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 ABSTRACT 

 This paper investigates the effect of irregular boundary and source 

depth in a two dimensional model due to movement of a long strike 

slip fault. A model having horizontal orthotropic elastic layer of 

uniform thickness coupling in three different ways to an irregular 

boundary of an orthotropic elastic half-space (having rectangular 

shaped irregularity on its boundary surface) has been considered. 

To study the effect of fault depth, we divide the problem into two 

cases. In case first, the fault is assumed to be present in regular 

orthotropic elastic layer at a distance say 'd' from the upper surface 

of the layer. In second case, the fault is assumed to be present in 

irregular orthotropic elastic half-space at same depth 'd' from the 

boundary surface of elastic half-space. For each type of coupling, 

the effect of rectangular irregularity and variation in fault depth on 

displacements and stresses for both layers and half-space are 

studied graphically. The present paper has wide applications in 

material science engineering, geosciences and soil mechanics. 

                                  © 2022 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

HE phenomenon of the earthquake in theoretical seismology developed with the help of mathematical methods 

in which anisotropy has been derelict in the studies of the earth’s crust. It can be examined by accepting the fact 

that there is seismic anisotropy present in the earth's crust and mantle. The presence of anisotropic minerals such as 

olivine and orthopyroxenes results in seismic anisotropy in the earth's upper mantle. The study of impact of surface 

loads on the horizontally layered elastic anisotropic, specifically, orthotropic materials, has been creating abundant 

interest in the fields like, material sciences, geosciences and soil mechanics. Now days, the development of 

a composite laminated material, an assemblage of layers of composite materials which can be coupled to endow 

with required engineering properties and earthworks like fills or pavements, composed of horizontal layers of 
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different materials is the need of hour. Moreover, natural deposits in the earth are also horizontally layered. The 

material at a point of a layer may have different elastic properties in different directions. It is documented that the 

upper part of the earth has an orthorhombic symmetry. When one of the planes of symmetry in an orthorhombic 

symmetry is horizontal, the symmetry is termed as orthotropic symmetry and the most symmetry systems in the 

earth crust also have orthotropic orientations (Crampin [1]). A material with three mutually perpendicular planes of 

elastic symmetry at a point is said to possess orthotropic symmetry which is exhibited by olivine and 

orthopyroxenes, the principal rock-forming minerals of the deep crust and upper mantle. The static deformation of a 

layered or semi-infinite orthotropic/isotropic elastic media due to strike slip and dip slip faults has been studied by 

many researchers, e.g. Singh and Rani [2], Rani and Singh [3], Garg et al. [4], Singh and Garg [5], Bonafede et al. 

[6],  Arya et al. [7] etc. In geophysics, the interface between the earth’s crust to a base may be any of three types; 

smooth-rigid, rough-rigid and perfectly welded. Some researchers like Garg and Sharma [8] obtained the 

displacements and stresses at any point of an elastic layer coupling differently (smooth-rigid, rough-rigid and 

perfectly welded) to a half-space due to a very long vertical strike slip fault and their variations with the horizontal 

distance from the fault. Madan and Garg [9] further investigated the results of Garg and Sharma [8] by replacing the 

elastic layer with an orthotropic elastic layer over a base due to a long inclined strike slip fault. Chugh et al. [10] 

obtained the deformation of orthotropic elastic layer coupling in three different ways to a regular homogeneous 

orthotropic elastic half-space due to a long blind strike slip fault and gave the generalization of the results for an 

isotropic medium. Malik and Singh [11] obtained the results for the displacements and stresses in a homogeneous 

perfectly elastic half-space caused by a buried strike slip line source by considering the rigid surface. The model, 

they considered is very useful when the medium is very hard on the other side of the material discontinuity and a 

volcanic edifice is composed of such layers at depths below. The problems of static and quasi-static deformation 

with irregular boundaries have gained much importance in geophysics due to their closeness to their natural 

environmental conditions. It leads to a better understanding and better predictions for the seismic behavior at 

continental margins and mountain roots. It is, therefore, interesting to study the static deformation in media with 

irregular boundaries. Many researchers have studied the problem of irregular boundaries. Selim [12] discussed the 

problem of a two-dimensional static deformation due to normal line-load acting inside an irregular initially stressed 

isotropic half-space and irregularity was of rectangular shape. Madan and Gaba [13] studied the effect of rectangular 

and parabolic irregularities present in an orthotropic elastic medium. The expressions for the displacements and 

shearing stresses in an orthotropic elastic layer over an irregular elastic half-space have been derived by Madan et al. 

[14]. Savita et al. [16] obtained shearing stresses at a point in anisotropic (monoclinic) elastic layer lying over an 

irregular monoclinic elastic half-space and gave the generalization of the results obtained in Savita et al. [15]. Both 

researches resulted that different sizes of rectangular irregularity produced significant variation in shearing stresses 

for different types of elastic materials. 

In this paper, an attempt has been made under the consideration in which a crystal structure having a horizontal 

orthotropic infinite elastic layer coupling in three different ways (‘perfectly welded’, ‘smooth-rigid’ and ‘rough-

rigid’) with an irregular orthotropic elastic half-space to know the deformation due to a very long strike slip fault of 

finite width situated separately in both elastic mediums of the model. The effect of different sizes of irregularity and 

variations in fault depth on stresses and displacements has been studied graphically.  

2    BASIC EQUATIONS  

2.1 Equation of motion 

Equations of equilibrium in the Cartesian co-ordinate system (x,y,z) for zero body forces are 

 

, 0 ; , 1,2,3ij j i j    (1) 

 

where  ij  denotes the stress components. Let (u, v, w) denotes the displacement components and ije represent the 

strain components then the strain-displacement relations are 11 12

1

2

u u v
e e

x y x

   
   

   
 etc.  

From the Generalized Hook’s Law, the stress-strain relations for an orthotropic elastic medium in Cartesian co-

ordinate system are given by 
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We consider an elastic medium of anti-plane strain deformation in the yz-plane in which the displacement vector 

is parallel to x-axis. For anti-plane strain deformation, the non-zero displacement and stresses are 

 

  2, , ,xz xy

u u
u u y z c c

z y
  

 
  

 
 (3) 

 

where  2

55 66,c c c c  , and ,c R   . In case of isotropic elastic medium , 1c    . For anti-plane strain 

deformation, equations of equilibrium in (1) reduce to  

 
2 2

2

2 2
0

u u

y z


 
 

 
 (4) 

2.2 Line-source in an infinite medium 

The source condition to be satisfied by the resulting tractions becomes (Garg et al., [4]) 

 

1k kv d F    (5) 

 

where F is the magnitude of the force (per unit length) acting at the point  2 3,  in an infinite homogeneous 

orthotropic elastic medium in the positive x-direction, and 
kv denotes the direction cosines of the exterior normal. 

Using the source boundary condition (5), the solution of Eq. (4) becomes (Garg et al., [4]) 

    2 22

2 3log
4

F
u y z

c
  




     for the displacement parallel to the x-axis and at any point (y,z) of an 

orthotropic elastic infinite medium, due to a line source, which is parallel to the x-axis and is passing through the 

point  2 3,  . 

2.3 Single couples (xy) and (xz) 

At the point  2 3,  , there acts a two-dimensional line source, either a single couple (xy) or a single couple (xz). 

These displacements (parallel to the x-axis, and due to the line source of a single couple (xz)  or (xz) can be unified 

into the following integral: 

 

    2

0 0 3 0 3
0

sin cos
k y

u A k z B k z e dk
 

 
  

       (6) 

 

The source coefficients  
0A  and  

0B  for two dimensional buried sources are given in Table 1. 
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Table 1 

Source coefficients for various seismic sources. 

 

     The upper sign is for 
2>y    and the lower sign for 

2<y  .  xyF   and  
xzF   denote the moments of couples (xy) and 

(xz) respectively. We shall determine the deformation of the model due to a very long strike slip fault situated either 

in the layer or in the half-space. We note that the source coefficient 
0B  (as shown in Table 1) changes sign with 

2>y  ,
2<y  . We replace 

0B   by  1

0B  for 
2<y   and 1

0 0B B     for 
2>y  . 

3    FORMULATION OF THE PROBLEM  

We consider the Cartesian co-ordinate system (x,y,z). Here, z-axis has been taken horizontally and y-axis vertically 

downward. An infinite orthotropic elastic layer of thickness 'Y'  laying horizontally over an irregular orthotropic 

elastic half-space. The irregularity is assumed to be rectangular in shape. The origin of Cartesian co-ordinate system 

(x,y,z) is taken at the upper boundary of the layer. Elastic layer having the region ( 0 y Y  ) is described as 

medium I whereas the region >y Y is described as medium II. It is assumed that layer is coupled in three different 

ways such as ‘perfectly welded’, ‘smooth-rigid’ and ‘rough-rigid’ to an irregular base. We formulate the problem 

into two cases: 

Case I: An infinite strike slip fault of finite width 'L'  parallel to x-axis lies completely in orthotropic elastic layer 

whose upper edge is at a distance 'd'  from the upper surface of the layer and inclined with an arbitrary dip angle' ' 

to a line parallel to z-axis as shown in Fig. 1(a). 

Case II: The fault mentioned above lies in lower half-space at same depth  'd' as shown in Fig. 1(b). 

 

 
(a) 

 
(b) 

Fig.1 

Geometry of an inclined strike-slip fault parallel to the x-axis of finite width L situated in an orthotropic layer (Fig. 1(a)) of 

uniform thickness Y lying over an irregular orthotropic elastic half-space and secondly situated in irregular orthotropic elastic 

half-space (Fig. 1(b)); d is the depth of the fault and   is the dip angle. 

 

Mathematically, the equation of rectangular irregularity having length 2a and depth b  is represented as: 

 

 
:

0 : >

b z a
y f z

z a


 
  



 (7a) 
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where  1
2

b

a
 is the perturbation factor. Applying the Fourier Transform technique on Eq. (7a), we obtain 

 

     f z sign a z sign a z     (7b) 

 

The interfacing between the layer and half-space is  y f z  and boundary surface 0y  of elastic layer is 

assumed to be stress free, so the boundary condition at 0y   and interface  y f z   is given by 

 

0xy   at 0y   (8) 

 

For perfectly welded contact 

 

     

               

l ll

l l ll ll

xy xz xy xz

u f z u f z

f z i f z f z f z i f z f z

 

         



   
  (9) 

 

For smooth-rigid contact 

 

0xy    at   y f z  (10) 

 

For rough-rigid contact 

 

0u    at   y f z  (11) 

4    CASE I: WHEN THE LINE-SOURCE LIES IN LAYER  

For a line source acting at the point  2 3,   of the elastic layer, the expressions for the horizontal displacements in 

layer and half-space parallel to the line source are obtained by Garg et al. [4]  

For 0 y Y   
 

       1 1

0 1 3 1 3 1 3 1 3
0 0

sin cos sin cos
ky kylu u A k z B k z e dk C k z D k z e dk    

 


                   (12) 

 

For >y Y  

 

    2

2 3 2 3
0

sin cos
kyllu A k z B k z e dk 




         (13) 

 

The cofficients  1 2 1 2, , ,A A B B  etc. For each type of coupling are determined by using the boundary conditions 

given in Eqs. (8)-(11) as: 

 

  1 2 1 2 1 2(2 ) ( )

1 0 2 1 1
2

k k f k fi f
A e Te A B e S T

           
            

 
   (14) 

 

  1 2 1 2 1 2(2 ) ( )1

1 0 2 1 1
2

k k f k fi f
B e Te B A e S T

            
            

 
   (15) 
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  1 2 1 2 1 2(2 ) (2 ) ( )

1 0 2 1 1
2

k f k f k fi f
C e e TA B e S T

              
            

 
   (16) 

 

  1 2 1 2 1 2(2 ) (2 ) ( )1

1 0 2 1 1
2

k f k f k fi f
D e e TB A e S T

              
            

 
   (17) 

 

 
 

 
  

1 2

1 2

1 2

1
10 0 2( )

2
1

0 0

1 1

k

k f

k
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A T e i f T
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 









 
  
      
   
 

   (18) 
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 
  

1 2

1 2

1 2

1
10 0 2( )
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







 
  
      
   
 

   (19) 

 

  where 
1 1,c  and 

2 2,c  are the elastic constants for the Med. I and Med. II, respectively;  

 

 

 
     1 1 1

2
211 1 1 1

2

2 2 2 2

1
, , , 1 , 1 1

1

k f k f k f
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 

 


              
    

5    CASE II: WHEN THE LINE-SOURCE LIES IN THE HALF-SPACE    

For a line source acting at the point  2 3,   of an irregular elastic half-space, the expressions for the horizontal 

displacements in layer and half-space parallel to the line source are obtained by Garg et al. [4] 

For 0 y Y   

 

       1 1

1 3 1 3 1 3 1 3
0 0

sin cos sin cos
ky kylu L k z M k z e dk P k z Q k z e dk    

 


                  (20) 

                              

For >y Y  

 

    2

0 2 3 2 3
0

sin cos
kyllu u L k z M k z e dk 




          (21) 

 

The coefficients 
1 2 1 2, , ,L L M M  etc. for each type of coupling are determined by using the boundary conditions 

given in Eqs. (8)-(11) and obtained as: 
 

   1 2 2 1 2 2 2( ) ( )1

1 1 0 0 2

( 1)
1

( 1)

k f k f k f k f k fS
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S
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 
   (22) 

 

   1 2 2 1 2 2 2( ) ( )1

1 1 0 0 2
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1
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k f k f k f k f k fS
M Q T e e B i f e A e L e

S

                
      

 
   (23) 

 

 1 2 2 2 2 2 2 2
12 ( ) (2 ) (2 )

2 2 2 02 ( 1) 1 2 ( 1)
k f k k f k fL e e Te S i f e S i f A             

                   (24) 

 

 1 2 2 2 2 2 2 2
12 ( ) (2 ) (2 ) 1

2 2 2 02 ( 1) 1 2 ( 1)
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6    INCLINED STRIKE –SLIP FAULT  

The displacements in a layered orthotropic elastic half-space due to a very long strike slip line fault of arbitrary 

inclination   can be expressed in terms of two different displacement components, one due to horizontal strike slip 

fault and the other due to a vertical strike slip fault Singh and Garg [5] 

 

cos sinHS VSu u u      (26) 

 

where  HSu  and  VSu  are the displacements for the horizontal and vertical strike slip faults respectively. 

The deformation of orthotropic elastic layered medium as a result of a very long inclined strike slip fault situated 

in the elastic layer (case I) is obtained by using the results obtained by Garg et al. [4]. So, the expressions for the 

displacements with perfectly welded contact of an elastic layer are obtained by using Eqs. (14)-(19) and (7) in (12)-

(13) and from Table 1 as: 

For 0 y Y   
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For >y Y  
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(27b) 

 

The deformation of orthotropic elastic layered medium as a result of a very long inclined strike slip fault situated 

in the lower half-space (case II) is obtained by using the results obtained by Garg et al. [4]. So, the expressions for 

the displacements with perfectly welded contact of irregular elastic half-space are obtained by using Eqs. (22)-(25) 

and (7)  in (20)-(21) and from Table 1 as: 
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where '
0b ' is the uniform slip; 'ds'  is the infinitesimal width of the line dislocation and 's' denote distance from the 

upper edge of the fault measured in the down-dip direction.   

7    PERFECTLY WELDED CONTACT   

 

 

Putting 
3 2cos , sins d s       into Eq. (27a, 27b) and integrating w.r.t 's' from 0 to L , the expressions for 

displacement and stresses in welded contact for case I as:  
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For >y Y  
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Putting 3 2cos , sins d s       into Eq. (28a, 28b) and integrating w.r.t 's' from 0 to L, we obtain the 

expressions for displacement and stresses in welded contact for case II as: 

For 0 y Y   
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For >y Y  
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8    SMOTH-RIGID CONTACT  

 

 

When the interface between layer and half-space at  y f z  is smooth-rigid, without loss of generality, we put  

0m  ,  i.e 1T    in Eqs. (29)-(34). The expressions for displacements and stresses in smooth-rigid contact for case 

I as: 
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For >y Y  
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Simillarly, without loss of generality we put  0m  , i.e 1T    in Eqs. (35)-(40) to obtain the expressions for 

displacements and stresses in smooth-rigid contact for case II as: 

For 0 y Y   
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9    ROUGH –RIGID CONTACT  

 

 

When the interface between the plate and half-space at  y f z  is rough-rigid, without loss of  generality, we 

assume m   , i.e  1T    for putting in Eqs. (29)-(34) to obtain the expressions for displacements and stresses in 

rough-rigid contact for case I as: 
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For >y Y  
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Simillarly, we assume m  , i.e 1T    for putting in Eqs. (35)-(40) to obtain the expressions for 

displacements and stresses in rough-rigid contact for case II as: 

For 0 y Y     
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For >y Y  
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10    SPECIAL CASE  

  

Putting 
1 2 1 2,c c c      , i.e 0T   and absence of irregularity (i.e 0b  ) in sets of Eqs. (29)-(31) or (32)-

(34) i.e deformation field due to Fig. 1(a), we get following expressions for displacements and stresses due to a very 
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long blind strike-slip fault of finite width 'L' of a uniform orthotropic elastic half-space that coincide with the results 

obtained by Garg et al. [4]. 
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If we make same substitutions 
1 2 1 2,c c c      , i.e 0T   and absence of irregularity, in sets of Eqs. (35)-

(37) or (38)-(40), we get same expressions for displacements and stresses obtained in set of Eqs. (62)-(64). Also, it 

verifies the sanctity of taking two separate models in the present paper shown by Fig. 1(a) and 1(b). 

11    NUMERICAL RASULTS  

In graphical representation, we examine the effect of variations in depth 'd'  of the fault and rectangular irregularity 

for each type of interfacing condition (‘perfectly welded’, ‘smooth-rigid’, ‘rough-rigid’) due to a uniform slip along 

a very long strike slip fault of finite width 'L'   in both cases (Fig. 1(a), 1(b)). For numerical computation, we use the 

values of elastic constants used by Chugh et al. [10]. For orthotropic elastic layer 
1 0.9824 , 

11 2

1 2.87 10 /c dynes cm or (28.7GPa) for the material baryte and for elastic half-space 
2 0.9894 , 

11 2

2 8.10 10 /c dynes cm or (81GPa) for the material olivine. The explicit analytical expressions for displacements 

and stresses describe the involvement of infinite series appearing at the right hand side of equations (representing 

displacements and stresses) and converge very rapidly. Therefore, each series truncates after its first twenty terms or 

each infinite series are replaced by a finite sum of its first twenty terms. 

Figs. 2(a)-2(c) represent the variation of the dimensionless surface displacement lu  for orthotropic elastic layer 

coupling in three different ways i.e. welded contact (WL), smooth-rigid contact (SL) and rough-rigid contact (RL) to 

an irregular orthotropic elastic half space with dimensionless horizontal distance 'z' at inclination of angle 15  

under the hypothesis of Case I. Fig. 2(a, b) and 2(c) represent the variation of surface displacement at a fault depth 

level 0d  and 1d  respectively. To compare the effect of irregularity on the displacement component, Figs. 2(b, 

c) are plotted with assuming irregularity on the interaction boundary surface that couples elastic layer to elastic half 

space and Fig. 2(a) is plotted in the absence of irregularity. Irregularity, in the lower elastic half-space is of length 

'2a' and depth 'b'. In these figures, we observe that when the fault depth 'd' increases, fluctuations in surface 

displacement for different types of coupling decrease. Also from these figures, it can be observed that the presence 

of irregularity makes a significant effect on the displacement component. In Fig. 2(a) we observe that throughout the 

horizontal distance 'z', surface displacement for rough-rigid interface (RL) lies between surface displacements for 

smooth-rigid coupling (SL) and welded coupling (WL) while in Figs. 2(b, c) due to the presence of irregularity, 

(RL) does not lie between (SL) and (WL) on the horizontal distance 1< <1z   i.e. on the irregular interface. 

Moreover Figs. 2(b, c) have discontinuities at points 1z  and  1z  of rectangular interaction surface. It is 

notable that displacement lu  has an additional discontinuity at 0z  at the depth 1d . 
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(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of the dimensionless surface displacement lu  for 

orthotropic elastic layer due to strike-slip fault at an 
inclination of angle θ=15° under the consideration of Case I. 

 

Figs. 3(a, b) and 4(a, b) represent the variation of the dimensionless shearing stress components  l

xz  and  l

xy  

respectively for orthotropic elastic layer coupling in three different ways welded contact (WL), smooth-rigid contact 

(SL) and rough-rigid contact (RL) to an irregular orthotropic elastic half space with dimensionless horizontal 

distance 'z' at inclination of  30   and fault depth level  2d  , under the hypothesis of Case I. Figs. 3(a) and 4(a) 

are plotted by assuming irregularity on the boundary surface connecting layer to half space while Fig. 3(b) and 4(b) 

are in the absence of irregularity. It is observed that the stress components  l

xz  and l

xy  for rough-rigid interface lie 

between the stresses for perfectly welded and smooth-rigid interfaces in the absence of irregularity while in Figs. 

3(a) and 4(a) stress components for welded interfacing condition (WL) lie between the stress components due to 

(SL) and (RL). Clearly, irregular interface is creating a significant effect on the stresses. 

Figs. 5(a)-5(c) represent the variation of the dimensionless surface displacement  llu  for irregular orthotropic 

elastic half-space in welded contact (WH), smooth-rigid contact (SH) and rough-rigid contact (RH) with 

dimensionless horizontal distance 'z'  and inclination   15  , under the hypothesis of Case I. Figs. 5(b, c) are 

obtained in the presence of irregularity having two different dimensionless sizes while Fig. 5(a) is obtained in the 

absence of irregularity. Figs. 5(b, c) and 5(a) represent the variation of surface displacement at a fault depth level  
0.5d   and  1d   respectively. In these figures, it can be noticed that when the fault depth 'd' decreases, 

magnitudes of the surface displacements for different types of coupling increase. It is also observed that surface 

displacement llu of orthotropic elastic half-space in Figs. 5(b, c), are also effected due to the different sizes of 

irregularity. In Fig. 5(b), it is clear that (SH) and (RH) have three points of discontinuity on the horizontal distance 

'z' at  2,0,2z    while (WH) has only one point of discontinuity at 0z  . 
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(a) 

 
(b) 

Fig.3 

Variation of the dimensionless surface shearing stress components l

xz  for orthotropic elastic layer due to strike-slip fault at an 

inclination of angle  θ=30° under the consideration of Case I. 

  

 
(a) 

 
(b) 

Fig.4 

Variation of the dimensionless surface shearing stress components l

xy for orthotropic elastic layer due to strike-slip fault at an 

inclination of angle  θ=30° under the consideration of Case I. 
  

 
(a) 

 
(b) 
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(c) 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of the dimensionless surface displacement llu  for 

irregular orthotropic elastic half-space due to strike-slip fault 
at an inclination of angle θ=15° under the consideration of 

Case I. 

 

Figs. 6(a, b) and 7(a, b) represent the variation of the dimensionless shearing stress component  ll

xz  and  ll

xy   

respectively for orthotropic elastic half-space in welded contact (WH), smooth-rigid contact (SH) and rough-rigid 

contact (RH) with dimensionless horizontal distance 'z' at inclination  15   and fault depth level  2d   and  

1d   respectively under the hypothesis of Case I. Figs. 6(a) and 7(a) are plotted by assuming irregularity on the 

boundary surface connected layer to half space while Fig. 6(b) and 7(b) are in the absence of irregularity.  In Figs. 

6(b) and 7(b), it is observed that the stress components  ll

xz  and ll

xy  for rough-rigid interface lie between the 

stresses for perfectly welded and smooth-rigid interfaces while in Fig. 7(a) stress component due to (WH) lies 

between (SH) and (RH) and also changes its sign on irregular interface 1< <1z . In Figs. 6(a) and 7(a), stress 

components due to different type of couplings (WH), (SH) and (RH) have two points of discontinuity at 1z    and 

1z   and make a significant change on irregular surface. 

Figs. 8(a)-8(c) exhibit the variation of the surface displacement  lu  for orthotropic elastic layer in welded 

contact (WL), smooth-rigid contact (SL) and rough-rigid contact (RL) with dimensionless horizontal distance 'z'  and 

inclination  30   under the hypothesis of Case II. Figs. 8(a) and 8(b, c) represent the variation of surface 

displacement at a fault depth level  0d   and  1d   respectively. In these figures, we observe that when the fault 

depth 'd' increases, magnitudes of the surface displacement for different types of coupling increase. From these 

figures, it is noticed that surface displacement lu  for elastic layer due to smooth-rigid contact (SL) is zero 

throughout the horizontal distance 'z' (Eq. (48)). The surface displacements in Fig. 8(c) are obtained due to an 

irregular interaction boundary surface while Fig. 8(a, b) are drawn on regular boundary surface. In Fig. 8(c), surface 

displacements due to welded contact (WL) and rough-rigid contact (RL) have discontinuities at the points 1z    

and 1z   and also results in increment in magnitudes in the region 1< <1z  due to significant effect of presence of 

irregularity. In all figures, displacement components for welded interfacing condition (WL) lie between the stress 

components due to (SL) and (RL). 

 

 
(a) 

 
(b) 

Fig.6 

Variation of the dimensionless surface shearing stress components ll

xz  for irregular orthotropic elastic half-space due to 

strike-slip fault at an inclination of angle  θ=15° under the consideration of Case I. 
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(a) 

 
(b) 

Fig.7 

Variation of the dimensionless surface shearing stress components ll

xy  for irregular orthotropic elastic half-space due to 

strike-slip fault at an inclination of angle  θ=15° under the consideration of Case I. 
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Fig.8 

Variation of the dimensionless surface displacement lu for 

orthotropic elastic layer due to strike-slip fault at an 
inclination of angle θ=30° under the consideration of Case II. 

 

Figs. 9(a, b) and 10(a, b) represent the variation of the dimensionless shearing stress components  l

xz  and  l

xy  

for orthotropic elastic layer in welded contact (WL), smooth-rigid contact (SL) and rough-rigid contact (RL) with 

dimensionless horizontal distance 'z'  and angle  15   at fault depth level  1d   and  2d   respectively, under 

the hypothesis of Case II. In all figures, stress components  l

xz  and 
l

xy  of elastic layer in smooth-rigid contact (SL) 

are zero throughout the horizontal distance 'z' (Eq. (48)). The stress components l

xz  and 
l

xy  in 9(a) and 10(a) are 

obtained due to irregular boundary surface while Figs. 9(b) and 10(b) are studied on regular boundary surface. Stress 

components due to rough-rigid contact (RL) and perfectly welded contact (WL) in Figs. 9(b) and 10(b) have two 
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points of discontinuity at the end points of irregular boundary surface. From Figs. 9(a, b), it is noticed that stress 

components for (RL) lie between the stress component l

xz  for welded contact (WL) and smooth-rigid contact (SL) 

throughout the horizontal distance but in Figs. 10(a, b) stress components l

xy  of elastic layer due to welded contact 

(WL) lie between the stress components of elastic layer due to (RL) and (SL). Clearly, irregular interface is creating 

a significant effect on the stresses. 

 

 
(a) 

 
(b) 

Fig.9 

Variation of the dimensionless surface shearing stress components l

xz  for orthotropic elastic layer due to strike-slip fault at an 

inclination of angle  θ=15° under the consideration of Case II. 

  

 
(a) 

 
(b) 

Fig.10 

Variation of the dimensionless surface shearing stress components l

xy  for orthotropic elastic layer due to strike-slip fault at an 

inclination of angle  θ=15° under the consideration of Case II. 

 

Figs. 11(a, b) represent the variation of the dimensionless surface displacement llu  for irregular orthotropic 

elastic half-space connected with different type of coupling, welded contact (WH), smooth-rigid contact (SH) and 

rough-rigid contact (RH) with dimensionless horizontal distance 'z' and angle 30   under the hypothesis of Case 

II. Fig. 11(a) is obtained in the absence of irregularity from the interaction boundary surface of layer to half space 

and 11(b) is plotted by assuming rectangular irregularity on the interaction boundary surface. We observe that 

presence of irregularity makes a notable change on the displacement components llu  for each different type of 

coupling. In Fig. 11(a), surface displacement due to all interfacing conditions having two points that breaks the 

curves on the horizontal distance 'z'. Presence of irregularity in Fig. 11(b) creates two points of discontinuity at 

1z    and  1z  . 

Figs. 12(a, b) and 13(a, b) represent the variation of dimensionless shearing stress components ll

xz  and 
ll

xy  

respectively for irregular orthotropic elastic half-space welded contact (WH), smooth-rigid contact (SH) and in 

rough-rigid contact (RH) with the dimensionless horizontal distance 'z' and inclination of angle 30   under the 

hypothesis of Case II. Figs. 12(a, b) and 13(a, b) are obtained for two different fault depth level 0,0.5d   and in the 
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absence of irregularity from the interaction boundary surface of elastic layer and half space. In these figures, we 

observe that stress components ll

xz  and ll

xy  due to perfectly welded contact (WH) lie between the stress 

components of elastic half-space due to rough-rigid contact (RH) and smooth-rigid contact (SH). Also the 

magnitude of stress components ll

xz  and ll

xy   increases with the increase in fault depth 'd'. 

 

 
(a) 

 
(b) 

Fig.11 

Variation of the dimensionless surface displacement llu  for irregular orthotropic elastic half-space due to strike-slip fault at 

an inclination of angle θ=30° under the consideration of Case II. 

  

 
(a) 

 
(b) 

Fig.12 

Variation of the dimensionless surface shearing stress components ll

xz  for irregular orthotropic elastic half-space due to 

strike-slip fault at an inclination of angle  θ=30° under the consideration of Case II. 
  

 
(a) 

 
(b) 

Fig.13 

Variation of the dimensionless surface shearing stress components ll

xy for irregular orthotropic elastic half-space due to strike-

slip fault at an inclination of angle  θ=30° under the consideration of Case II. 
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12    CONCLUSIONS 

We have examined the effect of a very long strike slip fault of finite width situated at a distance 'd' from the surface. 

Three types of interfaces, ‘perfectly welded, smooth-rigid, rough-rigid’ have been considered between the elastic 

layer and irregular half-space. As per our considerations the present work has been explained by dividing into two 

cases and the consequences of this work are as follows: 

1. The results obtained in case first are in addition to the earlier research work of Chugh et al. [10], in the 

sense that the interface between the layer and half-space may be irregular which is more realistic than 

regular interfac crustal structure. 

2.  The results obtained in case second are generalizations of the results obtained by Arya et al. [7], in the 

sense that the physical structure considered in the present paper is layered irregular anisotropic elastic 

model. 

3. Earthquake on San Andreas Fault occurred at the shallow depths of 20 km approximately and extended 

roughly to 1200 kilometers in strike-slip motions through the California. For such type of shallow 

earthquakes, the elastic layer of our model may be identified with the topmost brittle region of the earth 

crust, and the welded interfacing to an elastic half-space with a crustal zone. 

4. The Palos Verdes is also a very long strike-slip fault on the south-western edge of the Los Angeles, with its 

slip in the sediments. Such sedimentary rocks may be identified to an elastic layer consisting almost 

uniform thickness and the bottom surface of elastic layer may be taken as ‘rough-rigid’, where the 

displacements and stresses are zero (Eq. (55)). 

5. In engineering mathematics, physical problems dealing with a layer of petroleum material slipping over a 

base. We observe that a ‘smooth-rigid’ interfacing condition is applicable between petroleum layer and the 

base. This interfacing condition is used to determine the effect of lubrication and it has been observed that 

the vertical displacement vector and shear stress components vanished. 
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2

10 0 1 1 2

11 1 2 1

2

12 0 1 1 2

2 cos sin

2 sin cos

2 1 cos sin

2 1 sin cos

2 1 cos sin

2 1

n f y d z

T T s n f y d z

T n f d y f z

T T s n f d y f z

T n f d y f z

T T s n f d y

   

   

      

      

      

    

     

      

       

        

        

      

    

    

    

13 2 1 2

14 0 2 1 2

15 2 1 2

sin cos

sin 2 1 cos

cos sin 2 1

sin 2 1 cos

f z

T z n f y f d

T T s z n f y f d

T z n f y f d

 

      

      

      

   

       

          

       
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 

  

 

   

16 0 2 1 2

17 2

2
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19 2

2

20 0 2

21 2 1 2

22 0

cos sin 2 1

sin cos

cos sin

sin 2 cos

cos 2 sin

sin 2 1 2 cos

cos 2

T T s z n f y f d

T z y d

T T s z y d

T z f y d

T T s z f y d

T z n f f y d

T T s z

      

  

  

   

   

      



          

  

     

   

      

       

      1 2 21 2 sinn f f y d            
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