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 ABSTRACT 

 In this paper, dynamic behaviour of composite tube equipped with 

piezoelectric actuator ring and conveying fluid flow is studied. The 

effects of incompressible Newtonian internal fluid flow with 

constant velocity are considered. The stiffened composite shell with 

different boundary conditions is exposed to electro- mechanical 

loading. The governing equations of motion are obtained based on 

the classical shell theory and using Hamilton’s principle. Then, 

these equations are discretized by using differential quadrature (DQ) 

method in longitudinal direction and harmonic differential 

quadrature (HDQ) method in circumferential direction. Solving 

these equations results in eigenvalues and mode shapes of the smart 

pipe conveying fluid. After comparing results with those existing in 

the literature, the detailed parametric study is conducted, by 

concentrating on the effects of fluid flow properties, geometry, 

material and boundary conditions of composite pipe, temperature, 

and piezo-actuator ring (size and position) on the vibration behavior 

of the coupled system, as well as dimensionless critical fluid 

velocity. It is expected that stability of the coupled system strongly 

depends on the imposed electric load. The present study can be 

applied for optimum design of sensors and actuators in active 

control systems, MEMS and biomechanical applications.  
                                   © 2023 IAU, Arak Branch.All rights reserved. 

 Keywords : Composite pipe; Piezoelectric ring; Instability; Critical 

fluid velocity; Differential quadrature method. 

1    INTRODUCTION 

MART composite tubes have increasingly been used for transferring fluids in fuel and gas injectors, ink jet 

printer industries and even in medical applications, like artificial veins. Furthermore, cylindrical shells 

containing fluid flow have a lot of use in industrial systems like airplane motor, nuclear reactors, heat exchangers, 

fuel pipes and vessels. So, studying dynamic response of cylindrical laminated shells conveying fluid is very 

important in designing smart tubes. In 1998 Faria and Almeida [1], studied dynamic and static response of 
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composite cylindrical shells equipped with piezoelectric ring. They solved equations of motion using finite element 

method and showed that piezo-actuators can have determining effects on static deformation and frequencies of 

pipes. In 2003 Zhang, Gorman and Reese [2] studied vibrations of cylindrical shell with Sanders theory and solved 

equations of motion with finite element method and studied the effects of internal pressure, fluid velocity and 

geometry of shell on vibrations of tubes. In 2004 Civalek [3] studied Application of Differential quadrature method 

and harmonic differential quadrature method for buckling analysis of thin isotropic plates and showed that harmonic 

differential quadrature method is more accurate than differential quadrature method. In 2004, Reddy and Wang [4] 

investigated dynamic response of fluid conveying pipes by using imaginary displacement method considering 

nonlinear terms with Euler Bernoulli and Timoshenko beam. They solved equations of motion with finite element 

method. Dynamic behaviour of laminated composite cylindrical shells has been studied by Saviz et al. [5], using 

layerwise shell theory for a layered composite cylindrical shell with piezoelectric rings. In 2010, Karagiozis, 

Amabili and Paidoussis[6] studied dynamic response of harmonically excited circular cylindrical shells containing 

fluid flow with considering nonlinear terms for clamped- simple boundary conditions and showed that vibrations of 

shell could be periodic or chaotic depending on velocity of fluid and frequency of excitation. In 2011, Bochkarev 

and Matveenko [7] studied natural vibrations of shells containing fluid flow using classic shell theory and solved 

equations of motion with finite element method for different boundary conditions and concluded that boundary 

conditions have large effect on natural frequency also thy showed that increasing length of pipe, decreases natural 

frequency. In 2012, Jannesari, Emami and Karimpour [8] studied effects of fluid viscosity on instability of carbon 

nanotubes containing fluid with nonlinear Donnell’s theory and concluded that effect of viscosity depends on tubes 

diameter and that it can’t be neglected for every diameter. In 2014 Ke, Wang and Reddy [9] studied thermo electro 

mechanical vibration of cylindrical Nano shells under various boundary conditions by using Lave theory. They 

solved equations of motion with differential quadrature method for different boundary conditions and studied effects 

of temperature, voltage, radius to thickness ratio and length to radius ratio on natural frequency. In 2016, Maalawi 

et. Al. [10] studied and designed composite pipes conveying fluid to improved stability characteristics and showed 

that geometric parameters have great influences on instability of tubes. 

In this paper, dynamic behavior of composite tube with incompressible Newtonian fluid flow is studied. There 

are few papers in which the tube is considered to be a Piezo-Composite. However, for the first time, the composite 

pipe with internal flow and stiffened with piezoelectric actuator rings is under investigation. The classical shell 

theory (Love-Kirchhoff hypothesis) is used for modeling kinematics of thin composite shell and the equations of 

motion are obtained using Hamilton’s principle. Then, these equations are discretized by using differential 

quadrature (DQ) method in axial direction and harmonic differential quadrature (HDQ) method in peripheral 

direction. The resulting equations are used to calculate the eigenvalues and eigenvectors of fluid conveying smart 

pipes. After making verifications about the accuracy of some results, the effects of different parameters of fluid flow 

(viscosity, density and velocity), composite tube (geometry, number and orientation of layers and boundary 

conditions), and piezo-actuator ring (length and place of ring, and applied voltage) on shell natural frequency and 

dimensionless critical fluid velocity are studied.  

2    FORMULATION  

A schematic configuration of pipe and polar coordinate system is shown in Fig. 1. Based on the classical shell 

theory, the displacement field can be expressed as: 

 

   

   

   

1

1

1


   




   



  

w
u x , , z ,t u x , ,t z

x

w
v x , , z ,t v x , ,t z

w x , , z ,t w x , ,t

 
(1) 

 
where u1, v1, w1 denote the displacement of an arbitrary point of tube and u, v and w are displacements of mid-plane 

of tube (z=0).  
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Fig.1 

Configuration of composite pipe equipped with piezoelectric 

ring actuator. 

 

The linear von karman strain field could be expressed in the following form: 
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In which, 
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The piezo-ring is considered only as actuator, so that, there is a one way coupling between elastic and electrical 

fields as well as thermal field. The constitutive equations for stresses and strains in the presence of thermal and 

electrical field could be written as, [11] 
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where eij are the piezoelectric constants and Qij are the elastic constants of kth layer, given as follows: 
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Stress resultant- strain relations can be written as: 
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Eqs. 6 and 7 can be written in matrix form as: 
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where, the components of sub-matrices are given as follows,  
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(10) 

3    ENERGY METHOD  

The strain energy of the composite pipe can be written as [13] 
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Combining Eq. (11) with strain- displacement relations (Eq. (3)) yields 
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By integrating through thickness the potential energy is written as: 
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The kinetic energy of the pipe is written as, [13] 
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Combining Eq. (14) with strain- displacement relations (Eq. (3)) yields 
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Strain energy of a typical piezoelectric actuator ring is as follows: 
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Kinetic energy of piezoelectric ring is written as: 
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where, H is Heaviside function which is defined as: 
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The constant electric field can be applied only in the radial direction to the ring. 

4    EXTERNAL WORK DONE BY FLUID FLOW   

By assuming the Newtonian fluid, the governing equation of the fluid can be described by the well-known Navier-

Stokes equation as: 

 

2    
dV

P V F
dt

   (19a) 

 
where V=(vx,vθ,vz) is the flow velocity vector in cylindrical coordinate system with components in longitudinal x, 

circumferential and radial z directions. Also, P,  and f  are the pressure, viscosity and  density of the fluid, 

respectively and Fbody  denotes the body forces. In Navier-Stokes equation, the total derivative operator with respect 

to t  is 

 



317                              M. Nazarzadeh Ansarodi
 
et.al. 

 
 

Journal of Solid Mechanics Vol. 15, No. 3 (2023) 
© 2023 IAU, Arak Branch 
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Uf  is the fluid velocity and u,v,w are displacements of mid-plane. By neglecting nonlinear terms, the 

components of the Navier-stocks equation can be written in terms of flow velocity and fluid mass mf , [14] 

 
2 2 3 2

2

2 2 2

3 3 3 3

2 3 2 2 2 2

1

    
    

     

   
   

      

f f f f f f f

f

f f f f f

p w w w w
.A m m U A m U

z x tt x t x

Uw w w w
A U A A A

x t x R t R x



   
 

 (20) 

 
2 2 3 3

2 2 2 2

1    
    

      
f f f f f f

p v u u u
.A m m U A A

x x tt x t R t
 


 (21) 

 
2 2 3 3

2 2 2 2

1 1    
    

      
f f f f f f

p v v v v
.A m m U A A

R x tt x t R t
 

 
 (22) 

 

Finally, the external work due to the pressure of the fluid flow may be obtained as follows: 
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5    HAMILTON’S PRINCIPLE  

Governing equations could be derived by using Hamilton’s principal as follows: 
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In which K, U and V were previously derived. Finally, the equations of motion are obtained as: 
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6    DIFFERNTIAL QUADRATURE METHOD    

Numerical methods like finite element, Ritz, boundary element could have given accurate enough results, in case of 

taking sufficient number of mesh points into account. One of the numerical methods which deliver good results is 

differential quadrature method. Main relations of this method in two dimensional form are, [3] 
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where Nx and N are the total number of spatial sampling points of the grid distribution in the axial and 

circumferential directions, respectively. Aik and Bjl correspond to the weighting coefficients, which can be evaluated 

for the first and second order derivatives, as follows: 
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M and P are define as: 
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It is well known that the use of a grid distribution, which is denser on the boundaries, gives much better results in 

comparison with a uniform distribution in DQ analysis. Therefore, Chebyshev–Gauss–Labatto grid distribution is 

used to discretize the spatial coordinates as: 
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The grid distribution is presented in Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Chebyshev grid distribution for DQM. 

 

By applying differential quadrature Eqs. (27-35) to Eqs. ( 24- 26), system of governing equations would emerge 

in the following matrix form 
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The general solution of the system of equations 36 is considered in the following harmonic form 
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     expy y t                                 (37) 

 

Substituting Eq. (37) into Eq. (36), yields  
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To have non definite solution, one should solve the following equation 
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By solving Eq. (39), the eigenvalues and eigenvectors will be obtained. 

7    BOUNDARY CONDITIONS  

Boundary conditions of clamped end of shell is considered as: 
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On the other hand, boundary conditions of simple end is  
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Using differential quadrature method, boundary conditions for clamped- clamped tube is defined as: 
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Boundary conditions for simple- simple tube is defined as: 
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Boundary conditions for clamped- simple tube is defined as: 
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8    VALIDATION  

For validation purpose, the fundamental frequency results of cylindrical shell with 11 22/ 40E E  , 12 0.25 
 
and 

12 22/ 0.5G E   for  [45/-45] layer orientation, clamped-clamped ends, and different length and thickness ratios  are 

compared with the results of shu [15], in table 1. It is seen that the deviations of results with those given in this paper 

are not significant. 

 
Table 1 

 Natural dimensionless frequency of clamped- clamped shell. 

L/R=20 L/R=10 L/R=5 L/R=2 L/R=1   

0.0591 0.1138 0.2035 0.3984 0.6925 Present h/R=0.01 
0.0590 0.1131 0.2028 0.3493 0.6867 Shu 

0.0766 0.1395 0.2484 0.5111 0.9520 Present h/R =0.02 
0.0754 0.1385 0.2440 0.5020 0.9378 Shu 

0.0992 0.1539 0.2910 0.5951 1.1698 Present h/R =0.03 
0.0968 0.1510 0.2842 0.5811 1.1469 Shu 

0.1008 0.1720 0.3039 0.6578 1.3932 Present h/R =0.04 
0.1003 0.1670 0.2945 0.6377 1.3582 Shu 

0.1011 0.1928 0.3193 0.7289 1.6016 Present h/R =0.05 
0.1001 0.1855 0.3071 0.7014 1.5579 Shu 

 

The dimensionless frequency and flow velocity are defined as follows: 
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9    RESULTS AND DISCUSSION   

Hereafter, imaginary part of the eigenvalues denotes the natural frequency and the real part designates oscillation 

frequency of the roots of eigen-Eq. (39). In Fig. 3, Real and Imaginary parts of calculated eigenvalues for a four 
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layer composite tube with layer properties and dimensions given in Table 2, and stacking sequence [0/90]s 

conveying fluid flow, with two boundary conditions (clamped and simple ends) are compared.  

 
Table 2 

Material properties and dimensions of tube, Type 1. 

E1 =200 GPa E1 =20 GPa υ12 =0.25 G12 =6 GPa L=2 m R=0.1 m ρ=2000 kg/m3 

 

The natural frequencies are represented by imaginary parts of the first mode eigenvalues. It is seen that for low 

flow velocities, the real part is zero, however, by increasing the flow velocity, at V=3.1 and 6.2 (respectively for 

simple and clamped ends) the real part emerges, starting the pitchfork bifurcation instability and the imaginary parts 

of roots of eigen-equation become negative, indicating the forces exerted by flow and acceleration are not balanced 

by internal/ structural damping of system. Also, both the dimensionless critical flow velocity and oscillation 

frequencies are larger for tube with clamped boundary conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Comparing Root locus for two boundary conditions. 

 

In Fig. 4, the vibration mode effect is studied. The calculated frequencies of composite tube with simple-simple 

boundary conditions and [0/90]s layer orientation is plotted for three lowest modes and different dimensionless flow 

velocities up to 10 . According to real part, the roots become linearly unstable as soon as one of the displacement 

modes has a positive growth rate (Re > 0). This happens at faster flow speed for higher modes. The imaginary parts 

of higher modes show different behavior from the fundamental mode in terms of frequency. On the whole, the 

equilibrium position of tube loses stability by flutter at V= 3.1, 6.2 and 9.5, for the three lowest modes, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Comparing the effects of three lowest modes. 
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In Fig. 5, the effect of number of layers on frequency and attenuation of the response are studied for composite 

tube with [0/90]s and [45/-45]s patterns of lamination and simple- simple boundary conditions. It is expected that 

increasing the number of layers, causes an escalation in bending stiffness and therefore natural frequency, but has no 

effect on dimensionless critical flow velocity.  

 

  
Fig.5 

Effect of number of layers. 

 

 

In Fig. 6, fundamental frequencies of composite tube with simple- simple boundary conditions for different fiber 

orientations are shown. It is seen that fiber angle has no effect on dimensionless critical velocity of fluid, but it could 

change the values of natural frequencies. The cross-ply causes higher stiffness than the other two angle ply.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Effect of angle of fibers. 

 

In Fig. 7, eigenvalue variations of the previously used composite tube with simple- simple ends, and layer 

orientation of [0/90]s are compared with those of a more flexible composite material type given in Table 3. It is 

obvious that type of composite has no effect on dimensionless critical velocity but has significant effects on 

oscillations frequency. 

 
 

Table 3 

Material properties and dimensions of tube, Type 2. 

E1 =145 GPa E1 =10 GPa υ12 =0.3 G12 =4 GPa L=2 m R=0.1 m ρ=2000 kg/m3 
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Fig.7 

Effect of types of composite. 

 

In Fig. 8, the effects of fluid density is illustrated for composite tube type 1 with simple- simple boundary 

conditions, and [0/90]s layer orientation. It is seen that density of fluid has no effect on dimensionless critical 

velocity of fluid, but has sufficient effect on dynamic behavior of system. Increasing density of fluid causes decline 

in vibration frequency at higher velocities, while this takes place for natural frequency when fluid moves slower. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effect of fluid density. 

 

In Fig. 9, effect of temperature gradient between pipe and environment on frequency of composite tube type 1, 

with layer orientation of [0/90]s, and simple- simple boundary conditions is shown. By increasing temperature of 

pipe, dimensionless critical flow velocity reduces, on the other hand, thermal stress acts as compression force on 

shell, resulting a change in stiffness of tube and lower natural frequency for warmer tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effects of temperature tension. 
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In Fig. 10, the effect of applied voltage to ring piezoelectric actuator is studied. Tube is considered as composite 

type 1 with stacking [0/90]s, and simple- simple boundary conditions. Piezoelectric ring actuator is placed at the 

middle of tube. The length of ring is taken one quarter the tube length. The piezoelectric material is considered 

isotropic PZT-5H with the material properties given in Table 4.  

 
Table 4 

Material properties of PZT-5H. 

E1  GPa 61 

E2  GPa 61 

υ12 0.31 

d31  C/m2 274×10-12 

d32  C/m2 235×10-12 

ρ  Kg/m3 7200 

 

The maximum applied voltage in radial direction is 200 mV, below the actuation saturation limit. It is shown that 

applying voltage to ring piezoelectric actuator induces bending stiffness in the shell and therefore gives rise to 

divergence or flutter-type instability and natural frequency of system is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Effect of applying voltage to ring piezoelectric actuator. 

 

In Fig. 11, effects of piezoelectric ring actuator length is studied for three length ratios (a/L). The ring is attached 

on the middle of the tube and a 200 mV voltage is applied to it. As it is expected, by increasing the length of piezo-

ring, dimensionless critical flow velocity and natural frequency tend to increase proportionally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Effect of length of piezoelectric ring actuator. 
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10    CONCLUSIONS 

An electro-thermo-mechanical theoretical analysis for vibration of composite tube conveying fluid equipped with 

piezoelectric ring is developed. The following conclusions are obtained in this study: 

- Dimensionless critical flow velocity in clamped- clamped pipes is greater than simple- simple supported 

pipes with the same properties. 

- Regarding fluid flow effects, it has been shown that the fluid flow rate is basically an effective factor on 

decreasing natural frequency leading to flutter of the tube. 

- Increasing density of fluid causes decrease in natural and oscillatory frequencies, but it has no effect on 

dimensionless critical velocity. 

- Critical flow velocity in pipes with higher temperature is lower, as well as their natural frequency.  

- It is inferred that stability of the system is strongly dependent on the electric field so that increasing the 

imposed positive electric potential to piezoelectric ring significantly increases the stability of the system. 

- Applying the electro-thermal field is the most effective parameter in avoiding the dynamic instability of the 

composite fluid carrying pipe. 
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