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ABSTRACT
The present work analytically studies the free longitudinal vibration 
of nanorods in the presence of cracks based on the surface elasticity 
theory. To this end, governing equations of motion and 
corresponding boundary conditions are obtained using Hamilton’s 
principle. Due to considering the surface stress effect, as well as the 
surface density and the surface Lamé constants, the obtained 
governing equations of motion become non-homogeneous. The non-
homogeneous governing equations are solved using appropriate 
analytical methods, and the natural frequencies are extracted. To 
have a comprehensive research, the effects of various parameters 
such as the length and radius of the nanorod, the crack severity, the 
crack position, the type of boundary condition, and the values of 
surface and bulk material properties on axial frequencies of the 
nanorod are investigated. Since this work considers the effects of all 
surface energy parameters, it can be claimed that it is a 
comprehensive study in this regard.
                               © 2023 IAU, Arak Branch.All rights reserved.
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1    INTRODUCTION

EFECTS may establish/create intentionally or unintentionally in structures. Defects are created intentionally 
when a structure is designed in such a way that one element of the structure collapses instead of the entire 

structure in critical situations like earthquakes [1]. Therefore, the source of this type of defect is an engineering 
design. On the other hand, the defects created unintentionally may appear due to issues such as material, 
manufacturing processes, and operation. This kind of defect is almost always destructive. Therefore, it should be 
detected before causing serious damage to structures. One of these destructive defects is the crack which is very 
common in structures. The crack can appear in structures with macro-, micro-, or nano-scale.
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Cracked nanorods have gained significant attention in the field of nanotechnology due to their unique properties 
and potential applications. These nanorods, which are typically made of materials such as gold or silver, undergo 
controlled cracking to create gaps or breaks along their length. This deliberate manipulation of nanorod structures 
opens up a range of practical applications in various fields. The main practical applications of cracked nanorods 
include sensing and detection, catalysis, optics, electronics, and energy conversion [2, 3].

A literature survey on the investigation of the effects of the crack on the mechanical behaviors of nanoscale 
structures shows that this issue has been examined in various cases. Here, the related references are categorized 
according to the shape of the nano-structure, plate, beam, bar, and rod.

For plate-like nanostructures, Wang et al. [4] have simulated micro-crack healing in copper nano-plate during 
heating using the molecular dynamics method. In another study, the crack propagation process in a single-crystal 
aluminum plate with central cracks under tensile load has been simulated by the molecular dynamics method [5]. Hu 
et al. [6] have studied the surface energy effect on the fracture behavior of thin films with Mode-I and mode-II 
cracks.

For beam-like structures, there are considerable studies. The studies have considered the effect of the crack on 
the mechanical behavior of beam-like nanostructures based on various theories. Based on the nonlocal elasticity 
theory, free transverse vibration of Euler-Bernoulli [7-10] and Timoshenko [11-14] nanobeams, functionally graded 
nanobeams [15, 16], nanobeams with multiple cracks [17], and nanobeams embedded in the elastic medium [12, 15, 
18] have been studied. In addition, Khorshidi et al. [19] have investigated buckling and postbuckling behaviors of 
cracked nanobeams made of single-crystalline nano-materials incorporating the beam's axial stretching via von 
Karman nonlinear theory. There are also some studies based on the surface elasticity theory. In this regard, free 
transverse vibration of thin and thick nanobeams with single and mixed-mode cracks are investigated by considering 
the surface energy effects [12, 20-23]. The other studies on the mechanical behaviors of nano-beams are based on 
the modified couple stress theory. Bending [24], buckling and postbuckling [25, 26], and free transverse vibration 
[27-29] of cracked nanobeams have been analyzed based on the modified couple stress theory.

For bar-like nanostructures in which the torsional behavior is desired, Loya et al. [30] and Rahmani et al. [31] 
have considered the effect of the crack on free torsional vibration of nanobeams using the nonlocal elasticity theory. 
In addition, free torsional vibration of cracked nanobeams incorporating the surface energy effect has been 
investigated by Nazemnezhad and Fahimi [32].

Finally, there are a few studies in which the axial or longitudinal behaviors of nanostructures in the presence of 
the crack are analyzed. In references [33, 34] free axial vibration of cracked nanorods has been investigated based 
on the nonlocal elasticity theory. Furthermore, the elastic medium effect as well as the crack effect on the axial 
vibration of nanorods is studied based on the nonlocal elasticity theory [35].

The above literature survey shows that the works considered the effect of the crack on mechanical behaviors of 
nano-scale structures have implemented the nonlocal elasticity theory, the modified couple stress theory, and the 
surface elasticity theory. Among the four types of mentioned nanostructures, three of them, plate-like, beam-like, 
and bar-like nanostructures, have been analyzed using the surface elasticity theory. Since the theories give different 
results for a specific problem, it is necessary to have a comprehensive insight into the various aspects of the problem 
for future research. The importance of the present study comes from two main aspects. The first aspect lies in the 
methodology employed to model cracks and mathematically illustrate their impact on dynamic systems. This 
encompasses both the formulation of equations of motion and the consideration of boundary conditions. It is widely 
acknowledged or predictable that cracks tend to decrease the natural frequencies of a system by inducing structural 
softening. However, the equations of motion have been derived in a manner that necessitates the development of a 
new solution method. This highlights the requirement for an alternative approach, which may not have been 
necessary or utilized in other similar problems. The second aspect pertains to the utilization of the theory of surface 
elasticity. The distinction between this particular theory and other proposed theories, such as non-local theory, lies in 
its omission of a tuning or matching parameter within the equations. In other proposed theories, a parameter is 
introduced to bring the theoretical results closer to the simulation or laboratory results by adjusting its value. 
Typically, this parameter's value is contingent upon various conditions, even within a specific problem. However, 
this is not the case with the theory of surface elasticity. Instead, it solely deals with a series of surface mechanical 
properties whose values are considered fixed for a specific material. Therefore, it is important to examine the 
behavior of the structure from the perspective of this theory. To this end, governing equation of motion and 
corresponding boundary conditions of cracked nanorods incorporating the surface energy effects are obtained using 
Hamilton’s principle. Due to considering the surface energy effect the obtained governing equation of motion 
becomes non-homogeneous. To extract the natural frequencies of the nanorod, firstly the non-homogeneous 
governing equation is converted to a homogeneous one using an appropriate change of variable, and then for 
clamped-clamped and clamped-free boundary conditions, the governing equation is solved using an analytical 
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method. To conduct comprehensive research, the effects of various parameters such as the length and radius of the 
nanorod, the crack severity, the crack position, the type of boundary condition, and the values of surface and bulk 
material properties on the axial frequencies of nanorod are investigated.

2    PROBLEM FORMULATION  

Consider a thin nanorod having length L (0 ≤ x ≤ L) and cross section of A, in a Cartesian coordinate system xyz, as 
shown in Fig. 1.

According to the simple rod theory, the components of displacement (u, v, and w) are as follows [36]
( , , , ) ( , )u x y z t u x t (1)

( , , , ) 0v x y z t  (2)

( , , , ) 0w x y z t  (3)
in which t is the time in sec. Having these displacements, assuming the rod is made from an isotropic material, the 
strains and stresses can be defined as

xx

u

x
 




(4)

0yy zz xy xz yz         (5)

xx

u
E

x
 




(6)

0yy zz xy xz yz         (7)

The Eqs. (4)-(7) are represented the strains and stresses related to the bulk material of the nanorod. If the surface 
energy effect is included in the analysis, the surface stress and strain components must be obtained. To this aim, the 
surface elasticity theory is proposed. In surface elasticity theory proposed by Gurtin and Murdoch [37], the relation 
between surface stress and strain can be expressed as

    , , , ,s s s s s m m su u u u                               (8)

,z s zu    (9)

in which s
 is residual surface stress related to no strain condition,  is Kronecker delta, s

 and s
 are Lamé 

constants, ,u  are surface displacement components, and , ,x y   . Note that the positive and the negative signs 

are represented for upper and lower surfaces of the nanorod (for rectangular or quadrangular cross sections). Since 
the nanorod in this study has circular cross section, the positive and negative signs are disregarded.

Fig.1
Schematic of a cracked nanorod and modeled configuration.
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Using Eqs. (1)-(3), surface stresses effective to longitudinal vibration of nanorod are obtained as

 2xx s s s

u

x
    

  


(10)

0yy zz xy xz yz         (11)

In order to arrive to the governing equation and the boundary conditions, the bulk and surface stresses and strains 
must be used in Hamilton’s principle defined by Eq. (12),

 2

1

0
t

t
T U dt   (12)

The variation of kinetic energy of nanorod take into account the effect of kinetic energy of surface density, can 
be written as

       
0 0

, , , ,L Lb s
s

u x t u x t u x t u x t
T T T Adx Sdx

t t t t
      

          
          

          
  (13)

in which ρ and ρs are bulk and surface density, respectively, and A and S are surface and periphery of nanorod, 
respectively. Substituting Eqs. (4) and (6) in forming the potential energy relation, the variation of potential energy 
can be expressed as

 
0 0

2
L Lb s

s s s

u u u u
U U U E Adx Sdx

x x x x
                                   (14)

Substituting Eqs. (13) and (14) into Eq. (12), and integrating the resulted equation by part, the governing 
equation and the corresponding boundary conditions of cracked nanorods incorporating the surface energy effects 
are obtained as follows,

        2 2

2 2

, ,
2 0s s s

u x t u x t
A S EA S

t x
   

 
     

 
(15)

    
0

,
2 0

L

s s s

u x t
S EA S u

x
   

 
    

 
(16)

Assume that in the crack location (x = LC) an equivalent linear spring K connecting the two segments of the 
nanorod, then for each segments of the nanorod, i.e. 0 ≤ x < LC and LC < x ≤ L, the Eqs. (15) and (16) must be 
applied. Implementing Eq. (15) leads to following equations,

       2 2
1 1

2 2

, ,
0; 0 Ceq eq

u x t u x t
A EA x L

t x


 
    

 
(17)

       2 2
2 2

2 2

, ,
0; Ceq eq

u x t u x t
A EA L x L

t x


 
    

 
(18)

where 
  seq

A A S   
and 

   2s seq
EA EA S   

.
In crack location, x = LC, following continuity conditions must be satisfied,

        1
1 2

,
, , C

C C s eq

u L t
K u L t u L t S EA

x



   


(19)

   1 2, ,C Cu L t u L t

x x

 


 
(20)

Moreover, end conditions of nanorod for clamped-clamped and clamped-free nanorods are as Eq. (21) and (22) 
respectively,

 
 

1

2

0, 0

, 0

u t

u L t




(21)

 
 

 

1

2

0, 0

,
s

eq

u t

u L t S

x EA






 


(22)
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Eqs. (19) and (22) imply that the relation of boundary condition at the free end of the nanorod as well as one of 
the relations of the continuity conditions are inhomogeneous. Therefore, in order to solve the governing equations of 
motion, these relations must be homogenized at first.

It is worth mentioning here that it has not been reported in literature that homogeneous relations of boundary 
conditions and/or equations of motion are changed to inhomogeneous ones by considering the surface energy effects 
on various mechanical behaviors of nanosized structures. Therefore, the present study reports this issue for the first 
time.

In order to study the vibration characteristics of the cracked nanorod, Eqs. (17)-(20) along with Eq. (21) and (22) 
must be solved for the clamped-clamped and the clamped-free conditions, respectively. The method of solution of 
obtained equations is presented in next two subsections.

2.1 Clamped-clamped cracked nanorod

As mentioned before, the first step in solving the governing equations of motion is homogenization of Eqs. (19) and 
(22). At first, the equations and boundary conditions must be homogenized. To this aim it is supposed that

     1 1 1, ,cc ccu x t v x t u x  (23)

     2 2 2, ,cc ccu x t v x t u x  (24)

Substituting u1(x,t) and u2(x,t) into Eqs. (17)-(21), the related equations for u1cc(x) and u2cc(x) are obtained as 
follows

   2
1

2
0; 0cc

Ceq

d u x
EA x L

dx
   (25)

   2
2

2
0;cc

Ceq

d u x
EA L x L

dx
   (26)

        1
1 2

cc C
cc C cc C s eq

du L
K u L u L S EA

dx
    (27)

   1 2cc C cc Cdu L du L

dx dx
 (28)

 
 

1

2

0 0

0

cc

cc

u

u L




(29)

Solving Eqs. (25)-(29) leads to

   1 ; 0s
cc C

eq

S
u x x x L

EA KL


  

 (30)

     2 ;s
cc C

eq

S
u x x L L x L

EA KL


   

 (31)

Now, substituting Eqs. (30) and (31) into Eqs. (23) and (24) and using u1(x,t) and u2(x,t) in Eqs. (17)-(21) leads 
to following equations,

       2 2
1 1

2 2

, ,
0; 0cc cc

Ceq eq

v x t v x t
A EA x L

t x


 
    

 
(32)

       2 2
2 2

2 2

, ,
0;cc cc

Ceq eq

v x t v x t
A EA L x L

t x


 
    

 
(33)

        1
1 2

,
, , cc C

cc C cc C eq

v L t
EA v L t v L t CL EA

x


  


(34)

   1 2, ,cc C cc Cv L t v L t

x x

 


 
(35)
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 
 

1

2

0, 0

, 0

cc

cc

v t

v L t




(36)

where 
EA

C
KL

 . Assuming harmonic displacements as

 1 1 1, ( ) ( ) ( ) i t
cc cc ccv x t V x T t V x e   (37)

 2 2 2, ( ) ( ) ( ) i t
cc cc ccv x t V x T t V x e   (38)

Eqs. (32)-(36) can be rewritten as

   
2

2 1
1 2

( )
( ) 0; 0cc

cc Ceq eq

d V x
A V x EA x L

dx
      (39)

   
2

2 2
2 2

( )
( ) 0;cc

cc Ceq eq

d V x
A V x EA L x L

dx
      (40)

        1
1 2

cc C
cc C cc C eq

dV L
EA V L V L CL EA

dx
   (41)

   1 2cc C cc CdV L dV L

dx dx
 (42)

 
 

1

2

0 0

0

cc

cc

V

V L




(43)

The solutions of Eqs. (39) and (40) are

 1 1 1sin coscc

x x
V x A B

c c

 
  (44)

 2 2 2sin coscc

x x
V x A B

c c

 
  (45)

where 
 
 

2 eq

eq

EA
c

A



.

Application of Eqs. (41)-(43) leads to B1 = 0 and following system of equations,

 

1

2

2

0 sin cos

cos cos sin 0

sin cos sin cos

C C C

eqC C C C

L L

c c A
L L L

A
c c c

B
CL EAL L L L

c c EA c c c

 

  

   

 
 
   
       

     
   

 

(46)

To have a nontrivial solution, determinant of coefficient matrix must set to be zero. The resulted equation is as 
follows

 
 

2 2
cos cos sin 0C

eq

L L L cEA L

c c CL EA c

  



   (47)

Solving Eq. (47) numerically, using MATLAB software, the natural frequencies of the clamped-clamped cracked 
nanorod are obtained.

2.2 Clamped-free cracked nanorod

Similar to section 2.1, suppose that      1 1 1, ,cf cfu x t v x t u x  and      2 2 2, ,cf cfu x t v x t u x  . Substituting 

u1(x,t) and u2(x,t) into Eqs. (17)-(20) and (22), the related equations for u1cf(x) and u2cf(x) are obtained as follows
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   2
1

2
0; 0cf

Ceq

d u x
EA x L

dx
   (48)

   2
2

2
0;cf

Ceq

d u x
EA L x L

dx
   (49)

        1
1 2

cf C
cf C cf C s eq

du L
K u L u L S EA

dx
    (50)

   1 2cf C cf Cdu L du L

dx dx
 (51)

 
 

 

1

2

0 0cf

cf s

eq

u

du L S

dx EA





 
(52)

Solving Eqs. (48)-(52) leads to,

   1 ; 0s
cf C

eq

S
u x x x L

EA


   (53)

   2 ;s
cf C

eq

S
u x x L x L

EA


   (54)

Now, substituting Eqs. (53) and (54) into      1 1 1, ,cf cfu x t v x t u x  and      2 2 2, ,cf cfu x t v x t u x  and 

using u1(x,t) and u2(x,t) in Eqs. (17)-(20) and (22) leads to following equations,

       2 2
1 1

2 2

, ,
0; 0cf cf

Ceq eq

v x t v x t
A EA x L

t x


 
    

 
(55)

       2 2
2 2

2 2

, ,
0;cf cf

Ceq eq

v x t v x t
A EA L x L

t x


 
    

 
(56)

        1
1 2

,
, , cf C

cf C cf C eq

v L t
EA v L t v L t CL EA

x


  
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Assuming harmonic displacements as  1 1 1, ( ) ( ) ( ) i t
cf cf cfv x t V x T t V x e   and 

 2 2 2, ( ) ( ) ( ) i t
cf cf cfv x t V x T t V x e   , Eqs. (55)-(59) can be rewritten as
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The solution of Eqs. (60) and (61) are  1 1 1sin coscf

x x
V x A B

c c

 
  and  2 2 2sin coscf

x x
V x A B

c c

 
    

where 
 
 

2 eq

eq

EA
c

A



. Application of Eqs. (62)-(64) leads to B1 = 0 and following system of equations,
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(65)

To have a nontrivial solution, determinant of coefficient matrix must set to be zero. The resulted equation is as 
following,

 
 

2 2
sin sin cos 0C

eq

L L L cEA L

c c CL EA c

  



   (66)

Solving Eq. (66) numerically, using MATLAB software, the natural frequencies of the clamped-free cracked 
nanorod are obtained.

3    RESULTS AND DISCUSSIONS

To verify the applicability and accuracy of the present formulation, two comparison studies are conducted. At first, 
the results of the present study are compared with those reported by Rao [36] and Nazemnezhad and Shokrollahi 
[38] for an intact nanorod, without considering the surface energy effects. Ref. [36] provided the longitudinal 
vibration of nanorods based on classical theory to study the behavior of macro-scale rods and in Ref. [38] the 
longitudinal vibration of nanorods using surface elasticity theory is presented. For evaluation of the first five natural 
longitudinal frequencies, this comparative study between the present solution without considering surface energy 
effects and the crack (C = 0) and the results given by Rao [36] and Nazemnezhad and Shokrollahi [38] is carried out 
in Table 1 for a rod with fixed-fixed and fixed-free boundary conditions, and L = 10 nm, R = 1 nm, E = 70 GPa, and 
ρ = 2 700 kg/m3. As shown in Table 1, the reliability of the present formulation and results is confirmed. In the 
second comparison study, the results of the present analysis are compared with those reported by Nazemnezhad and 
Shokrollahi [39] using the numerical method (differential quadrature method). The results for a rod with fixed-fixed 
and fixed-free boundary conditions, with two different crack severities, C, and L = 30 nm, R = 0.5 nm, E = 70 GPa, 
ρ = 2 700 kg/m3, μs = -0.8269 N/m, λs = 6.842 N/m, ρs =k 5.46×10-7 kg/m3, and τs = 0.5689 N/m, are presented in 
Table 2. Again, the reliability of the present formulation and results is confirmed. As presented in Table 2, for lower 
frequencies there are the same results obtained using two methods, but by increasing the mode number the 
difference between results is evidenced.
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Table 1
Comparison of natural frequencies of an intact nanorod (GHz).

Mode
Fixed-Fixed Fixed-Free

Present Ref. [38] Ref. [36] Present Ref. [38] Ref. [36] 

1 254.59 254.59 254.59 127.29  127.29  127.29  

2 509.18  509.18  509.18  381.88  381.88  381.88  

3 763.76  763.76  763.76  636.47  636.47  636.47  

4 1018.35  1018.35  1018.35  891.06  891.06  891.06  

5 1272.94  1272.94  1272.94  1145.64  1145.64  1145.64  

Table 2
Comparison of natural frequencies of a cracked nanorod (GHz).

Mode C
Fixed-Fixed Fixed-Free

Present Ref. [39] Present Ref. [39] 

1
0 71.8441 71.8441 35.9220  35.9250  

1  71.8441  71.8441  22.8006  22.8006  

2
0  143.6881  143.6881  107.7661  107.7661  

1  89.0891  89.0891  81.2154  81.2154  

3
0  215.5322  215.5323  179.6102  179.6103  

1  215.5322  215.5260  149.0046  149.0039  

4
0 287.3763 287.3445  251.4543  251.4635  

1 222.7173 222.7094  219.1817  219.1746  

Next, the effects of some parameters on the natural frequency of cracked nanorods are investigated. In all 
following case studies, the mechanical surface and bulk properties are considered as presented in Table 3.

Table 3
Material properties of cracked nanorod.

Material property E (GPa) μs (N/m) λs (N/m) ρ (kg/m3) ρs (kg/m3) τs (N/m)

Aluminum 70 -0.8269 6.8420 2700 5.46×10-7 0.5689

Silicon 210 -2.7779 -5.0985 2370 3.17×10-7 0.6056
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It should be noted that the following abbreviations are used in the figures and tables:

FR =
classical frequency
classical frequency

FR-μs&λs =
Frequency with surface Lamé, no crack
classical frequency

FR-ρs =
Frequency with surface density, no crack
classical frequency

FR-μs&λs-ρs =
Frequency with surface Lamé and surface density, no crack
classical frequency

FR-C =
Frequency without surface effect, having crack
classical frequency

FR-C-μs&λs =
Frequency with surface Lamé, having crack
classical frequency

FR-C-ρs =
Frequency with surface density, having crack
classical frequency

FR-C-μs&λs-ρs =
Frequency with surface Lamé and surface density, having crack
classical frequency

FR: Frequency ratio without surface effect, no crack
FR-μs&λs: Frequency ratio with surface Lamé, no crack
FR-ρs: Frequency ratio with surface density, no crack
FR-μs&λs-ρs: Frequency ratio with surface Lamé and surface density, no crack
FR-C: Frequency ratio without surface effect, having crack
FR-C-μs&λs: Frequency ratio with surface Lamé, having crack
FR-C-ρs: Frequency ratio with surface density, having crack
FR-C-μs&λs-ρs: Frequency ratio with surface Lamé and surface density, having crack

where the classical frequency is the one obtained without considering effects of the surface parameters and the 
crack. 

In order to study the effect of crack location on the natural frequency of nanorod, a cracked nanorod with fixed-
fixed and fixed-free boundary conditions, and L = 10 nm, R = 1 nm, and C = 2 is considered. 

The first three natural frequencies are depicted in Figs. 2 and 3 for fixed-fixed and fixed-free boundaries, 
respectively. Figs. 2 and 3 show that including the surface Lamé leads to increasing natural frequencies for the 
aluminum nanorod and decreasing natural frequencies for the silicon nanorod. This is explainable by referring to 
Table 3, where for aluminum the value of λs +2μs is positive while for silicon is negative. Generally, the figures 
show that for aluminum nanorods the sequence of presence of the curves from higher frequencies to lower ones is as 
FR-μs&λs, FR, FR-μs&λs-ρs, FR-ρs, FR-C-μs&λs, FR-C, FR-C-μs&λs-ρs, FR-C-ρs. For silicon nanorods, this 
sequence is as FR, FR-μs&λs, FR-ρs, FR-μs&λs-ρs, FR-C, FR-C-μs&λs, FR-C-ρs, FR-C-μs&λs-ρs. Note that the 
abovementioned sequence is observed for all modes of longitudinal vibration, where the first three modes are 
presented in Figs. 2 and 3, and other modes are not reported here for the sake of brevity. It is observed that the FR-
ρs is lower than FR, and FR-μs&λs-ρs is lower than FR-μs&λs for both aluminum and silicon nanorods. In other 
words, a decreasing effect of surface density on the frequency ratios of nanorods is seen. This is due to increasing 
the mass and the reverse effect of mass on natural frequencies. On the other hand, as noted above, including the 
surface Lamé leads to increasing natural frequencies for aluminum nanorods and decreasing natural frequencies for 
silicon nanorods. However, when the surface Lamé and surface density are included simultaneously, a decreasing 
effect on natural frequencies is observed for both materials. Besides, including cracks leads to a decrease in the 
natural frequencies. However, the sequence observed for cracked nanorods is the same as the one for nanorods 
without cracks, for both materials and two boundary conditions.
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Fig.2
First three longitudinal frequency ratios of aluminum and silicon nanorods with fixed-fixed boundary conditions for different 
crack locations.
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Fig.3
First three longitudinal frequency ratios of aluminum and silicon nanorods with fixed-free boundary conditions for different 
crack locations.

As shown in Figs. 2 and 3, the crack location has significant effects on the vibration behavior of nanorods. In 
Fig. 2 which is related to the fixed-fixed boundary condition, the symmetry is seen in results along crack location, 
which is because of the symmetry of the boundary condition. In this figure, the extremums are obtained for the 
frequencies by supposing the crack in the midsection of the nanorod in which these are maximum for the first and 
third modes and minimum for the second mode. However, for the second mode, there are maximums for crack 
locations of 0.2 and 0.8. Moreover, for the first and third modes, there are minimums at 0.3 and 0.7 crack locations.

On the other hand, Fig. 3 shows that as the crack is assumed to be near the fixed end, a larger decrease in the first 
natural frequency is observed than that closer to the free end. The reason is that as the crack location is closer to the 
fixed end the elastic strain energy of the cracked nanorod gradually decreases. However, for the second and third 
modes different trends are seen for changing crack location in nanorods. It is mainly because of the differences 
between these mode shapes for the fixed-free boundary condition. Moreover, the results show that for fixed-free 
nanorods the sequence of the presence of the frequency curves is the same as in fixed-fixed nanorods. It can be said 
that the effect of the surface energy is significant regardless of the type of boundary conditions.

To compare the effect of crack on the different modes of vibration, the frequency ratios for two different crack 
locations are listed in Table 4. The values in this table are presented for a better comparison of the effects of 
different parameters on the frequency ratios. As listed in Table 4, including crack leads to a decrease in the 
frequency ratios of nanorods. Note that the decreasing effect of the crack is due to the loss of rigidity of the 
structure; by decreasing the rigidity of the nanorod the frequency ratios decrease. As can be seen in Table 4,
including the crack in nanorod, there are different modes (mode 1 or 2) that are affected more than others, for 
different crack locations. However, the frequency ratios for all modes are equal when there is no crack in the 
nanorod. Also, it is observed that in the absence of a crack, the effect of the surface energy is the same for different 
types of boundary conditions.
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In another study, the effect of nanorod length is investigated. A cracked nanorod with fixed-fixed and fixed-free 
boundary conditions, R = 1 nm, C = 2, and LC = L/2 are considered. The first and second natural frequencies are 
depicted in Figs. 4-7 for aluminum and silicon nanorods with different boundary conditions.

Table 4
First five longitudinal frequency ratios of aluminum and silicon nanorods with fixed-fixed and fixed-free boundary conditions for 

two different crack positions.
Frequency 
ratio

Frequency 
number

Fixed-Fixed Fixed-Free

Aluminum Silicon Aluminum Silicon

Lc/L=0.1 Lc/L=0.5 Lc/L=0.1 Lc/L=0.5 Lc/L=0.2 Lc/L=0.7 Lc/L=0.2 Lc/L=0.7

FR-C Mode 1 0.638001 1.000000 0.638001 1.000000 0.452522 0.674934 0.452521 0.674934

Mode 2 0.848998 0.584607 0.848998 0.584607 0.862112 0.547989 0.862112 0.547989

Mode 3 0.932198 1.000000 0.932198 1.000000 1.000000 0.869945 1.000000 0.869945

Mode 4 0.975460 0.766465 0.975460 0.766465 0.748553 0.965305 0.748553 0.965305

Mode 5 1.000000 1.000000 1.000000 1.000000 0.837227 0.799069 0.837227 0.799069

FR-μs&λs-ρs Mode 1 0.904197 0.904197 0.841958 0.841958 0.904197 0.904197 0.841958 0.841958

Mode 2 0.904197 0.904197 0.841958 0.841958 0.904197 0.904197 0.841958 0.841958

Mode 3 0.904197 0.904197 0.841958 0.841958 0.904197 0.904197 0.841958 0.841958

Mode 4 0.904197 0.904197 0.841958 0.841958 0.904197 0.904197 0.841958 0.841958

Mode 5 0.904197 0.904197 0.841958 0.841958 0.904197 0.904197 0.841958 0.841958

FR-C-μs&λs-
ρs

Mode 1 0.568837 0.904197 0.543437 0.841958 0.386711 0.583477 0.397605 0.587209

Mode 2 0.765952 0.52015 0.716188 0.498836 0.776612 0.48709 0.728142 0.468137

Mode 3 0.842205 0.904197 0.785421 0.841958 0.904197 0.78518 0.841958 0.733599

Mode 4 0.881665 0.69116 0.821568 0.646848 0.673039 0.871484 0.633299 0.813799

Mode 5 0.904197 0.904197 0.841958 0.841958 0.756549 0.721786 0.705295 0.673399

As can be seen in Figs. 4-7, increasing the length of the nanorod leads to decreasing natural frequency. However, 
the frequency ratios are constant when the length of the nanorod increases. This is indicated that the amounts of 
changes in the nanorod frequencies caused by each surface energy parameter are the same for different lengths of 
nanorods. So, having the value of a frequency along with the frequency ratio for a distinct length of the nanorod, by 
using the frequency in other lengths, the frequency of the nanorod including any surface energy parameters can be 
determined. Again, the results show that the cracked nanorod is sensitive to surface energy parameters. For 
aluminum nanorods, including surface Lamé parameters leads the frequencies to increase. For other surface energy 
parameters, i.e. surface density and surface density together with surface Lamé leads the frequencies to decrease.  
This can be explained by considering that the surface Lamé affects the stiffness of the nanorod and surface density 
changes the nanorod mass. Any change in stiffness directly changes the natural frequencies. On the other hand, the 
mass has a reverse effect on the natural frequency of the nanorod. Moreover, except for 1st mode in Figs. 4 and 6 in 
which imposing a crack on the nanorod does not affect the frequency, the crack has a decreasing effect on the 
frequency and frequency ratio.
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Fig.4
First and second longitudinal frequencies and frequency ratios of aluminum nanorods with fixed-fixed boundary conditions 
for different lengths.

Fig.5
First and second longitudinal frequencies and frequency ratios of aluminum nanorods with fixed-free boundary conditions for 
different lengths.
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Fig.6
First and second longitudinal frequencies and frequency ratios of silicon nanorods with fixed-fixed boundary conditions for 
different lengths.

Fig.7
First and second longitudinal frequencies and frequency ratios of silicon nanorods with fixed-free boundary conditions for 
different lengths.

Another study has been done for different values of nanorod radius. A cracked nanorod with fixed-fixed and 
fixed-free boundary conditions, and L = 100 nm, C = 2, and LC = L/2 are considered. The first and second natural 
frequencies are depicted in Figs. 8 and 9 for aluminum and silicon nanorods with fixed-fixed and fixed-free 
boundary conditions, respectively.
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Fig.8
First and second longitudinal frequency ratios of aluminum and silicon nanorods with fixed-fixed boundary conditions for 
different radiuses.

Fig.9
First and second longitudinal frequency ratios of aluminum and silicon nanorods with fixed-free boundary conditions for 
different radiuses.

As shown in Figs. 8 and 9, the cracked nanorod is sensitive to surface energy parameters. However, increasing 
the radius of the nanorod leads to decreasing the effect of surface energy on frequency ratios. As before, for 
aluminum nanorods, including surface Lamé parameters leads the frequency ratios to increase. Including other 
surface energy parameters, i.e. surface density and surface density together with surface Lamé, leads the frequency 
ratios to decrease.  Again, the crack has a decreasing effect on the frequency ratio. Moreover, it can be seen that by 
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increasing the radius of the nanorod, the frequency ratio approaches the curve without including the surface effects. 
In other words, for nanorods with a large radius, the effect of the surface energy on frequency ratios is negligible.

The effects of crack severity parameter C, are investigated in a different study. To this end, variations of the first 
two longitudinal frequency ratios for cracked nanorods versus the crack severity parameter C are shown in Figs. 10 
and 11 for different boundary conditions and L = 10 nm, R = 1 nm, and LC = L/2.

Fig.10
First and second longitudinal frequency ratios of aluminum and silicon nanorods with fixed-fixed boundary conditions for 
different crack severities.

Fig.11
First and second longitudinal frequency ratios of aluminum and silicon nanorods with fixed-free boundary conditions for 
different crack severities.
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Figures 10 and 11 illustrate that the effect of the surface energy on the longitudinal frequency ratios is 
independent of the crack severity, but the effect of the crack on longitudinal frequency ratios intensively depends on 
the crack severity. By increasing the crack severity, the frequency ratios are decreased. Besides, Figs. 10 and 11 
show that for silicon nanorods both surface energy and crack have decreasing effects. Meanwhile for aluminum 
nanorods, including surface Lamé parameters leads the frequency ratios to increase but including crack leads the 
frequency ratios to decrease. So as can be seen in these figures, there is a crack severity value in which the 
increasing effect of surface energy and decreasing effect of crack, cancel out each other and consequently, the 
frequency remains unchanged. We name this value as special crack severity C*. In the case of the mentioned 
cracked nanorod, the C* is obtained for different crack locations and the result is depicted in Fig. 12 for the first two 
modes and different boundary conditions.

4   CONCLUSIONS   

The free longitudinal vibration of nanorods in the presence of the crack is studied analytically based on the surface 
elasticity theory. Governing differential equation of motion and corresponding boundary conditions of cracked 
nanorods are obtained using Hamilton’s principle. Due to considering the surface stress effect as well as the surface 
density and the surface Lamé constants the obtained governing equation of motion becomes non-homogeneous. The 
non-homogeneous governing equation is solved using appropriate analytical methods and natural frequencies are 
extracted. This research can pave the way for other researchers to better examine issues such as the effect of the type 
of material (functionally graded, etc.), the type of environment in which the structure is placed (elastic substrate or 
under the influence of temperature or magnetic environment), or even the type of problem (non-linearity). Based on 
this study, the following are concluded:

- In the presence of surface energy parameters, the crack location has significant effects on the vibration 
behavior of nanorods.

- The crack has a decreasing effect on the frequency ratios of nanorods.
- Including the crack in nanorod, the first or second mode of vibration is affected more than others, for 

different crack locations.
- Increasing the radius of nanorod leads to decreasing the effect of surface energy on frequency ratios.
- The effect of the surface energy on the longitudinal frequency ratios is independent of the crack severity.
- The effect of the crack on longitudinal frequency ratios intensively depends on the crack severity; by 

increasing the crack severity the frequency ratios are decreased.
- Surface density, has a decreasing effect on frequency ratios of nanorods. However, surface Lamé may have 

a decreasing or increasing effect on the frequency ratios of nanorods.
- For silicon nanorods, both surface energy and crack have decreasing effects. Meanwhile for aluminum 

nanorods, including surface Lamé parameters leads the frequency ratios to increase but including crack 
leads the frequency ratios to decrease.

- There is a crack severity value in which the increasing effect of surface energy and decreasing effect of 
crack, cancel out each other and consequently, the frequency remains unchanged.

Fig.12
Special crack severity for unchanging the first and second longitudinal frequencies, for aluminum cracked nanorods with 
fixed-fixed and fixed-free boundary conditions for different crack locations.
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