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ABSTRACT
In the present paper, a semi-analytical solution is presented for the 
free vibration analysis of a sandwich cylindrical shell with a re-
entrant auxetic honeycomb (AH) core fabricated from metal-
ceramic functionally graded materials (FGM). It is assumed that the 
volume fraction of the ceramic phase in the functionally graded 
auxetic honeycomb (FGAH) core increases from zero at the inner 
surface of the core to one at the outer one according to various 
patterns including power-law function (P-FGM), sigmoid function 
(S-FGM), and exponential function (E-FGM). The FGAH core is 
covered with an isotropic homogenous inner face layer made of 
metal and an isotropic homogenous outer one made of ceramic. The 
sandwich shell is modeled via Murakami’s zig-zag theory, and the 
governing equations are derived using Hamilton’s principle. An
exact solution is presented for a simply supported shell via the 
Navier method to find the natural frequencies of the shell. The 
effects of various parameters on the natural frequencies are studied 
such as material gradation, the thickness-to-radius ratio, the core-to-
face layers thickness ratio, and geometric factors of the auxetic 
cells. It is found that for each vibrational mode, an optimal ratio can 
be found between the thickness of the FGAH core and the thickness 
of the shell which leads to the highest natural frequency.
                               

Keywords: Free vibration; Rotating shell; Auxetic honeycomb 
structure; Functionally graded material.

1    INTRODUCTION

HE main aims of utilizing sandwich structures rather than single-layer ones are to achieve high stiffness-to-
mass and strength-to-mass ratios [1, 2] or to attain a smart structure whose mechanical properties can be 
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affected by an external factor [3-8]. Structures that benefit from low density and tunable elastic constants can be 
selected as good choices to be used as a core in a sandwich structure. Since the core is not subjected to intense 
bending loads, it does not necessarily need to be of high rigidity and strength. Honeycombs are fragile but low-
density structures that can be utilized as a core to attain a sandwich structure with an excellent value of stiffness-to-
weight ratio. Thus, honeycomb structures have been used in various engineering fields such as transportation, civil, 
mechanical, and aerospace engineering. A fair amount of work has been presented in recent years to investigate the 
mechanical behavior of three-layered sandwich structures with honeycomb cores. As the most well-known type of 
honeycomb structure, the hexagonal one has been extensively used in various engineering fields [9-11]. In a 
hexagonal honeycomb structure, the Poisson’s ratios are always positive values. However, other kinds of 
honeycomb structures have been proposed in recent years whose Poisson’s ratios are negative values which are 
called auxetic honeycomb (AH) structures.

A fair amount of work has been presented in recent years associated with the mechanical analysis of sandwich 
structures with AH cores. Qing Tian and Zhi Chun [12] examined the wave propagation characteristics of a 
sandwich rectangular plate with an AH core and isotropic homogenous face layers. They examined the effects of the 
geometric parameters of the AH core on the wave propagation characteristics of the plate. The free and forced 
vibration analyses of a doubly-curved sandwich panel with an AH core subjected to blast load were studied by Duc 
et al. [13]. They focused on the impacts of the geometric parameters of the AH core on the dynamic deflection and 
natural frequencies of the shell. The dynamic response of a sandwich cylindrical shell with an AH core subjected to 
moving internal pressure was investigated by Eipakchi and Naserkani [14]. The effects of the geometric parameters
of the AH core on the critical values of the frequency and velocity of the moving pressure were examined by them.
The dynamic buckling and free vibration analyses of sandwich rectangular plates with an AH core and polymeric
face sheets reinforced with graphene nanoplatelets (GNP) were studied by Nguyen et al. [15]. They studied the 
dependency of the natural frequencies and the stability regions on the geometric factors of the AH core. Xiao et al. 
[16] inspected the mechanical buckling analysis of a sandwich rectangular plate with an AH core and two laminated 
composite face sheets. They examined the effects of geometric factors of the AH core on the critical buckling load
of the plate. Xu et al. [17] examined the free in-plane vibration behavior of an AH structure with curved sinusoidal 
walls. They focused on the optimization of such a structure and inspected the impacts of utilizing it on the energy 
absorption capacity of the structure and the amplitude of its oscillations. The free vibration analysis of a sandwich 
rectangular plate with an AH core and two FGM face sheets was studied by Pham et al. [18]. They focused on the 
effects of the geometric factors of the AH core on the natural frequencies of the plate. The nonlinear free and forced 
vibration analyses of an imperfect sandwich rectangular plate with an AH core and two piezoelectric face sheets 
were examined by Quan et al. [19]. They studied the dependency of the natural frequencies of the plate and the 
dynamic deflection on the geometric factors of the AH core.

Dat et al. [20] examined the nonlinear free and forced vibration analyses of a sandwich rectangular plate with an 
AH core and magneto-electro-elastic face sheets exposed to an explosive load. They inspected the influences of 
geometric factors of the AH core on the natural frequencies of the plate and the dynamic deflection. The thermal 
buckling and free vibration analyses of a viscoelastic doubly-curved sandwich shell with a tunable AH core and 
FGM face layers were examined by Li and Liu [21]. They focused on the effects of the geometric parameters of the 
AH core on the critical temperature and the natural frequencies of the shell. As a model of the wall of a fluid-filled 
tank, Pakrooyan et al. [22] investigated the free vibration analysis of a sandwich rectangular plate with an AH core 
and isotropic homogenous face sheets in contact with quiescent fluid. They studied the dependency of the natural 
frequencies on the geometric parameters of the AH core. Cong et al. [23] presented a parametric investigation to 
study the nonlinear free and forced vibration analyses of a doubly-curved sandwich panel with an AH core and two
laminated polymeric face layers reinforced with carbon nanotubes (CNTs). They considered the temperature-
dependency of the thermo-mechanical properties and examined the effect of geometric factors of the AH core on the 
natural frequencies and dynamic response of the shell. Liu et al. [24] studied the static bending analysis of a 
sandwich rectangular plate with a tunable AH core and FGM face sheets. The dependencies of the static deformation 
and stress distribution on the geometric parameters of the AH core were studied by them. The crashworthiness of 
hexachiral AH structures exposed to an in-plane loading was studied by Sadikbasha and Pandurangan [25]. They 
discussed the dependency of the energy absorption capacity of sandwich structures with hexachiral AH core on the 
geometric parameters of the cells. Necemer et al. [26] used the ANSYS software and analyzed the fatigue resistance 
of several AH structures. They compared five types of AH structures including re-entrant, S-shaped, star-shaped, 
chiral, and double arrowhead to check which one has the best fatigue resistance. Rai et al. [27] studied the dynamic 
response of a sandwich panel with an AH core subjected to explosive loading. They tried to optimize the energy 
absorption capacity of such a structure. Sarafraz et al. [28, 29] presented numerical solutions to analyze the 
mechanical buckling, the free vibration, and the flutter (aeroelastic stability) analyses of a sandwich rectangular 
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plate with an AH core and laminated three-phase polymer/GNP/fiber face sheets. They investigated the effects of the 
geometrical parameters of the AH core and the mass fraction of the fibers and GNPs on the critical buckling load,
the natural frequencies, and the critical aerodynamic pressure of the plate.

The concept of FGM was introduced in the 1980s by some materials scientists in Japan [30]. This type of non-
homogenous material is usually produced by the composition of two different materials including a ceramic phase 
and a metal phase whose volume fractions vary continuously in one, two, or even three directions. The main 
advantage of FGMs is their high resistance against simultaneous thermal and mechanical loads. Therefore, these 
materials have been used in various engineering fields such as civil, aerospace, and mechanical engineering. As a 
new idea to achieve low mass and high endurance against thermo-mechanical loading, recently, some researchers 
have proposed to produce AH structures from FGMs. To the best knowledge of the authors, there are few numbers 
of papers associated with the influences of FGAH cores on the mechanical behavior of sandwich plates and shells 
[31-34]. For the first time, an analytical solution is presented on the free vibration analysis of a sandwich cylindrical 
shell with a re-entrant FGAH core and two homogenous face layers. The sandwich shell is modeled based on the 
zig-zag theory. Three patterns are considered to describe the variations of the volume fractions of the metal and 
ceramic including power-law, sigmoid, and exponential functions. The effects of various factors on the natural 
frequencies of the shell are investigated including material gradation, the thickness-to-radius ratio, the core-to-face 
layers thickness ratio, and geometric factors of the auxetic cells. The results of this work can be useful in the design, 
analysis, and optimization of future aerospace structures.

2    MATHEMATICAL MODELING  

2.1. Material Properties 

As shown in Fig. 1, a three-layered sandwich cylindrical shell of mean radius R, length L, and total thickness h is 
considered. The sandwich shell consists of a re-entrant FGAH core of thickness hc and isotropic homogeneous face 
layers of the same thickness h1=h3=hf=0.5(h-hc). The inner and outer layers of the shell are fabricated from metal 
and ceramic, respectively.

The material properties of the non-homogeneous material utilized to fabricate the AH core vary from a metal-
rich surface at the inner side of the core to a ceramic-rich one at the outer surface of the core according to a power-
law function as [33]
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where P stands for either the density (ρs), the elastic modulus (Es), or the Poisson’s ratio (νs), and the subscripts m
and c indicate the material properties of the metal and ceramic phases, respectively. In Eq. (1), the dimensionless 
parameter p is called the material index which determines how the volume fractions of metal and ceramic vary in the 
thickness direction.
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Fig. 1
A sandwich cylindrical shell with an FGAH core and isotropic homogeneous face layers.

The variations of material properties of the non-homogeneous material utilized to fabricate the AH core through 
the thickness direction are depicted in Fig. 2 for Pc/Pm=2 and several various values of the material index.

Since an FGM is an isotropic material, the shear modulus (Gs) of the material used to produce the AH core can 
be calculated through the relation below:
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Referring to the geometric parameters of an individual cell of a re-entrant FGAH structure illustrated in Fig. 1, 
the elastic constants and the density of the FGAH core can be attained using the following relation [35]:

   
 

 

  
   

 
 

 

3 32 2 3
1 2 2

2 2 2 2 2
2 1 1 2

2 2 22 3
2 2 1 1 2

1 1 1 1 1

sec sin sec
, ,

1 tan sec sin tan

cos sec sin 2sin sec
, , ,

sin 2 1 2 2 sin 1 2

xx

s s

z xz x

s s s

e eE E e

E Ee e e e

G e G e e e G e

G e G e e E e e



 

  
   

    
 


 

   

  
    

     

 
 

 
      

 
   2 22 2

2 12 2 2 2 1

2 2 2 2
12 1

1 sin sin sec 1 0.5 sec
, , ,

sin1 tan sec
x x x

sxx

e e e eE

ee eE


  

     
  

   
  

 

(3)

x

θ

x

R

h

hc

Layer 2: FG auxetic honeycomb core

z

Layer 1: Metal 

Layer 3: Ceramic 

L

d

l

t

ψ



Free Vibration Analysis of A Sandwich Cylindrical Shell ….                          52

Journal of Solid Mechanics Vol. 16, No. 1 (2024)  

Fig. 2
Variations of material properties of the material utilized to fabricate the AH core through the thickness direction.

where

1 2, .
d t

e e
l l

  (4)

Eq. (3) indicates that the FGAH core is an orthotropic non-homogenous structure fabricated from an isotropic non-
homogenous material.

The density and the elastic constants of the isotropic homogeneous inner and outer face layers can be presented 
as follows:
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where Gm and Gc are the shear moduli of the metal and ceramic phases, respectively.

2.2. Deformation, Strain, and Stress 

Based on Murakami’s zig-zag theory, the deformation field can be described as follows [36]: 
         
         
   

1

2

3

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , ,

x xu t z x u t x z t x f z s x t

u t z x v t x z t x f z s x t

u t z x w t x

 

    

    

 

  

  



(6)

where u1, u2, and u3 show displacement along x, θ, and z directions, respectively, and φx and φθ are the rotations 
about θ and x axes, respectively. The variables sx and sθ are used to incorporate the zig-zag effect, and f(z) is defined 
as follows [36]:
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where hk represents the thickness of the kth layer, zk and zk+1 are the transverse position of the bottom and top of the 
kth face layer, respectively, NL stands for the number of layers which is 3 in this paper, and H is the well-known 
Heaviside function.

It is noteworthy that by removing sx, sθ, and f(z) the well-known first-order shear deformation theory (FSDT) is 
attained. A schematical comparison between the displacement fields in the zig-zag and the FSDT theories is 
depicted in Fig. 3.

The normal (εij) and shear (γij=2εij) components of the strain tensor can be calculated through the following 
relations [37, 38]:
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It should be noted that Eq. (7) is attained by considering the assumption of shallow shells:
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The non-zero components of the stress tensor (σij) in the kth layer of the shell can be calculated as [39, 40]
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where ks=5/6 is the well-known shear correction factor and
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2.3. Hamilton’s Principle 

According to Hamilton’s principle, the governing equations and boundary conditions regarding the vibration 
analysis of a structure can be obtained using the relation below [41, 42]:
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in which δ is the well-known variational operator, t shows time, [t1,t2] represents an arbitrary time interval, and. U, 
T, and Wn.c. indicate the strain energy of the shell, the kinetic energy of the shell, and the work done by non-
conservative external loads, respectively. 

The variation of the strain energy of the shell can be described as follows [41]:
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where dS=Rdxdθ is the surface of the shell at the middle surface (z=0). 
Utilizing Eqs. (8), (14), and (15), the following relation can be presented:
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By substituting Eqs. (8) and (11) into Eq. (17), one can write the relation below:
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in which the stiffness coefficients are defined as follows:
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The equation below describes the variation of the kinetic energy of the shell [41]:
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Utilizing Eqs. (6) and (15), Eq. (20) can be represented as follows: 
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where
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Substituting Eqs. (16) and (21) into Eq. (13) and considering Wn.c.=0 for the free vibration analysis, the following 
relations can be attained as the governing equations: 
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Also, the following equations describe the boundary conditions for simply supported edges at x=0 & L:
0, 0, 0, 0, 0, 0.0,x xx x xxN v w M P s       (24)

Substituting Eq. (18) into Eq. (24) leads to the relations below as the governing equations:
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Substituting Eq. (18) into Eq. (21) provides the following equations as the boundary conditions:
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which results in the following simplified form:
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3    SOLUTION PROCEDURE  

Utilizing the Navier solution, the relations below can be considered to satisfy the simply supported boundary 
conditions presented in Eq. (27) at both edges of the shell [43]:
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in which ω is the natural frequency, and m=1,2,3,… and n=0,1,2,… are known as the longitudinal and 
circumferential wave numbers, respectively.

Inserting Eq. (28) into Eq. (25) results in the following relation:
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where, as defined in Eq. (30), [K] and [M] are stiffness and mass matrixes, consecutively:
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Through the solution of the eigenvalue Eq. (30), the natural frequencies of the shell can be attained. In the 
presented work, the dimensionless natural frequency is defined as follows:
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4   NUMERICAL EXAMPLES

4.1. Verification

To confirm the accuracy of the presented simulation, a single-layer P-FGM cylindrical shell of R=1 m, h/R=0.002, 
and L/R=20 is considered. The mechanical properties change from the mechanical properties of nickel (ρ1=8900 
kg/m3, E1=205.098 GPa, ν1=0.31) at the inner surface of the shell to the mechanical properties of stainless steel 
(ρ2=8166 kg/m3, E2=207.788 GPa, ν2=0.317756) at its outer surface. For several values of the circumferential wave 
number and various values of the material index, the natural frequencies are reported in Table 1 m=1 against the 
corresponding ones reported by Loy et al. [44]. As observed, the results are in high agreement which proves the 
precision of the present work.

4.1. Parametric Study

In the current section, a parametric study is presented to examine the dependency of the natural frequencies on 
several factors such as material gradation, the core-to-face layers thickness ratio, and geometric parameters of the re-
entrant cells. Except for the cases which are stated otherwise, numerical results are presented for a sandwich 
cylindrical shell of R=0.2 m, h/R=0.05, and L/R=5. Aluminum (Al) and Alumina (Al2O3) (ρm=2700 kg/m3, Em=70 
GPa, νm=0.35, ρc=3950 kg/m3, Ec=380 GPa, νc=0.22) are selected as metal and ceramic phases, respectively. The 
FGAH core is of type P-FGM with hc/h=0.7, p=0.5, e1=2, e2=0.02, and ψ=30°. It is obvious that the face layers are 
of the same thickness h1=h3=0.15h. For some values of the axial wave number (m=1,2,3,4), the variations of the 
natural frequencies of the shell versus the variation of the circumferential wave number are depicted in Fig. 4. As 
observed, by increasing the circumferential wave number, the natural frequencies experience and initial reduction 
followed by a steadily increase. This figure shows that the first to fourth lowest natural frequencies belong to 
vibrational modes associated with (n,m)=(2,1), (n,m)=(3,1), (n,m)=(3,2), and (n,m)=(1,1), respectively. The 
dimensionless natural frequencies and the corresponding mode shapes are presented in Fig. 5. In what follows, the 
parametric study is presented to examine the effects of various parameters on the natural frequencies associated with 
these vibrational modes.

0 2 4 6 8 10
n

0

0.5

1

1.5

m=1
m=2
m=3
m=4

Fig. 4
The effects of circumferential and axial wave numbers on the natural frequencies of the shell.
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Table 1
The natural frequencies of a single layer FGM cylindrical shell in Hz (R=1 m, h/R=0.002, L/R=20, ρ1=8900 kg/m3, ρ2=8166 

kg/m3, E1=205.098 GPa, E2=207.788 GPa, ν1=0.31, ν2=0.317756).

p=0 p=0.7 p=1 p=5 p=15

Present Ref. [44] Present Ref. [44] Present Ref. [44] Present Ref. [44] Present Ref. [44]

n=1 13.548 13.548 13.269 13.269 13.211 13.211 12.998 12.998 12.933 12.933

n=2 4.5921 4.5920 4.4995 4.4994 4.4801 4.4800 4.4070 4.4068 4.3837 4.3834

n=3 4.2646 4.2633 4.1761 4.1749 4.1582 4.1569 4.0904 4.0891 4.0667 4.0653

n=4 7.2278 7.2250 7.0718 7.0691 7.0411 7.0384 6.9279 6.9251 6.8885 6.8856

n=5 11.547 11.542 11.295 11.290 11.245 11.241 11.065 11.061 11.003 10.999

n=6 16.904 16.897 16.533 16.527 16.461 16.455 16.198 16.192 16.108 16.101

n=7 23.253 23.244 22.743 22.735 22.643 22.635 22.282 22.273 22.158 22.148

n=8 30.584 30.573 29.913 29.903 29.782 29.771 29.307 29.296 29.144 29.132

n=9 38.895 38.881 38.041 38.028 37.875 37.862 37.270 37.257 37.063 37.048

n=10 48.185 48.168 47.126 47.111 46.920 46.905 46.171 46.155 45.915 45.897

(n,m)=(2,1) (n,m)=(3,1) (n,m)=(3,2) (n,m)=(1,1)

λ21=0.1422 λ31=0.1951 λ32=0.2987 λ11=0.3076

Fig. 5
Vibrational mode shapes associated with the first to fourth lowest natural frequencies of the shell.

Fig. 6
The effects of the thickness-to-radius ratio on the natural frequencies of the shell.
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Fig. 6 is presented to examine the effects of the thickness-to-radius ratio of the shell on the natural frequencies 
and the dependency of the natural frequencies on the employed shell theory. An increase in the thickness of the shell 
results in higher rigidity and mass which have opposite effects on the natural frequencies of the shell. However, by 
increasing the thickness of the shell the flexural rigidity of the shell experiences a higher increase in comparison 
with the mass. Thus, the natural frequencies increase in all vibrational modes as the thickness of the shell increases. 
This figure shows that the natural frequencies predicted based on the zig-zag theory are always lower than the 
natural frequencies predicted based on the FSDT. The main reason behind this can be explained by Fig. 3. As shown 
in this figure, utilizing the zig-zag theory provides more flexibility which reduces the rigidity of the shell and results 
in lower and more accurate natural frequencies. Fig. 6 shows that the differences between the natural frequencies 
predicated based on the zig-zag theory and the FSDT increase by increasing the thickness of the shell. It shows the 
importance of the zig-zag effect for thick sandwich structures.

For various types of FGM, Fig. 7 shows the effects of the material index in the FGAH core on the natural 
frequencies of the shell. According to Fig. 2, increases in the material indexes in the P-FGM and the E-FGM cores 
result in lower volume fractions of the ceramic. According to the material properties of Alumina (Al2O3) and 
Aluminum (Al), these reductions decrease both the mass and the rigidity of the shell that have opposite effects on 
the natural frequencies of the shell. Thus, depending on the vibrational mode, the material index has different effects 
on the natural frequencies of the shell which can be seen in Fig. 7. According to Fig. 2, it can be concluded that an 
increase in the material index in the S-FGM core reduces the volume fraction of the ceramic in the half of the shell 
and increase the volume fraction of the ceramic in the other half. Thus, as shown in Fig. 7, the material index has a 
weak effect on the natural frequencies of the sandwich shell with the S-FGM AH core. Fig. 7 also shows that for the 
same values of the material index, the natural frequencies of the sandwich shell with the P-FGM AH core are higher 
than the natural frequencies of the sandwich shell with the E-FGM AH core.

According to Fig. 7, the sandwich cylindrical shells with the P-FGM and the S-FGM core have the same natural 
frequencies for p=1. It can be explained by the variation of the material properties depicted in Fig. 2. Fig. 7 shows 
that for high values of the material index in the FGAH core (p→∞), the natural frequencies reach specified values. 
According to Eq. (1), for the P-FGM and the E-FGM, these values are the natural frequencies of a sandwich 
cylindrical shell with an AH core made of Aluminum. Also, for the S-FGM core, p→∞ means a sandwich 
cylindrical shell with an AH core in which half of the core is made of Aluminum and the other half is made of 
Alumina.   

21 31

32 11

Fig. 7
The effects of the material gradation in the FGAH core on the natural frequencies of the shell.
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For some selected values of the inclined angle and a specific value of the thickness of the shell, Fig. 8 shows the 
effects of the thickness of the FGAH core on the natural frequencies of the shell. In comparison with the isotropic 
homogenous face layers, the FGAH core benefits from lower density and has lower elastic and shear moduli. As a 
result, an increase in the thickness of the core brings about lower mass and rigidity which have opposite effects on 
the natural frequencies of the shell. Fig. 8 shows that as the thickness of the FGAH core increases, the natural 
frequencies experience an initial increase (due to the higher reduction in the mass) followed by a reduction (due to a 
higher decrease in the rigidity). In other words, for each vibrational mode, there is an optimal ratio between the 
thickness of the FGAH core and the thickness of the shell which provides the highest natural frequency.

Eq. (3) shows that the density of the FGAH core increases by increasing the inclined angle. The reason behind 
this is the increase in the number of cells in the FGAH core. It is shown in Ref. [28] that by variation of the inclined 
angle from zero to about 90°, the elastic and shear moduli experience different variations including decreases in 
some ones and increases in others. As shown in Fig. 8, as the inclined angle in the FGAH core increases from 15° to 
60°, the natural frequencies decrease in all vibrational modes which can be explained by the increase in the density 
of the FGAH core.

Fig. 8
The effects of the thickness of the FGAH core and the inclined angle on the natural frequencies of the shell.
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Fig. 9
The effects of the geometric parameters e1 and e2 in the FGAH core on the natural frequencies of the shell.
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Fig. 9 is presented to study the effects of the geometric parameters e1 and e2 in the FGAH core on the natural 
frequencies of the shell. An increase in e1 reduces the number of cells in the FGAH core which brings about lower 
density. As shown in Ref. [28], an increase in e1 has different and opposite effects on the elastic and shear moduli of 
the FGSH core. Thus, as Fig. 9 shows, the natural frequencies experience different variations by increasing the 
geometric parameter e1.

An increase in the geometric parameter e2 means an increase in the thickness of the walls in the FGAH core. 
This increase brings about higher density and higher elastic and shear moduli of the FGAH core. Thus, by increasing 
the geometric parameter e2 both the mass and the rigidity of the shell increase which have opposite effects on the 
natural frequencies of the shell. As a result, as shown in Fig. 9, the natural frequencies experience different 
variations by increasing the geometric parameter e2.

5   CONCLUSIONS   

A theoretical study was presented on the free vibration analysis of a sandwich cylindrical shell with a re-entrant 
FGAH core and isotropic homogenous face layers. It was assumed that the volume fraction of the ceramic phase in 
the FGAH core varies from zero at the inner surface of the core to one at the outer one according to various patterns 
including power-law, sigmoid, and exponential patterns. The sandwich shell was modeled based on the zig-zag 
theory, and an exact solution was presented via the Navier method to determine the natural frequencies of the shell 
with simply supported boundary conditions. The main findings of the presented paper can be stated as follows:

 The natural frequencies of the shell increase in all vibrational modes as the thickness of the shell increases.
 The natural frequencies predicted based on the zig-zag theory are lower than the natural frequencies 

predicted based on the FSDT.
 The differences between the natural frequencies predicated based on the zig-zag theory and the FSDT 

increase by increasing the thickness of the shell.
 For the P-FGM and the E-FGM cores, the material index has different effects on the natural frequencies of 

the shell. However, for the S-FGM core, the material index does not have a sensible effect on the natural frequencies 
of the shell.

 For the same values of the material index, the natural frequencies of the sandwich shell with the P-FGM 
AH core are higher than the natural frequencies of the sandwich shell with the E-FGM AH core.

 For a specific value of the thickness of the shell, by increasing the thickness of the FGAH core, the natural 
frequencies experience an initial increase followed by a reduction. In other words, for each vibrational mode, there 
is an optimal ratio between the thickness of the FGAH core and the thickness of the shell which brings about the 
highest natural frequency.

 For all vibrational modes, the natural frequencies decrease as the inclined angle in the FGAH core 
increases.

 Depending on the vibrational mode, the natural frequencies experience different variations by increasing 
the geometric parameters e1 (aspect ratio in the cells) and e2 (wall thickness of the cells).
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