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ABSTRACT

In this paper, a unified model of fractional order photothermoelastic based on
hyperbolic two temperature (HTT) is developed. Fractional order derivatives,
namely Riemann-Liouville (RL), Caputo-Fabrizio(CF), Atangana-Baleanu (AB)
and Tempered-Caputo(TC) are used to propose this model. Two dimensional
axisymmetric problem is explored in the assumed model by employing Laplace
and Henkel transforms. Integral transform technique reduces the system of
equations into ordinary differential equation. The arbitrary constants in the
solution are determined by considering the loading environment on the surface.
Three different categories of the sources are taken to explore the application of
the problem as (i) normal force (ramp type) (ii) distributed thermal source (iii)
concentrated carrier density source. In the new domain, the closed form
expressions of physical quantities like displacement, normal stress, conductive
temperature field and carrier density distribution are derived. The numerical
inversion method is employed to recover the results in a physical domain. The
solutions are presented graphically to know the impact of various fractional order
derivatives in case of hyperbolic two- temperature(HTT), two-temperature(2T)
and one-temperature (1T) for different fractional derivatives (RL,CF,AB and TC)
on physical field quantities w.r.t. radial distance. Unique cases are also explored.
The results provide are helpful for understanding the photothermoelastic
interactions due to various sources and open up wide applications of using new
fractional derivatives.

Keywords: Photothermoelastic; Hyperbolic two temperature; Riemann-Liouville;
Caputo-Fabrizio; Atangana-Baleanu; Tempered-Caputo.

1 INTRODUCTION

TUDY of mechanical and thermal interaction within a solid medium is of emended significance in numerous
fields of science. There are few examples such as high energy particle accelerated devices, modern aeronautical
and astronomical engineering and different system utilized in nuclear and industrial utilization with the

*Corresponding author.
E-mail address: chopra.s22@gmail.com (S. Chopra)

@ @ Copyright: © 2025 by the authors. Submitted for
JOURNAL OF SOLID MECHANICS @ possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).



Thermomechanical Interaction in Photothermoelastic ... 302

consideration of second sound effect in thermoelastic model which plays a vital role in analyzing elastic body with
in a variety of scientific and technological fields. The infinite thermal propagation speed is observed through
conventional uncoupled theories in contradiction with physical observation. Gurtin and Williams [1,2] suggested
that it is more justified to take heat conduction contribution to entropy by 1T and heat supply by another.
Formulation of heat conduction for thermoelastic materials, which has a dependence on conductive temperature and
thermodynamic temperature, has been presented by Chen and his co-researchers [3,4]. These 2T are separated by
heat supply for time-independent situations, and hence when heat supply vanishes, both temperatures will be
identical. But for time-dependent problems, 2T are in general distinct even though heat supply is zero. For many
years, this theory was underestimated and remained ignored. But in present times, this theory noticed by many
researchers, they further obtained advancement in two temperature theory and explained its applications primarily
describing the continuity of stress function as it is discontinuous for one temperature (1T) theory. Youssef [5]
formulated generalized thermoelastic model with two temperature.Youssef et al. [6] analyzed thermal stress to
damaged solid sphere by using HTT generalised theory of thermoelasticity. Youssef and El-Bary [7] modified the
two temperature generalized theory and furnished the HTT generalized thermoelasticity theory. Kumar et.al. [8]
studied the thermoelastic interaction on HTT generalized thermoelasticity in an unbounded medium with a
cylindrical cavity.

The semiconducting materials were used widely in advanced engineering, with the development of technologies.
The study of wave propagation in a semiconducting medium will have important academic significance and
application value. Of recent interest is the relevance of the excitation of short elastic pulses (high-frequency elastic
waves) by photothermal means to several areas of applied physics including the photoacoustic microscope, thermal
wave imaging, determination of thermoelastic material parameters, non-destructive evaluation of devices,
monitoring of laser drilling, and laser annealing and melting phenomena in semiconductors. During the last few
years,photoacoustic (PA) and photothermal (PT) science and technology have significantly evolved new methods in
the investigation of semiconductors and microelectronic structures. PA and PT techniques were recently established
as diagnostic methods with good delicacy to the dynamics of photoexcited carrier (Mandelis[9], Almond and
Patel[10], Mandelis and Michaelian[11], Nikolic and Todorovic[12]).Several researchers [13-15] analysed the
difference of thermoelastic and electronic deformations in semiconductor media by set aside the coupling between
the plasma and the thermoelastic equations. Todorovic [16-18] presented two phenomena to dispense information
about the properties of transport and carrier recombinations in the semiconducting medium. The changes in the
propagations of thermal and plasma waves revert to the linear coupling between the thermal and the mass transport
(i.e., thermodiffusion) have included. Sharma [19] investigated the boundary value problems in generalized
thermodiffusive elastic medium. Sharma et.al.[20] studied the propagation of plane wave in anisotropic
thermoviscoelastic medium in the context of the theory GN type-II and GN type-III. Sharma and Sharma [21]
investigated the temperature inconstancy in tissues based on Penne’s bio-heat transfer equation. Lotfy et.al. [22]
investigated the interaction between a magnetic field and elastic materials with microstructure, whose
microelements possess microtemperatures with photothermal excitation. Jahangir et.al. [23] discussed the reflection
of thermoelastic waves in semiconducting medium. Zenkour [24] constructed the generalized photothermoelastic
problem of beam with modified multi-phase-lag photothermoelasticity theory. Zakaria et.al. [25] used fractional
calculus technique to construct a modified generalized fractional photothermeolastic model. Sharma and Kumar [26]
analysed deformation due to inclined loads in dynamic mathematical model of photothermoelastic (semiconductor)
medium. Sharma and Kumar [27] examined photothermoelastic deformation in dual phase lag model due to
concentrated inclined load. Kumar et.al. [28] investigated deformation due to thermomechanical carrier density
loading in orthotropic photothermoelastic plate. Kumar et.al.[29] studied the deformation due to thermomechanical
and carrier density loading in orthotropic photothermoelastic plate under Moore-Gibson-Thompson thermoelastic
model.

In recent years, fractional calculus has been used for a mathematical tool without any obvious use. Presently
dynamic fractional equations have been a large part of how we model the effect of strange behaviors and memory,
which are common in nature. Fractional derivative models are comprehensively used in the design of polymer
models in the glass state, engines, COVID-19 and heat transfer among other applications. Various methods are being
used by scholars to explore the fractional order derivative.The Riemann-Liouville fractional integral, which is
simple and effective modification of Cauchy model of repeated integral in classical calculus, is mostly utilized
techniques for considering a fractional order integral [30]. This technique has the ability to describe dynamic system
with historical influences as (memory and anomalous behavior), which is commonly seen in most non-natural and
physical system. However the traditional integral order computation lacks such possibilities because of the finite
degree of freedom of the integral order parameter. Various approaches for fractional order derivative and integrals
have been presented in the recent years. The non-singularity displayed at one end of the period of Riemann-
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Liouville integration is believe to be a catalyst for the development of these new technologies. Caputo-Fabrizio [31]
made the first attempt to present a fractional derivative operator based on the exponential function to overcome the
problem of singular kernel. In fact, these fractional derivative operators do not have singular kernel. They have
demonstrated that their derivative operator was suitable for the solution of some physical problems. Atangana and
Alqahtani [32] applied the concept of CF fractional derivatives to the equation of groundwater pollution. They made
some numerical simulations to show the stability and convergence of the analysis. However, some issues were also
pointed out against the CF fractional derivative, as the kernel in integral was non-singular but was still non-local.
Also in CF fractional derivatives the associated integral is not a fractional operator. To fix this shortcoming of the
non-singularity and non-locality of the kernel, two fractional derivatives in Caputo and Riemann-Liouville sense are
defined by Atangana and Baleanu [33,34], based on the generalized Mittag-Leffler function. The concept of AB
fractional derivative to a simple nonlinear system is applied by Atangana and Koca [35] and showed the existence
and uniqueness of the system solution of the fractional order. Algahtani [36] presented the AllenCahn model with
both CF and AB fractional derivative to analyze the differences in real world problem. He solved the model
numerically, using the Crank-Nicholson scheme and presented these numerical simulations to check the
effectiveness of both the kernels. Abouelregal[37] constructed a new generalized fractional thermoelastic heat
conduction model of thermoelasticity with two temperature (2TT) and two phase lags includes Riemann—Liouville,
Caputo—Fabrizio, and Atangana—Baleanu fractional derivative operators. One of the significant applications of
fractional calculus is the description of anomalous diffusion behavior of living particles; and the tempered fractional
calculus describes the transition between normal and anomalous diffusions (or the anomalous diffusion in finite time
or bounded physical space). Tempered fractional calculus can be recognized as the generalization of fractional
calculus. To the best of our knowledge, the definitions of fractional integration with weak singular and exponential
kernels were firstly reported in Buschman’s earlier work [38]. Yu and Deng [39] developed a unified fractional
thermoelastic theory, and applied to study transient responses caused by a moving heat source.

In this paper, deformation due to thermomechanical and carrier density sources in a unified fractional order
photothermoelastic model based on HTT, which includes distinct fractional order derivatives (Riemann-Liouville,
Caputo-Fabrizio, Atangana-Baleanu and Tempered-Caputo). Axi-symmetric problem is considered in the assumed
model, which is simplified by integral transform technique (involving Laplace and Henkel transforms). In the new
domain, physical field quantities (normal stress, conductive temperature field and carrier density) are examined.
Numerical inversion technique is used to convert the resulting expressions in the original physical domain. The
variations of stress components, conductive temperature field and carrier density are depicted graphically to
demonstrate the effects of different fractional derivatives in case of HTT,2T and 1T due to normal force (ramp type),
thermal source and carrier density source. Some special cases are also introduced.

2 ELEMENTARY EQUATIONS

The constitutive relation and the field equations for fractional order theory of photothermoelastic based on HTT by
removing body forces, heat sources and carrier photogeneration sources are described by (Todorovié, [17]; Youssef
et al. [6]; Yu and Deng [39])

(At )+ gy =y, T, ~y,N, = pii,, (1)
Kb, +K'®, = [1 +;—;'Djj ][ pC,T+y, T, —%N] , 2)
o, -2 -Rieloo, 6
t,=(Aey -y, T—y,N)S;+2ue,, “
T=¢-59¢,, 4,j, k, 1=1,2,3) (5)
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where A and ¢ — Lame’s constants, 7 — temperature distribution, 7, — reference temperature, u, — components of
displacement, p— medium density, K — thermal conductivity, K — material constant , ¢, — the components of
stress tensor, D, — the coefficients of carrier diffusion, &, — Kronecker’s delta, C, —the specific heat, N=n-n, ,
n, —equilibrium carrier concentration, E, — the semiconductor energy gap, « —is the fractional order parameter,

(7,,7,)=(32+2u)(a,.d,) , a,—coefficient of electronic deformation and o, — linear thermal expansion
on,
orT

photogenerated carrier lifetime, ¢ — time variable. D! denotes different fractional derivatives as shown in Table 1.

coefficient , ¢ = — coupling parameter, 7, — the thermal relaxation time, A"~ HTT parameter, 7 —

Table 1
Different fractional derivative of « order.
D: Fractional derivatives Symbol Definition
a _ 1 i a-1
m=1 RL Dy, —Wl(t—p) ¢(p)dp
m=2 CF D?, . jexp _a(t—p) ¢(1)(p)dp
r l-ay l-a
m=3 AB o - jE _alp) ¢ (p)dp
» l-ay © l-a
et L d[e”9(p) ]
=4 TC D = [(t-p) ——4,
" e F(l—a);[(t P

3 FORMULATION OF THE PROBLEM

We consider a homogeneous, isotropic photothermoelastic half-space based on HTT in the undeformed state at
uniform temperature 7, .The cylindrical polar coordinate system (r, 9,2) having an origin on the plane surface
z =0, with the z-axis putting vertically into the medium is introduced. As the problem considered is plane axi-
symmetric, the components #, = 0,u,,u_,T,P and N are independent of & .A normal force (ramp type), distributed

thermal source and concentrated carrier density source is assumed to be acting at the origin of the polar coordinate
system. Since we are considering axi-symmetric, two dimensional problem, so we assume the components of the

displacement (u) , temperature (') and carrier density (V) of the form
u= (u,, (r,z,t),O,uZ (r,z,t)), T= T(r,z,t) and N = N(r,z,t), (6)

For two dimensional formulations, Egs. (1) - (5) in accordance with consideration of Eq. (6), take the form

Oe or ON o*u
(/1-1—;1)5—1—;1 Au, ~y,—=7,——=

»

or ""or -7 o’ )
Oe or ON o’u
Atpu)—+uAu —y,—-y, —= -,
(Arp)—+p bu—y,—=y,—=p v (8)
. Ta 2 2 E
(K A+KQAJ<D: 1+5pe || pe @ 2T+y,.7;a—f——ga—N : ©)
ot a! ot ot T Ot
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ON N T

DAN ———-—+¢—=0,
¢ o T ¢ T (10)
Ou,
¢, :le+2,ug—;/tT—;/nN, (11)
. Ou, . Ou,
a =M o oz ) (12)
T oo .
—= - [ AD,
o or p (13)
2 2
where A = 6—2 +li+6_2 and e= %4—&—1— e . Following dimensionless parameters are taken as:
r° ror oz r r 0oz

’

(r’,z’,u,f U ):771C0 (r,z,u,,,uz),(tﬂ,tz'z,tz',): ! (trr,tzz,tz,),(t',z",r; ):nle (t,z',rq),

A+2u
T N o ' (1
TV: 7/’2’N,:—’®’:7/t z’ﬂ* :ﬂ—z'
pC(] nD pC(] C{]
C . L . .
Also 7, = pKE ,C2 = 4 +2,u' Eqgs. (7) - (13) reduce to the following form by taking into consideration Eq. (14)
P

and after suppressing the prime as:

G e O NPy
S & T e T e (15)

oT ON _u,

%+ Au, ———-g,— 16
& Oz & 2 oz & oz o’ (16)
0 T o’T 0’e g, ON
A+—A|®=|1+-LD° — g — 2T 17
(g“ ot j { al ’”J(gs o St T o {a”n
T ON N
SINEEE
ou,
¢, =gge+2gzg—T—g3N, (19)
. Ou, +6ur
zr _g2 ar aZ H (20)
O*'T &*d 0 106
—_— —t——|D
ot o p [8r2 r@r] D)
where

Journal of Solid Mechanics Vol. 17, No. 3 (2025)



Thermomechanical Interaction in Photothermoelastic ... 306

}’+/’l /’l ' _ynnu _ K* _pCe _ 7/!27:) _ Egn”}/l _ gpcf 1 _ l
e A G O To R O B Yo A © T PR R TRV RE YR o
Potential functions Q and ¥ are taken into account for further simplifications
o oY o (*Y 1o¥
u =—-=+ and u, =——| —+—— |. (23)
or Oroz oz or~ ror
Egs. (15) — (20) involving Eq. (23) are reduce to
(A jQ T-gN=0, (24)
1 ¢
-— 2 |¥=0,
( g, or J (25)
0 T o’T ’Q g, ON
A+—A |®=|1+-LD2 —+gA =L, 26
(g“ ot j ( a! ”‘J[gs ok S a (26)
&s 0.1
=T+|A-g)|—+—||N=0,
T [ g{a: z’D 27)
o’Q
t,=gAQ+2g —- = -T-gN, (28)
o2 o'Q 62‘1’ 62 -
» =& 8r82 ot o) (29)
We define integral transforms (Laplace and Hankel) as:
?(r,z,p) = J.f(r,z,p) e ’dt, (30)
0
f(n,z,p) r z, p J. 7z, p rJ (nr)dr, (31)

0

where p and  are the Laplace and the Hankel transform parameters and J, () being the Bessel function of order n of
the first kind. Using Eqs. (30) - (31), on Egs. (21), (24)-(29), we obtain

d’ . d? . .
_2_772_P2 Q- 1_51 —_77 ®-gN=0, (32)
dz dz*
& . & (& A
Go| =51 |Q+| &y | 51" |+ & | 1-8 | =1 || |®+g,N=0, (33)
dz dz dz
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* dz 2 ol d2 2 A
814 1_51 2 D+ -5 N —&;s N =0, (34)
dz dz
dZ 5 pZ n
—-n -—|¥=0,
[dz2 g g (35)
0 for 1T
T=(01-8A)D,where 5 ={a*  for 2T, (36)
ﬂ*
~  Jfor HIT
p
where a” is two-temperature parameter.
pr.g g 1 2
Also g, = P78 = (84 ¥ P): 8 = P 785080 =~ 081 =T B = & [IH;}TS =le—op
Table 2
Laplace transform of a order fractional derivative (for 0 < < 1)
2 Definition Laplace transform
1 p a-1 Ta
=1 (RL - [(¢- d, —1+-Lp”
m=1 (RL) Fa);[( p)" ¢(p)ip P
17 a(t=p) | o i p
=2(CF = — d =1+-< £
m=2(CF) l—a;[e)(p{ l-a }/ﬁ (p)p +a![(l—a)p+a]
m=3(AB) -L Jg, a(t=p) 3" (p)dp S L/
l-ay l-«a a![(l—a p"+a]
er o de”d(p)] 7 )
=4(TC = t-p) "y =1+-L ,
m=4TC) F(l—a);[( r) dp P +a!(p+l)
x —tempered parmeter, y >0
After some algebraic calculation of Egs. (32) - (35) ,determine the following:
6 4 2 oY A
(RD°+R,D* +RD” +R, )(Q,®,N) =0, a7
and
(D* —m?)¥ =0. (%)
Egs. (28) and (29) with aid of Eqgs (30) and (31) become
A & d* | A d¥ N R | P
t, = —_—— +2g, — |Q+(-2 ——|1-5| —-— d-g.N,
= {g,; ( pEi j & |+ (218)— N & (39)
. dQ d’ )
t, =-2ng, i ol v, (40)
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where

R =g;- 51*g10 >
R, =810+ 80817 — 81380 ~ 81681z ~ L1582 ~ &:810820 +g1og2251* +g10’7251*’ 41)
Ry =838, — 816810 — 81082 ~ &:810821 ~ &1081782 T £13816820 T £1681s8» _g10g17772 _g10g22n251* +g3g10g20772’

2 2
R, = 813856821 + 8168198 + 11" 8:810821 + 1181081782
Also
86 = 772 +p2’g17 = 51*772 +1,84 = 1*g12 +81:80 =& _77251*&2 _g117729g20 = _51*g14’g21 =8u +77251*g149g22 =8is +772'

The general solution of Egs. (37) and (38) satisfying the radiation conditions can be written as:

(42)
=
W oCem, 43)
where m, (j =1,2,3) are roots of (RID6 +R,D* +R.D* +R, ) = 0 and coupling parameters are
3 Rt +Rym’ + R,
hy = s (44)
= Rym; + Rsm; + R,
3R, mt+R,m> +R,,
by = (43)
= Rym; +Rm; +R,
Also
pz
2 2
my =0+, (46)
&
where
Ry =85, Ry = 819~ 813820 — i8> Ry = 81080 — 813821 Ry = 105 Ro = 1110 + £10&0> Rig = 1178102 » @7

R, =88R, = _nzglogzo +8,80.R; = _nngIgIO )

Substituting the values of ®, N ,f) and ¥ from Egs. (42) and (43) in Egs. (23), (39) and (40) after using Egs.
(30) and (31), yield

3
ﬁr =-n (Z Cjefm’z J +m,C,e", (48)

(49)

Journal of Solid Mechanics Vol. 17, No. 3 (2025)



309 S. Chopra et al.

3

t, = Zdleje i +d,,C,e™™, (50)
=1

~ 3 —m —

t, :Zdzjcje " +d,C,e™, (51)
=

where

d,; =(ga +2g2)mjz. -gn —(1—61*(m12. —nz))hlj -gh,; .d,=-2ng,m,,d,, ==2ng,m;and d,, =-g, (mj +772)(f0r j=123)

4 RESTRICTIONS ON THE BOUNDARY

The boundary restrictions for the assumed model are subjected to normal force (ramp type), distributed thermal
source, concentrated carrier density sources at the plane z = 0 are considered as:

t =-F (r,z,t) ,
tzr = 0 2 0
at z=
$=F,(r.zt) , (32)
N=F,(r,zt) ,
where
0, <0
E(ra)=F, 2000 oci<q, (53)
2rr | t,
1, 1>t
F,(r,z,t) = F  H(a—r)5 (1), (54)
5(r)
F,(r,z,t)=F, o(t).
(rz)=Fy =6 (1) (55)
Also, H () is Heaviside step function , F,; is the magnitude of the force, F,, is the constant temperature

applied on the boundary and F;; is constant.
Applying Laplace and Hankel transform defined by Eqgs. (30) - (31) on Egs. (52) - (55), we attain

1-e?)
2xt,p’

N

ZLzz :_FAi (n’p):FiO

>

at z=0 (56)

Journal of Solid Mechanics Vol. 17, No. 3 (2025)



Thermomechanical Interaction in Photothermoelastic ... 310

A

Substituting the values of 7_,7

zr?

qg and N from Egs. (50) - (51) and (42) in the transformed boundary restrictions

(56), yield

3 A

Zldl Ce" +d,Ce " ==F (n,p), (57)

J=
3

;dzjcje*”’f +d,,C,e" =0 , (58)
3 —m;z al

;;(hwcge “)=E(n.p) (59)
3 —-m;z al

Z(%,-C,-e F)=F(n.p) - (60)

Jj=1

Egs. (57) - (60) are taken in matrix form as:

AC=B, (61)
dye d,e, dse d,e, o -K (xl ,l‘)

A= dye dye, dye, dye, C= G, B= 0 (62)
h.e, h,e, hse; hye, G, F, (xlat)
h,e hpe, hype; hye, C, F (xl J)

m;z

and e; =e " j=1,2,3,4. From Eq. (62), we determine

A
G zf,j:1,2,3,4. (63)

where

A =det4,A; = determinant of 4 when ™ column of 4 replaced by B

(64)
and
d11d22h13h24 _dudzzhmhzs _d11d23h12h24 +d11d23h14h22 +d11d24h12h23 _d11d24h13h22 -
A= d12d21h13hz4 +d12d21h14h23 +d12d23h11hz4 _d12d23h14h21 _d12d24h11h23 +d12dz4h13h21 + (65)
’ d13d21h12h24 _d13d21h14h22 _d13d22h11h24 +d13d22h14h21 +d13d24h11h22 _d13d24h12h21 -
d14d21h12h23 + d14d21h13h22 + d14d22h11h23 - d14d22h13h21 - d14d23h11h22 + d14dz3h12h21
A= (ER14 +ER s+ FR )s (66)
A, = (F;RN +ER +F;R19) > (67)
Ay = (ERzo +FER,, +F3R22) > (68)
A= (ER23 +ER,, +F3R25) > (69)
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where

s = Ey (dyhyshy, —dyyhyyhyy = dyshyyhy, +dyhy by, +doyhyyhyy —doyyhy by, ),

s =E,(d,dyh, —d,,d,hy, —ddyyhy, +d,ydyyhy, +dydyy by, —ddyshy, ),

o =, (dydyhy —dydyhy, +ddyhy, —dydyhy, —dyydyhy +dyydyshy),

E, (=dy hyhyy +dy by, + dyhy by, —dy by by, —dyhy b, +doyhy ),
~d, dyhy, +d, dy by, +dydy by, —dydoyhy, —ddy hy, +ddyhy,),

R

R

R

A

Ry =E,(

Ry =E,(d,dyh, —ddyh, —dydy by, +dydyy by, +dydy by —dyydysh,), (70)
R,y = E, (dyh,hy, —dy by by, —doyhy by, + doy iy by +doyhy oy —dy by by ),
R, =E,(d,dyh,, —d,dyh, —d,d, h, +d,d,h, +d,d,h,—d,d,h,),
Ry, =Ey(
Ry =E,(
Ry =Ey(
Ry =E,(

E3 d11d24h12 _d11d22h14 + d12d21h14 _d12d24h11 _d14d21h12 _d14d22h11 )’
23 E4

N

2

d21h12h23 +d21h13h22 +d22h11h23 _d22h13h21 _dzshnhzz +d23h12h21 )s
dndzzhzs + d11d23h22 + d12d21h23 - d12d23h21 - d13d21h22 + d13d22h21 )7
4 dndzzhn _dndzshlz _d12d21h13 +d12d23h11 +d13d21h12 _dlsdzzhn )’

24 E4
E

25

and e

—(my +my +my+my )z —(my +my+my )z —(my+my+my )z —(my +my+my )z —(my+my+my)z
1_34=Ee_34_Ee134:E2’elz4:E 1 Iy g

0> =L, e = E,. Substituting the values
of C; from Eqs. (63) in Eqgs. (48) - (51) and (42), determine the displacement components, stress components,

conductive temperature and carrier density distribution as:

i, = (L (1) + L (o) < L (n.p) a
i = (L (0.0) Ly (0.0) + L, (1)) )
L. =i(L7ﬁl (n.p)+ LiE; (n.p) + LyF5 (n.p)) (73)
L, =i(Lmﬁl (m.p)+ LuF, (n.p)+ Lo (n.p)) (74)
¢3=%(L13ﬁl (n.0)+ L (n.0)+ LsFy (0. 1)) » (75)
NZ%(%E (77,17)+L1713z(ﬂaP)Jrngf'}(ﬂap)) : (76)
where

_77R14E1 _77R17E2 _77R20E3 +m4R23E4 :_77R15E1 _77R18E2 _77R21E3 +m4R24E4 )

- (77)

4) = (_77R16E1 —NRGE, =NRyEy+m RysEy,m R E +my R E) +my Ry Ey + 772R23E4)
) (mlRISEl +m, R Ey +m Ry Ey +1° R, E, ,my R\ E, +m, R E, + m,R, E; + 772R25E4)

d11R14E1 + d12R17E2 +d13R20E3 +d14R23E4 ’dllRISEl +d12R18E2 + d13R21E3 +d14R24E4)
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dyRE, +dy,RE, +d R, E, +dy R, E, dy R E, +dy,RE, +d,R,E, +dy,RyE,)

h R,E, +h,R.E, +h,RyE, h R E +h,RE,+h,R,E,)

h\RE, +h,RyE, +h,R,\E, by R, E, +hy, R, E, + hy, R, E, ) (77)
hyRsE, +hy,RE, +hy,R, E; ,hy R E, +hy,RE, +h,R,E;)

(
(
(
(

5 PARTICULAR CASES

(i) For normal force (ramp type) F,, = F;, =0 yield

(ﬁ,,ﬁzaizzafﬂa Aa](]) = %((L17L4’L7’L10’L137L16 )ﬁ; (77,]7)) 4 (78)

where £ (17, p) is given by Eq. (56).
(i1) For distributed thermal source F,, = F,, =0 yield

S| 2
N):X((LzaLS:LSsLll’L14’L17)E (n’p)) ’ (79)

N A A
>

(ur’uz’tzz’tzr’

where £, (1, p) is given by Eq. (56).

(iii) For concentrated carrier density source £, = F,, =0 yield

N A

(d,~adzatzzstzyy¢39ﬁ) :i((L33L6’L9’L12’L15’L18)FA; (U,p)) > (80)

where £, (1, p) is given by Eq. (56).

6 UNIQUE CASES

(a) Considering m =1,2,3,4 inz_, yield the resulting expressions for RL, CF, AB and TC model of fractional order
derivatives.
(c) By taking &7 =a", corresponding expressions for different fractional order photothermoelastic with two

temperature are obtained.
(d) For 612 =0, resulting expressions for different fractional order photothermoelastic with one temperature are

determined.

7 NUMERICAL RESULTS AND DISCUSSION

For the numerical calculations, we take material constants for orthotropic Silicon (Si) material as:

A=3.64 N/m?, 11=5.46 N/mz,yn =-0.029715m’, p :233Okg/m3,T0 =300K,7, =2ps,K =150 w/mk,
E,=1.1leV,C, =695 /kgK,t =5s,D, =2.5m2/s,n0 =10"m>,n, =10 m™.

Case-I: Fig. 1.1-1.9 depict the variations of all field variables with radial distance » on the plane z =1 for the
different types of fractional order derivatives with HTT.
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Figs. 1.1-1.3 represent normal force (NF with HTT), Figs. 1.4-1.6 represents thermal source (TS with HTT),
Figs. 1.7-1.9 represent carrier density source (CDS with HTT). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB)
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.

Fig. 1.1-1.3 depicts tendency of ¢_,¢ and N vs. r in case of NF with HTT for different fractional order models.
TC model enhances the immensity of 7, whereas minimum value of ¢ attained due to CF type fractional

operator for the whole range of . Near and far off the source , the immensity of ¢ and N are enhanced due to AB

model whereas TC model minimize the values.

The curves correspond to N for TC model is opposite oscillatory to all other models for finite domain of . Fig.
1.4-1.6 shows movement of ¢_,¢ and N vs. r in case of TS with HTT for different fractional order models. Near and
far off the source, the magnitude of #_ and ¢ intensify due to CF model, whereas ¢_ and ¢ is less impacted due to
TC model. Away from source, ¢ and N attains increasing pattern for all assumed models. The behavior and
variation of ¢ and N is almost similar with distinct magnitude.

Fig. 1.7-1.9 displays movement of ¢_,¢ and N vs. r in case of CDS with HTT for different fractional order
models. The impact of TC, AB and CF models on the immensities of z_,¢ and N respectively is maximum. The
curves correspond to ¢ moves in similar pattern due to CF and RL models. Far off the source, all the curves
correspond to N gets increasing trend for all models.
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Case-II: Fig. 1.10-1.18 depict the variations of all field variables with radial distance » on the plane z =1 for the
different types of fractional order derivatives with 2T.

Figs. 1.10-1.12 represent normal force (NF with 2T), Figs. 1.13-1.15 represents thermal source (TS with 2T),
Figs. 1.16-1.18 represent carrier density source (CDS with 2T). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB)
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.
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Fig. 1.10-1.12 depicts tendency of ¢_,¢ and N vs. r in case of NF with 2T for different fractional order models.
AB model enhances the immensity of ¢ whereas TC model have less impact on values of ¢ . The behavior and
variation of ¢ and N are oscillatory for all type of fractional operators. The variations of N for TC model is opposite

oscillatory to RL,CF and AB models for finite domain of 7.
Fig. 1.13-1.15 shows movement of 7_,¢ and N vs. r in case of TS with 2T for different fractional order models.

Near and far off the source, CF model raises the magnitude of z_ .whereas TC minimize the values. The curve

corresponds to ¢ and N gets maximum value due to TC and AB models respectively. All the curves correspond to

t_,¢ and N attain parabolic pattern for all assumed models.

Fig. 1.16-1.18 displays movement of 7_,¢ and N vs. r in case of CDS with 2T for different fractional order
models. All the curves correspond to ¢_ are monotonically decreasing in the interval 1 <r <3 and attain decreasing
trend for the whole range of ». The curves relative to ¢ for CF model is opposite oscillatory to AB and RL models.
The immensity of N is enhanced due to AB model and gets minimum value for CF model for the intermediate values

of r.
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Case-III: Fig. 1.19-1.27 depict the variations of all field variables with radial distance » on the plane z =1 for the

different types of fractional order derivatives with 1T.

Figs. 1.19-1.21 represent normal force (NF with 1T), Figs. 1.22-1.24 represents thermal source (TS with 1T),
Figs. 1.25-1.27 represent carrier density source (CDS with 1T). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB)
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.
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Fig. 1.19-1.21 depicts tendency of ¢_,¢ and N vs. r in case of NF with 1T for different fractional order models.

RL model intensify the immensity of ¢,; for the whole range of r, whereas TC model have less impact as compare to
other models. The curves correspond to¢ are monotonically decreasing in initial range of » due to RL and TC

model. The curves relative to N are monotonically decreasing in initial range of  due to RL, CF and TC models.
Fig. 1.22-1.24 shows movement of 7_,¢ and N vs. r in case of TS with 1T for different fractional order models.
Near the source, RL model intensify the magnitude of ¢_ .whereas TC model minimize the value of ¢_ for the
whole range of ». The curve corresponds to ¢ due to AB model is opposite oscillatory to RL model in the finite
domain of . Similarly, curves correspond to N for TC model is opposite oscillatory due to AB and CF models.

Fig. 1.25-1.27 displays movement of z_,¢ and N vs. r in case of CDS with 1T for different fractional order
models. The behavior and variation of ¢_ for AB model is opposite to RL,CF and TC model in the initial range of r.

¢ attain its maximum magnitude due to TC model and impacted less due to CF and AB models for the whole range
of 7. The curves correspond to N for TC model is opposite oscillatory to CF model.
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8 CONCLUSIONS

In this paper, fractional order derivatives Riemann-Liouville (RL), Caputo-Fabrizio(CF),Atangana-Baleanu (AB)
and Tempered-Caputo(TC) have been incorporated in a uniform manner in the photothermoelastic with hyperbolic
two temperature model. Laplace and Henkel transforms are used to solve the problem. Normal force, thermal
source, carrier density sources are taken to study the impact of HTT, 2T and 1T under different fractional order
derivatives. From numerically computed results we conclude following:
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In case of HTT, the immensity of z_ enhances due to TC model, whereas this model have less impact on ¢ and
N as compare to other assumed models for NF. The curves correspond to ¢_ and ¢ are more impacted due to CF

model , however N attain maximum magnitude due to RL model for TS. The Impact of CF model is minimum on
t_ and ¢ and maximum on N in case of CDS.

For 2T, the fractional order derivative CF have more impact on 7_ and N and less impact on¢ for NF. The
curves correspond to f_,¢ and N appear with parabolic pattern due to all models for TS. For CDS, the curves
correspond to ¢_ decreases monotonically in the initial range of radial distance. A non-uniform pattern is noticed
due to all assumed models for ¢ and N.

For 1T, The impact of TC model is more on ¢_ as compare to ¢ and N for NF. In case of TS, magnitude of 7_,¢

and N increases due to CF and RL models respectively. For CDS, non-uniform pattern is noticed for all models.
It is observed that present study is significant to the physical understanding of transient photothermoelastic
interaction with distinct fractional order derivatives.
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