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 ABSTRACT 

 The dimensionless equations of motion are derived based on the 

Timoshenko beam theory to study the transverse vibration of beams 

without further usage of any approximate method. The exact closed 

form characteristic equations are given within the validity of the 

Timoshenko beam theory for beams having various boundary 

conditions. Accurate Eigen frequency parameters are presented for a 

different length to height ratio for each case. The exact closed form 

mode shapes related to deflection, slope due to bending and stress 

resultants are also presented and illustrated for some cases. The 

modal tests are performed for beams with clamped-Free and Free-

Free boundary conditions. Finally, the effect of boundary 

conditions, length to height ratio on the eigenvalues parameters and 

vibratory behavior of each distinct case are studied. Validity of the 

derived closed form characteristic equations are checked through 

comparison of numerical solutions with the available results. It is 

believed that in the present work, the exact closed form 

characteristic equations and their associated Eigen functions, except 

for the beams with simply supported ends, for the rest of considered 

cases are obtained for the first time.                  

                                   © 2023 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

EAMS are known as extremely important structural elements due to their widely applications in many 

branches of modern technology pertaining to aerospace, mechanical, marine, nuclear and civil engineering. 

Moreover whole or part of structural components like ship hull, turbine blades, long span bridges, robot arms, and 

cantilever of atomic force microscopic (AFM) may be modeled with beam-like elements. Thus, the knowledge of 

their free vibrational behavior is very important to the structural designers. Beam vibrations described by the Euler- 

Bernoulli beam theory having various boundary conditions have been studied over the years by many researchers 
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Rao [1] and Craig and Kurdila [2]. The well-known classical or Euler- Bernoulli beam theory disregards the effect 

of the transverse shear deformation and rotatory inertia. As a result the Euler- Bernoulli beam theory underestimates 

deflections and overestimates the natural frequencies. Improving on the elementary beam theory Timoshenko [3, 4] 

was the first to include effects of rotatory inertia and shear deformation in the beam theory. The first-order shear 

deformation beam theory of Timoshenko, however, requires a shear correction factor to compensate the error 

resulting from the approximation made on the non-uniform shear strain distribution. Recent investigation in this 

regard is given by Freund and Karakoc [5] by taking into account the warping of cross section for rectangle, open 

annular, and angle cross sections. Beam vibrations described by the Timoshenko model have been represented using 

several different approaches over the years. Cowper [6] studied the accuracy of Timoshenko beam theory for 

transverse vibrations of simply supported beam in respect of the fundamental frequency with a plane stress exact 

elasticity solution. Turgut Kocaturk and Mesut Simse [7] investigated the free vibration characteristics of 

Timoshenko rectangular beams, by using the Lagrange equations. They expressed trial functions denoting the 

deflection and the rotation of the cross-section of the beam in the polynomial form. Lee and Schultz [8] treated the 

eigenvalue analysis of Timoshenko beams and axisymmetric circular Mindlin plates by applying the Chebyshev 

pseudo spectral method. Clamped, Simply supported, free and sliding boundary condition of Timoshenko beams are 

treated. Civalek and Kiracioglu [9] used the discrete singular convolution method (DSC) for numerical solution of 

equation of motion of Timoshenko beam. They reported numerical results for first six frequency of clamped-

clamped and simply supported- simply supported beam. Other works of interest are Avcar [10] and Sayyad [11]. 

The present paper is part of a large study of the transverse vibration analysis of Euler- Bernoulli and Timoshenko 

beams with classic and non-classic boundary conditions. Hosseini Hashemi [12]. The exact closed form 

characteristic equations for Euler- Bernoulli beam having classical boundary conditions namely Clamped-Clamped 

(C-C), Clamped-Simply (C-S), Simply-Simply (S-S), Clamped-Free (C-F), Simply-Free (S-F) and Free-Free (F-F) 

may be found in many books [5,6]. No such equations about Timoshenko beam except for the case of (S-S) are 

available in the literature. To fill this apparent void the present work is carried out to provide the exact characteristic 

equations for Timoshenko beam having classical boundary conditions. The integrated equations of motion in terms 

of the stress resultant are derived based on Timoshenko beam theory. The dimensionless frequency parameters 

calculated from the exact characteristic equations are tabulated for all considered cases, covering wide ranges of 

thickness to length ratio  .  

These results may serve as benchmark solution for validating approximate methods and new computational 

techniques in future. The mode shapes related to transverse deflection, slope due to bending and stress resultants are 

also given in closed form equations and illustrated for some cases. Finally to validate the accuracy of numerical 

results comparison with the available results in literature are made. Modal tests are also carried out for C-F and F-F 

beams. 

2    MATHEMATICAL FORMULATIONS 

Consider a Timoshenko beam of length l, width b, and uniform thickness h, oriented so that its un-deformed middle 

surface contains the 
1

x  and 
2

x  axis of a Cartesian co-ordinate system 
1 2 3
, )( ,x x x , as shown in Fig. 1. 

 

 

 

 

 

 

 

Fig.1 

A Timoshenko beam with co-ordinate convention. 

 

The displacements along the 
1

x and 
2

x  axes are denoted by 
1

U  and 
2

U , respectively, while the displacement 

in the direction perpendicular to the un-deformed middle surface is denoted by 
3

U . In the Timoshenko beam theory, 

the displacement components are assumed to be given by 

 

1 13 2 3
, ,    0,    ,

1
U x x t U U w x t

   
   
   
   

     (1) 



Exact Closed Form Characteristic Equations for Transverse ….                                 290 
 

Journal of Solid Mechanics Vol. 15, No. 3 (2023) 
                                                                                                                    © 2023 IAU, Arak Branch 

where t is the time, w is the transverse displacement, and   is the slope due to bending alone. Using the 

displacement field given in Eq. (1), the tonsorial components of the strains may be expressed as: 

 

 ;

1
     0;    0;    0; ;      0;

11 3 ,1 22 33 12 13 ,1 232
x w          (2) 

 

Based on the strain–displacement relations given in Eqs. (2) and assuming a stress distribution in accordance 

with Hook's law, the resultant bending moment and the transverse shear force, in terms of w, and   are obtained by 

integrating the shear stress and moment of the axial stress through the cross-section area of the beam. These are 

given by 

 

( )
13 ,1

Q dA GA w
A
      

11 3 ,1
M x dA EI

A
     

(3) 

where / 2(1 )G E    is the shear modulus, v is the Poisson's ratio and k is the shear correction factor to account 

for the fact that the transverse shear strains are not truly independent of the thickness coordinate. The governing 

equations of motion may now be derived from the two-dimensional stress equations of motion which are written as 

the governing equations of motion may now be derived from the two-dimensional stress equations of motion which 

are written as: 

 

11,1 13,3 1
U     

31,1 33,3 3
U     

(4) 

 

where   is the mass density per unit volume. The first equation is multiplied by 
3 3

bx dx  and then integrated 

through the thickness of the beam, making use of Eqs. (3) and the fact that there is no shear force applied to the top 

and bottom of the beam, while the second equation is multiplied by 
3

bdx  and integrated through the thickness of 

the beam, making use of the fact that 

 

/ 2
( , )

/ 1233

h
b P tx

h
 


 (5) 

 

where P is the applied load per unit length. Thus, the integrated equations of motion are given by 

 

,1
M Q I    

,1
Q P Aw   

(6) 

 

Assuming the free harmonic motion as: 

 

   

   

   

   

;

;

.

ˆ,
1 1

ˆ,
1 1

ˆ,
1 1

ˆ,
1 1

;i tM x t M x e

i tQ x t Q x e

i tw x t w x e

i tx t x e







 









 
(7) 

 

The integrated equations of motion in absence of the applied load and the stress resultants may be written as: 
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2ˆˆ ˆ
,1

M Q I      

2ˆ ˆ
,1

Q A w    
(8) 

 

It should be emphasize that in all above equations the comma-subscript convention represents the differentiation 

with respect to the 
1

x  coordinate. For generality and convenience, the 
1

x  coordinate is normalized with respect to 

the beam length and the following dimensionless terms are introduced 

 

ˆ1 ,       ,       ˆ
x w

X w
l l

     (9) 

 

The stress resultants may then be written in dimensionless form as: 

 

;

.

ˆ

ˆ

,1

,1

Ml
M

EI

Q
Q w

GA








  



 (10) 

 

Substitution of the dimensionless stress resultants from expressions (10) into Eqs. (8) leads to 

 

 2 1 0
,11 ,1

w       

 
(11a) 

2 0
,11 ,1

w w     (11b) 

 

where comma-subscript convention in Eqs. (10) and (11) represents the differentiation with respect to the 

normalized coordinate and 

 

   

2 2 4 12 2,    ,   
12

,
12

EI A l h

G EI l

  
    


     (12) 

 

are dimensionless parameters. The equations of motion are coupled in w  and .   In order to derive a single 

uncouple equation in term of w , the first equation is differentiated with respect to normalized coordinate X and 

second one rearranged to give 

 

 2 1 0
,111 ,11 ,1

w      (13a) 

 

2
,1 ,11

w w   (13b) 

 

Using Eq. (13b) to eliminate   from Eq. (13a), one obtains the fourth order equation as: 

 

 2 2 2 1 0
,1111 ,

(
1

)
1

w w w         (14) 

 

Also differentiating Eq. (11b) with respect to X  and substituting into Eq. (11a) leads to 

 

1 2 2(1
,111 ,121

)w w  
 




  
  

 (15) 
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The solution to Eq. (14) may be expressed in the form 

 

  Xw X e  (16) 

 

Substitution of Eq (16) into Eq. (14) yields the eigenvalue equation 

 

   4 2 2 2 21 0.            (17) 

 

 The roots of this quadratic equation are 

 

   
22 4 242

2

      


    
  (18) 

 

The eigenvalue equation has one positive and one negative root under the condition 

 

   
22 4 24 .           (19) 

 

As a result the roots may be given in the form 

 

   

1
21 22 4 24

1, 1
,

2
         

 
         

 (20a) 

    .

1
21 22 4 24

2 2 2
,i        

 
        

 (20b) 

 

 
     2 2 2 2 2 21 sinh cosh 1 sin cos

1 1 1 1 2 1 2 2 3 2 4 2
C X C X C X C X

X
S

           



      

  (21a) 

 

 
     2 2 2 2 2 2 2 21 cosh sinh 1 cos sin

1 1 1 1 2 1 2 2 3 2 4 2
C X C X C X C X

M X
S

                 

  (21b) 

 

 
     2 2 2 2 2 2sinh cosh sin cos

1 1 1 1 2 1 2 2 3 2 4 2
C X C X C X C X

Q X
S

                     

   (21c) 

 

where 
 

2.1S    (22) 

2.1 Boundary conditions 

The boundary conditions are represented as follows: 

Fixed or clamped end ( 0X X
i

   or 1)X X
i

   

 

( ) 0 ( ) 0.,w X X
i i

   (23a) 

 

Simply supported end  ( 1 0X X or X X
i i

    ) 
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( ) 0, ( ) 0.w MX X
i i

   (23b) 

 

Free end ( 0X X
i

   or 1)X X
i

   

 

( ) 0, ( ) 0.M QX X
i i

   (23c) 

2.2 Relevant closed equations 

Substituting appropriate Eqs. (21a-d) into the four appropriate boundary conditions at the ends 0X   and 1,X   
lead to a characteristic determinant of fourth order. Expanding the determinant and collecting terms yields a 

characteristic equation. The characteristic equations for all considered cases are listed below 

Case 1. C–C 

 

   2 2 2 2 sin sinh 2 1 cos cosh 0
1 1 2 2 2 1 1 2 1 2 2 1

R R R R            (24) 

 

where 

 

2 2 21
1 1

R       

2 2 21
2 2

R       

(25) 

 

Case 2. C–S 

 

tanh cot 0
1 1 2 2 1 2

R R      (26) 

 

Case 3. S–S 

 

sin sinh 0.
2 1

    (27) 

  

Find these rigid body modes one may substitutes 0   into Eq. (14) and then solve the resultant differential 

equations for each relevant boundary conditions. As a result the normalized rigid body modes for F-F beam may be 

written as the general solution to Eqs. (14) and (15) can now be written as: 

Case 4. C–F 

 
2 2 2 2 cos cosh 2 sin sinh

2 1 1 1 2 2 2 1 1 2 1 2 1 2 2 1

2 2 0
1 2 1 1 2 2

R S R R S R R R R R S

R R R S R S

       

 

      
            

    
        

     

    

 

(28) 

 

Case 5. S–F 

 

    .tan tanh 0
1 2 2 2 2 1 1 1

R S R R S R        (29) 

 

Case 6. F–F 

 

          2 2 2 2 2 2 2 22 1 cos cosh 2 2 sin sinh 0
1 2 1 2 1 2 2 1 2 2 1 1 1 2 1 2 1 2 2 1

R S R S R R R S R S R S R S R R         
 

          
 

 (30) 
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3    NUMERICAL RESULTS 

A Mathematica code is used to calculate the frequency parameters of characteristic equations given by Eqs. (24-30). 

The square roots of first three dimensionless frequency are listed in Tables 1-6 for C-C, C-S, S-S, C-F, S-F and F-F 

boundary conditions. The mode numbers are arranged according to the number of nodes, so that what is so called the 

nth mode, having n-1 nodes. The mode shapes may also be solved for each dimensionless natural frequencies 

through given closed form relations. The dimensionless natural frequencies are calculated for different thickness-to-

length ratios 0.01   to 0.2  throughout the Tables 1-6, Poisson's ratio and the shear correction factor of the beam 

are 0.3   and 5/ 6   respectively. The solutions based on the Euler-Bernoulli beam theory, Blevins [13], are 

also added to the tables for comparison. The results show that the Timoshenko beam results are very close to the 

Euler-Bernoulli results when  is less than 0.01. This can also be observed in Fig.2. As   increases, however, the 

computed dimensionless frequencies tend to show some quantitative differences from the Euler-Bernoulli results. 

These results decreases as   increases which in turn states what is known over prediction of results by classical 

theory. Moreover the difference of the value of the eigenvalue of the classical beam theory and the Timoshenko 

beam theory increases for increasing mode numbers. Careful observation of Tables 1-6 revels that the lowest and 

highest values of frequency parameters correspond to F-F and C–C cases, respectively. Fig. 3 shows that for a fixed 

 , the first six dimensionless frequencies for C-C beam are higher than those given for F-F beam. This observation 

remains an alter as boundary conditions changes from C-C to C-S, C-S to S-S, S-S to C-F, C-F to S-F and S-F to F-

F. Thus higher constraints at the beam ends increase the flexural rigidity of the beam, resulting in a higher frequency 

response. 

 

 
1, 0

01 01
3 2 1 2 3

,
02 021 12 1 12

w
X

w




 

 


 
 

 (31) 

 

It should be noted that for Timoshenko beam the modes may be normalized through relation 

 

 
1

2 2 1

0

w dXn n   (32) 

 

The normalized transverse deflection and slope due to bending for C-F beam are given in Figs. 5 and 6. 

 

 

Table 1 

The first three dimensionless frequency parameters of the C-C Timoshenko beam for different thickness-to-length ratios; (I) Lee's 

results [8], (II) Civalek's results [9], (III) Kocaturk 's results [7]. 
  Method 

1
  2

  3
  

 Classical 4.73004 7.85320 10.9956 

0.01 Present 4.72840 7.84690 10.9800 

 (II) 4.72840 7.84690 10.9801 

0.05 Present 4.68991 7.70352 10.6402 

 (III) 4.68987 7.70351 10.6399 

0.1 Present 4.57955 7.33122 9.85611 

 (I) 4.57955 7.33122 9.85611 

0.2 Present 4.24202 6.41794 8.28532 

 (I) 4.24201 6.41794 8.28532 
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Table 2 

The first three dimensionless frequency parameters of the C-S Timoshenko beam for different thickness-to-length ratios; (III) 

Kocaturk 's results [7]. 

  Method 
1
  2

  3
  

 Classical 3.92700 7.06900 10.2101 

0.01 Present 3.92581 7.06469 10.1993 

 (III) 3.92580 7.06460 10.1992 

0.05 Present 3.90713 6.97478 9.95631 

 (III) 3.90710 6.97470 9.95620 

0.1 Present 3.85177 6.73057 9.36591 

 (III) 3.85170 6.73050 9.36580 

0.2 Present 3.66561 6.07268 8.07437 

 (III) 3.66560 6.07260 8.07430 

 

The frequencies 0   listed in Tables 5 and 6 show there are rigid body modes for simply-free and free-free 

beams, respectively. For beam with F-F boundary conditions there are two rigid body modes corresponding to rigid 

translation and rotation. The mode shape related to rigid body modes for F-F beam are given by Eqs. (31). Variation 

of dimensionless frequency parameter with   of C-C Timoshenko beam for different mode numbers is shown in 

Fig.4. It is shown from this figure that the effect of  on the frequency parameter is almost insignificant for first 

mode. In other word, the results show that the thickness become more influence as mode numbers increase. Among 

six considered cases in the present work, there are rigid body modes for two cases namely beam with S-F and F-F 

boundary conditions. 
 

Table 3 

The first three dimensionless frequency parameters of the S-S Timoshenko beam for different thickness-to-length ratios; (I) Lee's 

results [8]. 

   Method 
1
  2

  3
  

 Classical 3.14159 6.28319 9.42478 

0.01 Present 3.14133 6.28106 9.41761 

 (I) 3.14133 6.28106 9.41761 

0.05 Present 3.13498 6.23136 9.25537 

 (I) 3.13498 6.23136 9.25537 

0.1 Present 3.11568 6.09066 8.84051 

 (I) 3.11568 6.09066 8.84052 

0.2 Present 3.04533 5.67155 7.83952 

 (I) 3.04533 5.67155 7.83952 

 

Table 4 

The first three dimensionless frequency parameters of the C-F Timoshenko beam for different thickness-to-length ratios.  

  Method 
1
  

2
  

3
  

 Classical 1.87510 4.69410 7.85480 

0.01 Present 1.87503 4.69278 7.84955 

0.05 Present          1.87324 4.66204 7.73048 

0.1 Present 1.86771 4.57241 7.41542 

0.2 Present 1.84656 4.28529 6.61129 

 

 

Table 5 

The first three dimensionless frequency parameters of the S-F Timoshenko beam for different thickness-to-length ratios. 

  Method 
1
  

2
  

3
  

 Classical 0 3.92660 7.06858 

0.01 Present 0 3.92607 7.06557 

0.05 Present 0 3.91382 6.99561 

0.1 Present 0 3.87702 6.80198 

0.2 Present 0 3.74860 6.25381 
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Table 6 

The first three dimensionless frequency parameters of the F-F Timoshenko beam for different thickness-to-length ratios, (I) Lee's 

results [8]. 

  Method 
1
  

2
  

3
  

 Classical 0 0 4.73004 

0.01 Present 0 0 4.72918 

 (I) 0 0 4.72918 

0.05 Present 0 0 4.70873 

 (I) 0 0 4.70873 

0.1 Present 0 0 4.64849 

 (I) 0 0 4.64849 

0.2 Present 0 0 4.44958 

 (I) 0 0 4.44958 
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Fig.2 

Variation of dimensionless frequency parameter against 

Mode number for C-C Timoshenko beam in different height 

to length ratio. 

  

 

 

 

 

 

 

 

 

Fig.3 

Variation of dimensionless frequency parameter against 

mode number for different boundary conditions 0.2  . 
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Fig.4 

Variation of dimensionless frequency parameter against   

for C-F Timoshenko beam in different mode numbers. 
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Fig.5 

The first fourth mode shapes of normalized transverse 

displacement for C-F Timoshenko beam 0.2  . 
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Fig.6 

The first fourth mode shapes of normalized slope due to 

bending for C-F Timoshenko beam  0.2  . 

4    EXPERIMENTAL STUDY 

In order to validate The results for F-F and C-F beams a modal test is carried out on a sample with 

dimension199 19 20  mm , modulus of elasticity  212E GPa  and Poisson’s ratio 0.3.   The measuring system 

consisted of an eight channels Econ analyzer and piezoelectric accelerometer covering frequency range up to 20 

KHz also a hammer with covering frequency range up to 20 kHz. The results of performance tests on samples 

together with the finite element results are given in Table 7. The finite element results are obtained by using three 

dimensional element having eighteen nodes simulated in Ansys software. The sample under test for F-F and C-F 

boundary conditions is also illustrated in Fig. 7. 

 

 

 
 
 
 
 

 

 

Fig.7 

Performance of test on sample. 

 

 
Table 7 

Comparison of the first three dimensionless frequency parameters with experimental results. 

BC Method 1
  

2
  

3
  

C-F Present 1.86771 4.57241 7.41542 

 Test 1.76899 4.48768 7.24060 

 FEM 1.82160 4.47302 7.27511 

F-F Present 4.64849 7.49719 10.1255 

 Test 4.53502 7.31677 9.90709 

 FEM 4.53321 7.33303 9.93689 
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Numerical calculations have been carried out to clarify the effects of the thickness to length ratio on the 

eigenvalues of the beams. It is observed from the investigations that the results of the classical and the Timoshenko 

beam theory are very close to each other for small values of   However, as the thickness to length ratio becomes 

larger, the results of the classical theory and the Timoshenko beam theory differ from each other significantly. All of 

the obtained results are very accurate and may be useful to other researchers as a bench mark eqns. to compare their 

results. 

5    CONCLUSION 

The free vibration of the Timoshenko beams have been investigated for different thickness-to-length ratios. The 

obtained eigenvalues for the Timoshenko beams having various boundary conditions are compared with the 

previously published results. Using the closed form characteristic equations is a very good way for studying the free 

vibration characteristics of the beams. 
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