quadrature (GDQ) method is employed to discretize the governing equations. Eshraghi et al 
[10] in 2016 introduced solution methods capable of treating static bending and free vibration problems involving 
thermally loaded functionally graded annular and circular micro-plates. Formulation is based on modified couple 
stress theory. Shojaeefard et al. [11] in 2017 numerically  studied the free vibration and thermal buckling of micro 
temperature dependent FG porous circular plate subjected to a nonlinear thermal load, using both classical and the 
first-order shear deformation theories in conjunction with the modified couple stress theory. Effect of FG power 
index, size dependency, temperature-change, geometrical dimensions as well as some other parameters are presented 
in this work. In 2017 Lin et al. [12] investigates the scale effect on nonlinear behavior of a clamped–clamped 
circular graphene sheet nanoplate actuator, which is electrostatically actuated by various van der Waals (vdW) 
forces, tensile loads, and hydrostatic pressures. The circular nanoplate model is developed by using Eringen’s 
nonlocal elasticity theory. In 2019 Farzam and Hassani [13] investigates the static bending and buckling behaviors 
of functionally graded microplates under mechanical and thermal loads by using isogeometric analysis (IGA) and 
modified strain gradient theory (MSGT). The material properties are assumed to be temperature-dependent. They 
showed that the type of functionally graded material is an important parameter for thermal analysis. In 2020 
Ghobadi et al. [14] investigated the effects of flexoelectricity on thermo-electro-mechanical behavior of a 
functionally graded electro-piezo-flexoelectric nano-plate using flexoelectric modified and the Kirchhoff classic 
theories and energy method. The nano-plate behavior is analyzed under mechanical, electrical, and thermal loadings 
with different boundary conditions. In 2021 Ahmad Pour et al. [15] analyzed the thermal buckling of circular bilayer 
Graphene sheets resting on an elastic matrix based on nonlocal differential constitutive relation of Eringen and 
FSDT. The effects of the small scale parameter, vdW forces, aspect ratio, elastic foundation, and boundary 
conditions are considered in detail. In 2021 Rajabi et al. [16] analyze a nanoplate with a central crack under 
distributed transverse load based on modified nonlocal elasticity theory. It was shown that the complete modified 
nonlocal elasticity theory does not show any singularity at the crack-tip unlike the classical theory; therefore, the 
method presented is a suitable method for analysis of the nanoplates with a central crack. Kiarasi et al. [17] in 2021 
studied the buckling behavior of functionally graded (FG) porous rectangular plates subjected to different loading 
conditions. Three different porosity distributions are assumed throughout the thickness, namely, a nonlinear 
symmetric, a nonlinear asymmetric and a uniform distribution. A novel approach is proposed here based on a 
combination of the generalized differential quadrature (GDQ) method and finite elements (FEs), labeled here as the 
FE-GDQ method. Saini et al. [18] in 2022 investigated the size-dependent thermal buckling analysis of nonuniform 
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functionally graded asymmetric circular and annular nanodiscs, on the basis of Kirchhoff's plate theory, Eringen's 
nonlocal elasticity theory, and physical neutral plane. The thickness of the nanodiscs is assumed to be varying 
linearly and parabolically in the radial direction. The size-dependent stability equation is obtained from Euler-
Lagrange's equation which is derived from Hamilton's principle. This equation and corresponding boundary 
conditions are discretized by the differential quadrature method (DQM) and provide an eigenvalue problem. The 
numerical value of the lowest eigenvalue is reported as a critical temperature difference on the surfaces of the 
nanodiscs.

The small-scale effects on circular open void porous .nano/micro circular plates in thermal environment have 
not been understood fully in the literature. In the present research work the thermal buckling behavior of nano/micro 
porous circular plates on a winkler-Pasternak foundation are investigated in detail. The temperature dependency is 
considered for the material properties, with a uniform open void porosity in the plate.  For the constitutive behavior 
the modified couple stress theory is implemented. FSDT plate theory, von-Karman strain field with the energy 
method is employed to derive equilibrium equations. The adjacent equilibrium method is applied to derive the set of 
stability equations. At last differential quadrature method has been used to solve the set of stability equations 
numerically. In Ref. [11] as more similar work to the present research work, it should be noted that in this reference 
linear strain field has been implemented, also the plate is not placed on a foundation, and moreover 
nondimensionalizing is not applied to the formulation and results. The novelty of the present work in comparison to 
the previous published works can be at first considering a Winkler-Pasternak foundation for the temperature 
dependent nano/micro porous circular plates. Next, implementing modified couple stress theory with nonlinear von-
Karman strain field for investigating the buckling problem, and the third is non-dimensionalizing the equations so 
that the formulation and results take a generality.

2    MATHEMATICAL FORMULATION  

2.1 The Geometric Parameters and Material Properties

A FGM nano circular porous plate of radius b and thickness h resting on a two parameter foundation is under 
investigation as shown in Fig. 1. The radial coordinate is denoted by r and the transverse coordinate is denoted by z
with its origin located on the plate mid-surface. The metal volume fraction, Vm, assumed to vary according to a 
simple power law along the thickness coordinate axis z, while has symmetry with respect to the plate mid-surface, 
which can be stated as

2
1 , for

2 2

n

m

z h h
V z

h

 
     
                                                                                                                  

(1)

where n is termed as the volume fraction index, with n = 0, n = ∞ representing two extreme cases of pure metal and 
pure ceramic plates respectively. The ceramic volume fraction, Vc, can simply be determined by

1c mV V                                                                                                                                                                  (2) 

Fig.1
Geometric and foundation parameters of FG nano circular 
porous FGM plate.
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The FGM properties such as Young modulus, E, and the coefficient of thermal expansion, α, can be determined by 
the rule of mixture, while Poisson’s ratio, ν, is assumed to remain constant across the thickness, thus

, ,m m c c m m c c m cE V E V E V V                                                                                                         (3)

where , ,m m mE   are respectively Young modulus, thermal expansion coefficient and Poisson’s ratio of metal, while 

, ,c c cE     are those of ceramic. 

For the constitutive behavior of the nano-plate the modified couple stress theory is adopted as below [11]:

   
2

2 3 ,

2

ij ij ij ij kk

ij ij
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

       

 
                                                                                                        

(4)                             

where ơij Cauchy’s stresses, ij strains,  and  are Lame’s constants. Also α, ∆T, ij are respectively coefficient of 
thermal expansion, temperature difference and Kroneker delta. Furthermore, ij is the curvature change tensor, that 
is same as ij  in this  work.  Also   mij is the tensor of modified couple. Lame’s  constants  in terms of the poison’s 
ratio  and elastic modulus E are to be written as:

     
,

1 1 2 2 1

E E
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  
 

                                                                                                               (5)

in that, considering the porosity factor  , E,   and α can be written as [19]: 

 2 0 0 01 , ,E E                                                                                                                          (6)

Where, E0, 0 and α0 are the elastic modulus, poison’s ratio and coefficient of thermal expansion of a material 
without porosity.

The temperature dependence of the components, metal and ceramic, is stated by [13]:
1 1 2 3

0 1 1 2 3( ) ( 1 )P T P P T P T P T P T
                                                                                                              (7)

The coefficients of temperature in the above equation are tabulated in Table 1. The reference temperature T0 is 
assumed equal to 300 K.

2.2 Kinematic and Constitutive Relations

Regarding the moderately thick plate assumption, the FSDT is used herein to estimate the displacement field within 
the circular plate. Based on the theory the axisymmetric displacement components are stated as

0( , ) ( ) ( ), ( , ) ( )u r z u r z r w r z w r  
                                                                                                             

(8)

in that u, w are the radial and lateral displacements respectively, and  is the total rotation about the circumferential 

axis. Also, u0 denotes the radial displacement at mid-plane. In polar coordinates the strain components are written as 
[20]

0 0
,, ,r r r rz rz z w              

                                                                                             
(9)

where, based on the von-Karman assumption suitable for moderately large class of deflections, the mid-plane strains 
0 0,r   , and curvatures ,r   are given in terms of  displacement components  as [20]  

0 2 0 0
0, , ,

1
( ) , , ,

2r r r r r

u
u w

r r
     
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                                                                                     (10)                                                                              

Here, the differentiation with respect to r is denoted by 
,( ) r

.

Assuming a material linear behavior during the whole pre-buckling and buckling deformations, and by using the 
first of Eqs. (4), the stress-strain relationships for the FG plate may be expressed as

2
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(11)

in that , ,r rz   are the stress components. Substituting from Eq. (9), into Eq. (11), then integrating the resulting 

expressions over the thickness, yields the following equality for non-zero force / moment resultants 
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where ijA ’s, and ijD ’s are respectively the components of extensional  and  bending  stiffness, defined by

1 1
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where 2 /12K  denotes the transverse shear correction factor, and
/2 2

1 3 0
( , ) 2 (1, ) ( )

h
E E z E z dz  which can be 

evaluated, by substituting in that from Eqs.(2,3) and Eq.(6) for E(z), as 
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where  Ec, Em are elastic moduli of ceramic and metal without porosity and Ecm=Ec-Em. Also in Eq. (12), T
rN , TN are 

the thermal membrane forces and T
rM , TM are  the thermal moments which are given by
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(15)
   

                                                                                

where cm c m    . 

Moreover, the integrals of modified couples over plate thickness  Ωr , Ωθ are defined as:

, ,r r rm dz m dz
r
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                                                                                                      (16)
in that
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(17)

2.3  Equilibrium and Stability Equations

The plate equilibrium equations may be derived by employing the energy method as 
( ) 0C NCδ U U W  

                                                                                                                                           
(18)

Where UC, UNC and W are respectively classical strain energy, non-classical strain energy and the external thermal 
work, that are calculated by:
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Now, substituting from Eq. (19) into Eq. (18), then implementing the essential variational lemma, the 
equilibrium equations of nano circular plate on a Winkler/Pasternak foundation are derived as follows:
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where kw , ks  are respectively the Winkler’s coefficient and Pasternak’s coefficient of the elastic foundation. It is 
assumed that the foundation acts in compression as well as in tension. Implementing the adjacent equilibrium 
method [21] on the equilibrium equations expressed in terms of displacement components, the linearized stability 
equations of the plate associated with the onset of buckling are derived as follows 
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(21)

where 
0 0 0, ,u w  designate the prebuckling state at the onset of buckling, and 1 1 1, ,u w  are the increments of the 

displacement components of an adjacent equilibrium state with respect to the prebuckling state. Note that for the 

problem under investigation, there are no lateral loading and thermal moments ( 0T
rp M  ), therefore 0 0 0w   , 

and the membrane prebuckling displacement 0u may be obtained by solving the first of the equilibrium equations, 
which may be stated as

2 0 2 0 0 2
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rr r r r r rr Au r A rA u rA A u r N                                                                                                       (22)

Here, i.e. for the case of uniform plate, A,r=A11,r=0. For generality, it is more appropriate to express the equilibrium 
and stability equations in dimensionless form. The following dimensionless quantities are defined and used hereafter 
in this work.
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Using the dimensionless quantities and after performing some algebraic operations, the dimensionless forms of Eq. 
(22), and the last two stability equations of Eq. (21), are derived respectively as 
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In Eqs .(24, 25) the coefficients fi’s are defined by 
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                                                                                          (26) 

Also, the nondimensionalized forms of the boundary conditions corresponding to Eq.(24) and Eq.(25) become
0 0At 0: 0, At 1: 0u u     (27)

and
1 1 1

1 1 1 1 1 1 1
,

At 0 : 0, / 0, 0,

At 1: 0, 0, 0 (for clamped edge) 0, 0, 0 (for simpleedge)

u dw d

u w or u w 

  

   

   

       
(28)

3    NUMERICAL SOLUTION PROCEDURE  

In this work a numerical solution scheme based on the differential quadrature method is implemented for 
discretizing the governing set of ordinary differential equations (ODEs) of variable coefficients, in that the 
weighting coefficients are determined by the procedure introduced by Shu and Richards. To ensure the convergence 
of DQ approximation, an unequally spaced grid point distribution so-called Chebyshev nodes is utilized. Applying 
the differential quadrature rule to the equilibrium equation, Eq. (24) and stability equations, Eqs. (25), the 
discretized forms of the equations are derived respectively as 

(2) 0 (1) 0 0
1 2 3 4

1 1
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N N

i ij j i ij j i i i
j j

f C U f C U f U f i N
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    
                                                                                 

(29)

And
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                                                                                      (30)                                                                                                  

where N is the selected number of grid points, (1) (2),ij iiC C are the weighting coefficients of the first and second order 

derivatives respectively, and

0 0 1

1 1

( ), 1,2,...,13,

( ), ( ),

( ), ( ), 1,2,...,

ki k i

i i i i

i i i i

f f k

U u U u

W w i N

 

 

   



 

  

                                                                                                    (31)

It should be noted that because in some of the fk’s the displacement response u are arisen, an iterative loop is applied 
in the MATLAB program. Moreover, to apply the temperature dependency, the  fk’s  become temperature dependent 
functions. Therefore another iterative loop is implemented in the computer code.  

The discretized forms of the boundary conditions given by Eq. (27) and Eq. (28) are respectively written as
0 0
1 0, 0NU U                                                                                                                                              (32)

and
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At first, the discretized form of the prebuckling equilibrium equation, Eqs. (29), with corresponding B.C’s. 
which constitute a set of N linear algebraic equations, are solved simultaneously to find the prebuckling radial 
displacements, U0i’s, as multipliers of the temperature difference T . Note that the right-hand side of Eqs. (29),  

f4i’s, are linear expressions of T . Then, substituting from Eq.(15) for T
rN and the expressions found for the 

prebuckling radial displacements 
0
iU ’s into Eqs.(30), and after imposition of the boundary conditions, Eqs.(33), a 

set of 3N linear homogenous equations in terms of iW ’s and i ’s are obtained. Implementing the nontrivial solution 

condition on the set of equations, leads to an algebraic equation in terms of T , which its smallest positive real root 
is the critical buckling temperature difference, crT . The operations are done in the two abovementioned iterative 

loops until the convergence criteria are satisfied.

4    NUMERICAL RESULTS AND DISCUSSION  

Numerical results are extracted for FGM porous plates made of a mixture of SUS304 as metal and Si3N4 as 
ceramic, with coefficients of temperature dependent material properties as listed in Table 1, unless otherwise 
specified. Before conducting the comparative and parametric studies, the convergence of the present DQM is 
evaluated by investigating the effect of the selected number of grid points on the normalized error arisen in the 
computed value of the plate buckling temperature. 

Table 1
Coefficients of temperature dependent material properties [13].
Material P0 P-1 P1×10-4 P2×10-7 P3×10-11

Si3N4 (Ceramic)
E (Pa) 348.43×109 0 -3.070 2.160 -8.946
α (1/K) 5.8723×10-6 0 9.095 0 0
 0.2400 0 0 0 0

SUS304 (Metal)
E (Pa) 201.04×109 0 3.079 -6.534 0
α (1/K) 12.330×10-6 0 8.086 0 0
 0.3262 0 -2.002 3.797 0

  

4.1 Convergence Study

The convergence of the presented DQ scheme is studied for a nano circular plate. Seven different node numbers 
N=5, 7, 9, 11, 13, 15, 17considered, and convergence studied for three clamped plate of h/l=1/50, 1/40, 1/30 for the 
case of Temperature dependent (TD) material properties, and the results are as depicted in Fig. 2. As can be seen in 
this figure, the convergence is fast, so that just by 11 nodes the normalized percentage error become 0.0004% , and 
by considering 13 nodes the error percent ceases to 0.0001%. The results that are presented here is extracted by 
considering 15 nod points.
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4.2 Validation

Comparative studies are carried out in two examples to validate the DQ formulation. As the first example, the values 
of the critical temperature change ΔTcr for nonporous macro-scale circular clamped homogeneous plates subjected 
to uniform thermal loading without elastic foundation of six different aspect ratios (h/b) are computed by the present 
DQM, and the results are listed in Table 2 along with those reported in Ref. [7]. The results are presented for both 
cases of temperature independent (TID) and temperature dependent (TD) properties. The porosity factor set to zero.  
A good correspondence can be observed between the present results with those reported in the reference, so that for 
the case TID maximum normalized error percent is 1.0%, and for the case TD the maximum percentage normalized 
error is 1.34% .  As the second verification, a comparison between the present DQM results for ΔTcr with those 
reported by Ref. [8] for solid circular clamped poro/ monotonus distribution plates subjected to uniform thermal 
loading without foundation is performed. In Table 3 the results for ΔTcr are presented for thin plates of 20 different 
aspect ratios (h/b), with the porosity β= 0.452277. The Table shows satisfactorily good correspondence, such that 
the average normalized error percent is less than 1%.

Table 2
A comparison between the results of the present work with those reported in Ref. [7] on

ΔTcr (� C) for solid circular clamped homogeneous plates subjected to uniform thermal loading.
h/b

0.01 0.02 0.03 0.04 0.05 0.06
k=0 Present TID 12.721 50.879 114.458 203.432 317.761 457.398

Ref. [7] TID 12.591 50.360 113.293 201.369 314.556 452.816
Present TD 12.593 48.942 105.464 177.854 262.179 355.314
Ref. [7] TD 12.480 48.667 105.361 178.581 264.548 360.140

k= ∞ Present TID 6.219 24.873 55.954 99.449 155.340 223.603
Ref. [7] TID 6.245 24.979 56.194 99.879 156.020 224.596
Present TD 6.195 24.507 54.166 94.058 142.895 199.375
Ref. [7] TD 6.219 24.583 54.267 94.095 142.734 198.866

Table 3
A comparison between the results of the present work with those reported in Ref. [6 8] on ΔTcr

(� C) for solid circular clamped poro/monotonus distribution plates subjected to uniform thermal loading.
h/b

.0021 .0040 .0057 .0076 .0094 0.011 .0125 .0139 .0152 .0166
Ref. [8] 266 788 1567 2860 4282 5831 7508 9185 11119 13053
Present 248 767 1550 2755 4215 5668 7455 9218 11023 13147

h/b
.0191 .0204 .0216 .0226 .0238 .0248 .0259 .0269 .0279 .0289

Ref. [8] 17305 19753 22072 24518 26837 29412 31859 34562 37008 39841
Present 17404 19854 22258 24474 27022 29340 32000 34518 37131 39835

4.3 Parametric Survey

Parametric studies are conducted to investigate the influence of a number of parameters on the plate critical 
temperature change ΔTcr. Fig. 3 shows the variations of ΔTcr of nano plate without foundation with respect to the 
length scale ratio l/h, for the two case of TD amd TID for both clamped (CC) and simply supported (SS) edge 
conditions. It is observed that, ΔTcr has an inclining behavior with increasing length scale ratio l/h. This is because 
as the length scale ratio gets larger values, the small scale effects decreases and the plate approaches to macro scale 
plate without nonlocal effects, and therefore the critical  temperature difference ΔTcr increases. Moreover the 
values of the TD case are considerably smaller than that of the case TID, because the temperature effect causes to 
material become softer, and consequently the critical temperature difference for thermal buckling decreases. Also
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ΔTcr in CC edge condition are much larger than those of the SS. This is due to clamped edge is much harder than 
the simple edge conditions.

The effect of the porosity factor β on the variations of ΔTcr with a length scale factor l/h of nano plate without 
foundation, has been depicted in Fig. 4 for the two case of TD and TID for both CC and SS edge conditions. It is 
observed that, ΔTcr has a declining manner with the porosity factor β. This may be justified by the fact that since the 
uniform distribution porosity is considered in the plate, at the outer layers which have more ceramic with greater 
young modulus, the porosity ratio is same as that of the neutral surface. Therefore the bending stiffness’s of the plate 
become weaker and thermal buckling take place at smaller temperature change. It should be noted that the porosity 
which considered in this work is of kind open void porosity.  Moreover the values of the TD case is considerably 
smaller than those of the case TID as justified in the previous paragraph. Also values of ΔTcr in CC edge condition 
are much larger than those of the SS condition. The justification also is as mentioned in the previous paragraph.

Fig. 5 shows the effect of the volume fraction index n on the variations of ΔTcr with length scale factor l/h of 
FGM nano plate without foundation, for case TD, with CC edge. It is observed that, ΔTcr increases as the volume 
fraction index n gets larger values. This can be explain in this way that as n gets larger values the percentage of 
ceramic in the plate symmetrically increases. As Ec is larger than Em the critical temperature rise increases.
Moreover as n gets larger values its influence becomes lesser so that as n approaches to infinity the influence ceases 
to zero. Also, as mentioned previously, ΔTcr has an inclining manner as l/h gets larger values which is justified 
previously.

The   effect   of    dimensionless   Winkler    stiffness coefficient wk on the variation of ΔTcr with length scale 

factor l/h of nano plate of CC edge conditions for TD case is presented in Fig. 6. It is observed that, ΔTcr increases 

greatly as wk gets larger values. However its influence becomes smaller for greater values of wk . Fig. 7 depicts the 

effect of dimensionless Pasternak stiffness coefficient sk on the variation of ΔTcr with length scale factor l/h of nano 

plate of CC edge conditions. Again it is observed that, ΔTcr increases greatly as sk gets larger values. But its 

influence becomes smaller for greater values of sk .  This can be justified by noting the fact that as  wk or sk   gets 

larger values, the strain energy required to store in the system to buckle the plate increases. Therefore the critical 

buckling temperature increases as wk   or  sk   increases.

Fig.2
Convergence study of the DQM numerical model. Seven different node numbers N=5, 7, 9, 11, 13, 15, 17 considered, and 

convergence studied for three clamped plate of h/b=1/50, 1/40, 1/30 for case of TD.
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5   CONCLUDING REMARKS   

A numerical solution formulation based on the DQM is developed for axisymmetric thermal buckling analysis of 
uniform thickness FGM moderately thick circular nano/micro plates with uniform porosity resting on 
Winkler/Pasternak foundation, based on FSDT, von-Karman strain field and the modified couple stress theory, for 
both temperature dependent (TD) and temperature independent (TID) conditions. The convergence, validation and 
high accuracy of the proposed DQ formulation are investigated. 

Parametric studies are conducted to investigate the influence of some important parameters on the buckling 
temperature. It is observed that ΔTcr has a considerable inclining behavior with increasing length scale ratio l/h. For 
the case of uniformly distributed porosity, ΔTcr has a declining manner with increasing the porosity factor β.  ΔTcr

increases as the volume fraction index n gets larger values. Also it is observed that, ΔTcr increases greatly as each 

one of wk and sk get larger values. However their influence become smaller for greater values of wk or sk . The 

influence of temperature dependency on the values of ΔTcr is investigated. The values corresponding to the TD case 
is considerably smaller than those of the case TID. Also, the effect of the plate edge condition on the values of ΔTcr

is studied. The values corresponding to the CC case is considerably larger than those of the case SS edge condition. 

Fig.3
Effect of  l/h  on ΔTcr for two case of TD and TID for both CC and SS edge conditions. (β=0.5, n=1, h/b=0.1).

Fig.4
Effect of porosity factor β on the variation of ΔTcr with l/h of nano plate without foundation for two cases of TD and TID for 
both CC and SS edge conditions. (l/h=0.5, n=1, h/b=0.1).
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Fig.5
Influence of the volume fraction index n on the variation of ΔTcr with l/h of nano plate without foundation, for case TD with 
CC edge conditions (β=0.5, h/b=0.1).

Fig.6

Influence of dimensionless Winkler stiffness coefficient wk on the variation of ΔTcr with l/h of nano plate with CC edge 

conditions  and TD case (n=1 , β=0.5,, h/b=0.1;  ks=0.0).
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Fig.7

Influence of dimensionless Pasternak stiffness coefficient sk on the variation of ΔTcr with l/h of nano plate with CC edge 

conditions  and TD case (n=1 , β=0.5,, h/b=0.1;  kw=0.0).
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