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ABSTRACT
In this paper, a unified model of fractional order photothermoelastic based on 
hyperbolic two temperature (HTT) is developed. Fractional order derivatives, 
namely Riemann-Liouville (RL), Caputo-Fabrizio(CF), Atangana-Baleanu (AB) 
and Tempered-Caputo(TC) are used to propose this model. Two dimensional 
axisymmetric problem is explored in the assumed model by employing Laplace 
and Henkel transforms. Integral transform technique reduces the system of 
equations into ordinary differential equation. The arbitrary constants in the 
solution are determined by considering the loading environment on the surface. 
Three different categories of the sources are taken to explore the application of 
the problem as (i) normal force (ramp type) (ii) distributed thermal source (iii) 
concentrated carrier density source. In the new domain, the closed form 
expressions of physical quantities like displacement, normal stress, conductive 
temperature field and carrier density distribution are derived. The numerical 
inversion method is employed to recover the results in a physical domain. The 
solutions are presented graphically to know the impact of various fractional order 
derivatives in case of hyperbolic two- temperature(HTT), two-temperature(2T) 
and one-temperature (1T) for different fractional derivatives (RL,CF,AB and TC) 
on physical field quantities w.r.t. radial distance. Unique cases are also explored.
The results provide are helpful for understanding the photothermoelastic 
interactions due to various sources and open up wide applications of using new 
fractional derivatives.
                              

Keywords: Photothermoelastic; Hyperbolic two temperature; Riemann-Liouville; 
Caputo-Fabrizio; Atangana-Baleanu; Tempered-Caputo.

1    INTRODUCTION

TUDY of mechanical and thermal interaction within a solid medium is of emended significance in numerous 
fields of science. There are few examples such as high energy particle accelerated devices, modern aeronautical 

and astronomical engineering and different system utilized in nuclear and industrial utilization with the 
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consideration of second sound effect in thermoelastic model which plays a vital role in analyzing elastic body with 
in a variety of scientific and technological fields. The infinite thermal propagation speed is observed through 
conventional uncoupled theories in contradiction with physical observation. Gurtin and Williams [1,2] suggested 
that it is more justified to take heat conduction contribution to entropy by 1T and heat supply by another. 
Formulation of heat conduction for thermoelastic materials, which has a dependence on conductive temperature and 
thermodynamic temperature, has been presented by Chen and his co-researchers [3,4]. These 2T are separated by 
heat supply for time-independent situations, and hence when heat supply vanishes, both temperatures will be 
identical. But for time-dependent problems, 2T are in general distinct even though heat supply is zero. For many 
years, this theory was underestimated and remained ignored. But in present times, this theory noticed by many 
researchers, they further obtained advancement in two temperature theory and explained its applications primarily 
describing the continuity of stress function as it is discontinuous for one temperature (1T) theory.  Youssef [5] 
formulated generalized thermoelastic model with two temperature.Youssef et al. [6] analyzed thermal stress to 
damaged solid sphere by using HTT generalised theory of thermoelasticity. Youssef and El-Bary [7] modified the 
two temperature generalized theory and furnished the HTT generalized thermoelasticity theory. Kumar et.al. [8] 
studied the thermoelastic interaction on HTT generalized thermoelasticity in an unbounded medium with a 
cylindrical cavity. 

The semiconducting materials were used widely in advanced engineering, with the development of technologies. 
The study of wave propagation in a semiconducting medium will have important academic significance and 
application value. Of recent interest is the relevance of the excitation of short elastic pulses (high-frequency elastic 
waves) by photothermal means to several areas of applied physics including the photoacoustic microscope, thermal 
wave imaging, determination of thermoelastic material parameters, non-destructive evaluation of devices, 
monitoring of laser drilling, and laser annealing and melting phenomena in semiconductors. During the last few 
years,photoacoustic (PA) and photothermal (PT) science and technology have significantly evolved new methods in 
the investigation of semiconductors and microelectronic structures. PA and PT techniques were recently established 
as diagnostic methods with good delicacy to the dynamics of photoexcited carrier (Mandelis[9], Almond and 
Patel[10], Mandelis and Michaelian[11], Nikolic and Todorovic[12]).Several researchers [13-15] analysed the 
difference of thermoelastic and electronic deformations in semiconductor media by set aside the coupling between 
the plasma and the thermoelastic equations. Todorovic [16-18] presented two phenomena to dispense information 
about the properties of transport and carrier recombinations in the semiconducting medium. The changes in the 
propagations of thermal and plasma waves revert to the linear coupling between the thermal and the mass transport 
(i.e., thermodiffusion) have included. Sharma [19] investigated the boundary value problems in generalized 
thermodiffusive elastic medium. Sharma et.al.[20] studied the propagation of plane wave in anisotropic 
thermoviscoelastic medium in the context of the theory GN type-II and GN type-III. Sharma and Sharma [21] 
investigated the temperature inconstancy in tissues based on Penne’s bio-heat transfer equation. Lotfy et.al. [22]  
investigated the interaction between a magnetic field and elastic materials with microstructure, whose 
microelements possess microtemperatures with photothermal excitation. Jahangir et.al. [23] discussed the reflection 
of thermoelastic waves in semiconducting medium. Zenkour [24] constructed the generalized photothermoelastic 
problem of beam with modified multi-phase-lag photothermoelasticity theory. Zakaria et.al. [25] used fractional 
calculus technique to construct a modified generalized fractional photothermeolastic model. Sharma and Kumar [26] 
analysed deformation due to inclined loads in dynamic mathematical model of photothermoelastic (semiconductor) 
medium. Sharma and Kumar [27] examined photothermoelastic deformation in dual phase lag model due to 
concentrated inclined load. Kumar et.al. [28] investigated deformation due to thermomechanical carrier density 
loading in orthotropic photothermoelastic plate. Kumar et.al.[29] studied the deformation due to thermomechanical 
and carrier density loading in orthotropic photothermoelastic plate under Moore-Gibson-Thompson thermoelastic 
model. 

In recent years, fractional calculus has been used for a mathematical tool without any obvious use. Presently 
dynamic fractional equations have been a large part of how we model the effect of strange behaviors and memory, 
which are common in nature. Fractional derivative models are comprehensively used in the design of polymer 
models in the glass state, engines, COVID-19 and heat transfer among other applications. Various methods are being 
used by scholars to explore the fractional order derivative.The Riemann-Liouville fractional integral, which is 
simple and effective modification of Cauchy model of repeated integral in classical calculus, is mostly utilized 
techniques for considering a fractional order integral [30]. This technique has the ability to describe dynamic system 
with historical influences as (memory and anomalous behavior), which is commonly seen in most non-natural and 
physical system. However the traditional integral order computation lacks such possibilities because of the finite 
degree of freedom of the integral order parameter. Various approaches for fractional order derivative and integrals 
have been presented in the recent years. The non-singularity displayed at one end of the period of Riemann-
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Liouville integration is believe to be a catalyst for the development of these new technologies. Caputo-Fabrizio [31] 
made the first attempt to present a fractional derivative operator based on the exponential function to overcome the 
problem of singular kernel. In fact, these fractional derivative operators do not have singular kernel. They have 
demonstrated that their derivative operator was suitable for the solution of some physical problems. Atangana and
Alqahtani [32] applied the concept of CF fractional derivatives to the equation of groundwater pollution. They made 
some numerical simulations to show the stability and convergence of the analysis. However, some issues were also 
pointed out against the CF fractional derivative, as the kernel in integral was non-singular but was still non-local. 
Also in CF fractional derivatives the associated integral is not a fractional operator. To fix this shortcoming of the 
non-singularity and non-locality of the kernel, two fractional derivatives in Caputo and Riemann–Liouville sense are 
defined by Atangana and Baleanu [33,34], based on the generalized Mittag-Leffler function. The concept of AB 
fractional derivative to a simple nonlinear system is applied by Atangana and Koca [35] and showed the existence 
and uniqueness of the system solution of the fractional order. Algahtani [36] presented the AllenCahn model with 
both CF and AB fractional derivative to analyze the differences in real world problem. He solved the model 
numerically, using the Crank-Nicholson scheme and presented these numerical simulations to check the 
effectiveness of both the kernels. Abouelregal[37] constructed a new generalized fractional thermoelastic heat 
conduction model of thermoelasticity with two temperature (2TT) and two phase lags includes Riemann–Liouville, 
Caputo–Fabrizio, and Atangana–Baleanu fractional derivative operators. One of the significant applications of 
fractional calculus is the description of anomalous diffusion behavior of living particles; and the tempered fractional 
calculus describes the transition between normal and anomalous diffusions (or the anomalous diffusion in finite time 
or bounded physical space). Tempered fractional calculus can be recognized as the generalization of fractional 
calculus. To the best of our knowledge, the definitions of fractional integration with weak singular and exponential 
kernels were firstly reported in Buschman’s earlier work [38]. Yu and Deng [39] developed a unified fractional 
thermoelastic theory, and applied to study transient responses caused by a moving heat source. 

In this paper, deformation due to thermomechanical and carrier density sources in a unified fractional order 
photothermoelastic model based on HTT, which includes distinct fractional order derivatives (Riemann-Liouville, 
Caputo-Fabrizio, Atangana-Baleanu and Tempered-Caputo). Axi-symmetric problem is considered in the assumed 
model, which is simplified by integral transform technique (involving Laplace and Henkel transforms). In the new 
domain, physical field quantities (normal stress, conductive temperature field and carrier density) are examined. 
Numerical inversion technique is used to convert the resulting expressions in the original physical domain. The 
variations of stress components, conductive temperature field and carrier density are depicted graphically to 
demonstrate the effects of different fractional derivatives in case of HTT,2T and 1T due to normal force (ramp type), 
thermal source and carrier density source. Some special cases are also introduced.

2    ELEMENTARY EQUATIONS

The constitutive relation and the field equations for fractional order theory of photothermoelastic based on HTT by 
removing body forces, heat sources and carrier photogeneration sources are described by (Todorović, [17]; Youssef 
et al. [6]; Yu and Deng [39])
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where  and   Lame’s constants, T  temperature distribution, oT  reference temperature, iu  components of 

displacement,   medium density, K  thermal conductivity, *K  material constant , ijt  the components of 

stress tensor, eD  the coefficients of carrier diffusion, ij  Kronecker’s delta , eC  the specific heat, oN n n  , 

on  equilibrium carrier concentration, gE  the semiconductor energy gap,   is the fractional order parameter,

    , 3 2 ,t n t nd      , t  coefficient of electronic deformation and nd  linear thermal expansion 

coefficient , on

T



 


coupling parameter, q  the thermal relaxation time, -  HTT parameter  , 

photogenerated carrier lifetime, t  time variable. mD denotes different fractional derivatives as shown in Table 1.

Table 1 
Different fractional derivative of  order.

mD                         Fractional derivatives                 Symbol                                     Definition
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3   FORMULATION OF THE PROBLEM

We consider a homogeneous, isotropic photothermoelastic half-space based on HTT in the undeformed state at 
uniform temperature oT .The cylindrical polar coordinate system  , ,r z having an origin on the plane surface 

0z  , with the z-axis putting vertically into the medium is introduced. As the problem considered is plane axi-
symmetric, the components 0, , , ,r zu u u T P  and N are independent of  .A normal force (ramp type), distributed 

thermal source and concentrated carrier density source is assumed to be acting at the origin of the polar coordinate 
system. Since we are considering axi-symmetric, two dimensional problem, so we assume the components of the 
displacement  u , temperature ( )T and carrier density ( )N of the form   

      , , ,0, , , , , ,r zu r z t u r z t T T r z t u and  , , ,N N r z t   (6)

For two dimensional formulations, Eqs. (1) - (5) in accordance with consideration of Eq. (6), take the form
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We define integral transforms (Laplace and Hankel) as:

   
0

, , , , ,ptf r z p f r z p e dt


 
    
(30)

     
0

ˆ , , , , , , ( ) ,nf z p H f r z p f r z p r J r dr 


    
    
(31)

where p and ߟare the Laplace and the Hankel transform parameters and ()nJ being the Bessel function of order n of 

the first kind. Using Eqs. (30) - (31), on Eqs. (21), (24)-(29), we obtain
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2

0 1

2 ,

for T

a for T

for HTT
p





 



 




  

  
(36)

where a is two-temperature parameter.  

Also  2 2 7 10
10 6 11 4 12 5 13 14 15 9

1
, , , , , , 1 .

!
qs

s s s m

p g g
g p g g g p g p g g g g g p p




  
   

             
 

Table 2
Laplace transform of  order fractional derivative (for 0 1) 

mp                                                        Definition                                                              Laplace transform

m=1 (RL)                                   =
     1

0

1 t

t p p dp
 





                                                      =1

!
q p







m=2(CF)                                   =
     1

0

1
exp

1 1

t t p
p dp




 
 
   

                                       =
 

1
! 1

q p

p


  


   

m=3(AB)                                  =
     1

0

1

1 1

t t p
E p dp








 

 
 

   
                                      =

 
1

! 1
q p

p

 




  


   

m=4(TC)                                 =
   

0

( )

1

ptt d e pe
t p dp

dp


 




   

                                          =  1 ,
!

q p






 

                                                                         , 0tempered parmeter  

After some algebraic calculation of Eqs. (32) - (35) ,determine the following:

  6 4 2
1 2 3 4

ˆ ˆ ˆ, , 0,R D R D R D R N        
(37)

and

2 2
4

ˆ( ) 0.D m   (38)

Eqs. (28) and (29) with aid of Eqs (30) and (31) become

 
2 2 2

2 2
2 2 1 32 2 2

ˆ
ˆ ˆ ˆˆ 2 2 1 ,zz o

d d d d
t g g g g N

dzdz dz dz
         

               
      

(39)

2
2

2 2 22

ˆ
ˆˆ 2 ,zr

d d
t g g g

dz dz
 

 
     

 
(40)
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where

1 18 1 10

2
2 19 10 17 13 20 16 18 18 22 3 10 20 10 22 1 10 1

2 2 2
3 13 21 16 19 19 22 3 10 21 10 17 22 13 16 20 16 18 22 10 17 10 22 1 3 10 20

2
4 13 26 21 16 19 22 3

,

,

,

R g g

R g g g g g g g g g g g g g g g

R g g g g g g g g g g g g g g g g g g g g g g g g g

R g g g g g g g



  

   





 



 

       

          

   2
10 21 10 17 22 ,g g g g g

(41)

Also

2 2 2 2 2 2 2
16 17 1 18 1 12 11 19 12 1 12 11 20 1 14 21 14 1 14 22 15, 1, , , , , .g p g g g g g g g g g g g g g g g                            

The general solution of Eqs. (37) and (38) satisfying the radiation conditions can be written as:

   
3

1 2
1

ˆ ˆ ˆ, , 1, , ,jm z

j j j
j

N h h C e



   (42)

4
4

ˆ ,m zC e  (43)

where  1,2,3jm j  are roots of  6 4 2
1 2 3 4 0R D R D R D R    and coupling parameters are

4 23
8 9 10

1 4 2
1 5 6 7

j j
j

j j j

R m R m R
h

R m R m R

 


  (44)

4 23
11 12 13

2 4 2
1 5 6 7

j j
j

j j j

R m R m R
h

R m R m R

 


  (45)

Also 

2
2 2
4

2

,
p

m
g

  (46)

where

2 2
5 18 6 19 13 20 18 22 7 19 22 13 21 8 10 9 10 10 22 10 10 22

2 2
11 10 20 12 10 20 21 10 13 21 10

, , , , , ,

, , ,

R g R g g g g g R g g g g R g R g g g R g g

R g g R g g g g R g g

 

 

           

     
(47)

Substituting the values of ˆˆ ˆ, ,N  and ̂ from Eqs. (42) and (43) in Eqs. (23), (39) and (40) after using Eqs.
(30) and (31), yield 

4

3

4 4
1

ˆ ,jm z m z
r j

j

u C e m C e  



 
   

 
 (48)

4

3
2

4
1

ˆ ,jm z m z
z j j

j

u m C e C e 



  (49)
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4

3

1 14 4
1

ˆ ,jm z m z
zz j j

j

t d C e d C e 



  (50)

4

3

2 24 4
1

ˆ ,jm z m z
zr j j

j

t d C e d C e 



  (51)

where

      2 2 2 2 2 2
1 2 1 1 3 2 14 2 4 2 2 24 2 42 1 , 2 , 2 ( 1,2,3.)j o j o j j j j jd g g m g m h g h d g m d g m and d g m for j                 

4   RESTRICTIONS ON THE BOUNDARY

The boundary restrictions for the assumed model are subjected to normal force (ramp type), distributed thermal 
source, concentrated carrier density sources at the plane 0z  are considered as:

 

 
 

1

2

3

, , ,

0 ,

, , ,

, , ,

zz

zr

t F r z t

t

F r z t

N F r z t



 


 


 
 

at 0z 
(52)

where

 1 10

0 , 0

( )
, , , 0 ,

2

1 ,

o
o

o

t

r t
F r z t F t t

r t

t t




 

  

 

(53)

   2 20, , ( ) ,F r z t F H a r t  (54)

     3 30, , .
2

r
F r z t F t

r





 (55)

Also, H   is Heaviside step function   , 10F is the magnitude of the force, 20F is the constant temperature 

applied on the boundary and 30F is constant.

Applying Laplace and Hankel transform defined by Eqs. (30) - (31) on Eqs. (52) - (55), we attain

 

 

 

1 10 2

20
2 1

30
3

(1 )ˆˆ , ,
2

ˆ 0 ,

Fˆ ˆ , ( ) ,

ˆ ˆ , ,
2

opt

zz

o

zr

e
t F p F

t p

t

F p aJ a

F
N F p




  





 
   






  



  


at 0z  (56)
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Substituting the values of ˆˆ ˆ, ,zz zrt t  and N̂ from Eqs. (50) - (51) and (42) in the transformed boundary restrictions 

(56), yield

 4

3

1 14 4 1
1

ˆ , ,jm z m z
j j

j

d C e d C e F p 



   (57)

4

3

2 24 4
1

0 ,jm z m z
j j

j

d C e d C e 



  (58)

   
3

1 2
1

ˆ , ,jm z

j j
j

h C e F p



 (59)

   
3

2 3
1

ˆ , .jm z

j j
j

h C e F p



 (60)

Eqs. (57) - (60) are taken in matrix form as:

 AC=B, (61)

 

 
 

1 111 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

2 111 1 12 2 13 3 14 4 3

3 121 1 22 2 23 3 24 4 4

,

0
, ,

,

,

F x td e d e d e d e C

d e d e d e d e C
A C B

F x th e h e h e h e C

F x th e h e h e h e C

    
    
           
    
     

(62)

and 1,2,3, 4.jm z

je e j  From Eq. (62), we determine 

, 1,2,3,4.j
jC j


 
 (63)

where

det , jA    determinant of A when jth column of A replaced by B
(64)

and 

11 22 13 24 11 22 14 23 11 23 12 24 11 23 14 22 11 24 12 23 11 24 13 22

12 21 13 24 12 21 14 23 12 23 11 24 12 23 14 21 12 24 11 23 12 24 13 21

13 21 12 24 13 21 14 22 13 22 11 24
o

d d h h d d h h d d h h d d h h d d h h d d h h

d d h h d d h h d d h h d d h h d d h h d d h h
E

d d h h d d h h d d h h d

     

     
 

   13 22 14 21 13 24 11 22 13 24 12 21

14 21 12 23 14 21 13 22 14 22 11 23 14 22 13 21 14 23 11 22 14 23 12 21

d h h d d h h d d h h

d d h h d d h h d d h h d d h h d d h h d d h h

 
 
 
   
       

(65)

 1 1 14 2 15 3 16 ,F R F R F R    (66)

 2 1 17 2 18 3 19 ,F R F R F R      (67)

 3 1 20 2 21 3 22 ,F R F R F R    (68)

 4 1 23 2 24 3 25 ,F R F R F R    (69)
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where

 
 
 

14 1 22 13 24 22 14 23 23 12 24 23 14 22 24 12 23 24 13 22

15 1 12 23 24 12 24 23 13 22 24 13 24 22 14 22 23 14 23 22

16 1 12 24 13 12 23 14 13 22 14 13 24 12 14 22 13 14 23 12

1

,

,

,

R E d h h d h h d h h d h h d h h d h h

R E d d h d d h d d h d d h d d h d d h

R E d d h d d h d d h d d h d d h d d h

R

     

     

     

 
 
 

7 2 21 13 24 21 14 23 23 11 24 23 14 21 24 11 23 24 13 21

18 2 11 23 24 11 24 23 13 21 24 13 24 21 14 21 23 14 23 21

19 2 11 23 14 11 24 13 13 21 14 13 24 11 14 21 13 14 23 11

2

,

,

,

E d h h d h h d h h d h h d h h d h h

R E d d h d d h d d h d d h d d h d d h

R E d d h d d h d d h d d h d d h d d h

R

      

      

     

 
 
 

0 3 21 12 24 21 14 22 22 11 24 22 21 14 24 11 22 24 12 21

21 3 11 22 24 11 24 22 12 21 24 12 24 21 14 21 22 14 22 21

22 3 11 24 12 11 22 14 12 21 14 12 24 11 14 21 12 14 22 11

23

,

,

,

E d h h d h h d h h d h h d h h d h h

R E d d h d d h d d h d d h d d h d d h

R E d d h d d h d d h d d h d d h d d h

R

     

     

     

  
 
 

4 21 12 23 21 13 22 22 11 23 22 13 21 23 11 22 23 12 21

24 4 11 22 23 11 23 22 12 21 23 12 23 21 13 21 22 13 22 21

25 4 11 22 13 11 23 12 12 21 13 12 23 11 13 21 12 13 22 11

,

,

,

E d h h d h h d h h d h h d h h d h h

R E d d h d d h d d h d d h d d h d d h

R E d d h d d h d d h d d h d d h d d h

     

      

     

(70)

and 1 2 3 4 2 3 4 1 3 4 1 2 31 2 4( ) ( ) ( ) ( )( )
1 2 3 4, , , , .m m m m z m m m z m m m z m m m zm m m z

Oe E e E e E e E e E                   Substituting the values 

of jC from Eqs. (63) in Eqs. (48) - (51) and (42), determine the displacement components, stress components, 

conductive temperature and carrier density distribution as:

      1 1 2 2 3 3

1 ˆ ˆ ˆˆ , , , ,ru L F p L F p L F p    
 (71)

      4 1 5 2 6 3

1 ˆ ˆ ˆˆ , , , ,zu L F p L F p L F p    
 (72)

      7 1 8 2 9 3

1 ˆ ˆ ˆˆ , , , ,zzt L F p L F p L F p    
 (73)

      10 1 11 2 12 3

1 ˆ ˆ ˆˆ , , , ,zrt L F p L F p L F p    
 (74)

      13 1 14 2 15 3

1ˆ ˆ ˆ ˆ, , , ,L F p L F p L F p     
 (75)

      16 1 17 2 18 3

1ˆ ˆ ˆ ˆ, , , .N L F p L F p L F p    
 (76)

where

   
   
 

1 2 14 1 17 2 20 3 4 23 4 15 1 18 2 21 3 4 24 4

2
3 4 16 1 19 2 22 3 4 25 4 1 14 1 2 17 2 3 20 3 23 4

2 2
5 6 1 15 1 2 18 2 3 21 3 24 4 1 16 1 2 19 2 3 22 3 25

, ,

, ,

, ,

L L R E R E R E m R E R E R E R E m R E

L L R E R E R E m R E m R E m R E m R E R E

L L m R E m R E m R E R E m R E m R E m R E R E

     

   

 

        

       

       
   
   

4

7 8 11 14 1 12 17 2 13 20 3 14 23 4 11 15 1 12 18 2 13 21 3 14 24 4

9 10 11 16 1 12 19 2 13 22 3 14 25 4 21 14 1 22 17 2 23 20 3 24 23 4

, ,

, ,

L L d R E d R E d R E d R E d R E d R E d R E d R E

L L d R E d R E d R E d R E d R E d R E d R E d R E

      

      

(77)
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   
   
 

11 12 21 15 1 22 18 2 23 21 3 24 24 4 31 16 1 32 19 2 33 22 3 34 25 4

14 15 11 14 1 12 17 2 13 20 3 11 15 1 12 18 2 13 21 3

16 17 11 16 1 12 19 2 13 22 3 21 14 1 22 17 2 23 20

, ,

, ,

, ,

L L d R E d R E d R E d R E d R E d R E d R E d R E

L L h R E h R E h R E h R E h R E h R E

L L h R E h R E h R E h R E h R E h R E

      

    

     
   

3

15 16 21 15 1 22 18 2 23 21 3 21 16 1 22 19 2 23 22 3, ,L L h R E h R E h R E h R E h R E h R E    

(77)

5    PARTICULAR CASES

(i) For normal force (ramp type) 20 30 0F F  yield

      1 4 7 10 13 16 1

1ˆ ˆ ˆˆ ˆˆ ˆ, , , , , , , , , , , ,r z zz zru u t t N L L L L L L F p 
 (78)

where  1̂ ,F p is given by Eq. (56).

(ii) For distributed thermal source 10 30 0F F  yield

      2 5 8 11 14 17 2

1ˆ ˆ ˆˆ ˆˆ ˆ, , , , , , , , , , , ,r z zz zru u t t N L L L L L L F p 
 (79)

where  2̂ ,F p is given by Eq. (56).

(iii) For concentrated carrier density source 10 20 0F F  yield

      3 6 9 12 15 18 3

1ˆ ˆ ˆˆ ˆˆ ˆ, , , , , , , , , , , ,r z zz zru u t t N L L L L L L F p 
 (80)

where  3̂ ,F p is given by Eq. (56).

6   UNIQUE CASES

(a) Considering 1,2,3,4m  in s , yield the resulting expressions for RL, CF, AB and TC model of fractional order 

derivatives.
(c) By taking 2

1 a  , corresponding expressions for different fractional order photothermoelastic with two 

temperature are obtained.
(d) For 2

1 0  , resulting expressions for different fractional order photothermoelastic with one temperature are 

determined.

7   NUMERICAL RESULTS AND DISCUSSION

For the numerical calculations, we take material constants for orthotropic Silicon (Si) material as:

2 2 3 3

2 20 3 20 3

3.64 / , 5.46 / , 0.029715 , 2330 , 300 , 2 , 150 ,

1.11 , 695 , 5 , 2.5 , 10 , 10 .

n o p

g e e o o

N m N m m kg m T K T ps K w mk

E eV C j kg K s D m s n m n m

   

  

       

     

Case-I: Fig. 1.1-1.9 depict the variations of all field variables with radial distance r on the plane 1z  for the 
different types of fractional order derivatives with HTT.
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Figs. 1.1-1.3 represent normal force (NF with HTT), Figs. 1.4-1.6 represents thermal source (TS with HTT), 
Figs. 1.7-1.9 represent carrier density source (CDS with HTT). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB) 
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.

Fig. 1.1-1.3 depicts tendency of ,zzt  and N vs. r in case of NF with HTT for different fractional order models. 

TC model enhances the immensity of zzt whereas minimum value of zzt attained due to CF type fractional 

operator for the whole range of r. Near and far off the source , the immensity of  and N are enhanced due to AB 

model whereas TC model minimize the values. 
The curves correspond to N for TC model is opposite oscillatory to all other models for finite domain of r. Fig. 

1.4-1.6 shows movement of ,zzt  and N vs. r in case of TS with HTT for different fractional order models. Near and 

far off the source, the magnitude of zzt and  intensify due to CF model, whereas zzt and  is less impacted due to 

TC model. Away from source,  and N attains increasing pattern for all assumed models. The behavior and 

variation of  and N is almost similar with distinct magnitude.

Fig. 1.7-1.9 displays movement of ,zzt  and N vs. r in case of CDS with HTT for different fractional order 

models. The impact of TC, AB and CF models on the immensities of ,zzt  and N respectively is maximum. The 

curves correspond to  moves in similar pattern due to CF and RL models. Far off the source, all the curves 

correspond to N gets increasing trend for all models.
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Case-II: Fig. 1.10-1.18 depict the variations of all field variables with radial distance r on the plane 1z  for the 
different types of fractional order derivatives with 2T.

Figs. 1.10-1.12 represent normal force (NF with 2T), Figs. 1.13-1.15 represents thermal source (TS with 2T), 
Figs. 1.16-1.18 represent carrier density source (CDS with 2T). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB) 
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.
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Fig. 1.10-1.12 depicts tendency of ,zzt  and N vs. r in case of NF with 2T for different fractional order models. 

AB model enhances the immensity of zzt whereas TC model have less impact on values of zzt . The behavior and 

variation of  and N are oscillatory for all type of fractional operators. The variations of N for TC model is opposite 

oscillatory to RL,CF and AB models for finite domain of r.
Fig. 1.13-1.15 shows movement of ,zzt  and N vs. r in case of TS with 2T for different fractional order models. 

Near and far off the source, CF model raises the magnitude of zzt .whereas TC minimize the values. The curve 

corresponds to  and N gets maximum value due to TC and AB models respectively. All the curves correspond to 

,zzt  and N attain parabolic pattern for all assumed models.

Fig. 1.16-1.18 displays movement of ,zzt  and N vs. r in case of CDS with 2T for different fractional order 

models. All the curves correspond to zzt are monotonically decreasing in the interval 1 3r  and attain decreasing 

trend for the whole range of r. The curves relative to  for CF model is opposite oscillatory to AB and RL models. 

The immensity of N is enhanced due to AB model and gets minimum value for CF model for the intermediate values 
of r.



Thermomechanical Interaction in Photothermoelastic ….                          316

Journal of Solid Mechanics Vol. 17, No. 3 (2025)  

Case-III: Fig. 1.19-1.27 depict the variations of all field variables with radial distance r on the plane 1z  for the 
different types of fractional order derivatives with 1T.

Figs. 1.19-1.21 represent normal force (NF with 1T), Figs. 1.22-1.24 represents thermal source (TS with 1T), 
Figs. 1.25-1.27 represent carrier density source (CDS with 1T). In all the figures solid line correspond to Riemann-
Liouville (RL), dashed line corresponds to Caputo-Fabrizio(CF), dotted line corresponds to Atangana-Baleanu (AB) 
and dash-dot line corresponds to Tempered-Caputo(TC) fractional order derivatives.
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Fig. 1.19-1.21 depicts tendency of ,zzt  and N vs. r in case of NF with 1T for different fractional order models. 

RL model intensify the immensity of 33t for the whole range of r, whereas TC model have less impact as compare to 

other models. The curves correspond to are monotonically decreasing in initial range of r due to RL and TC 

model. The curves relative to N are monotonically decreasing in initial range of r due to RL, CF and TC models. 
Fig. 1.22-1.24 shows movement of ,zzt  and N vs. r in case of TS with 1T for different fractional order models. 

Near the source, RL model intensify the magnitude of zzt .whereas TC model minimize the value of zzt for the 

whole range of r. The curve corresponds to  due to AB model is opposite oscillatory to RL model in the finite 

domain of r. Similarly, curves correspond to N for TC model is opposite oscillatory due to AB and CF models. 
Fig. 1.25-1.27 displays movement of ,zzt  and N vs. r in case of CDS with 1T for different fractional order 

models. The behavior and variation of zzt for AB model is opposite to RL,CF and TC model in the initial range of r. 

 attain its maximum magnitude due to TC model and impacted less due to CF and AB models for the whole range 

of r. The curves correspond to N for TC model is opposite oscillatory to CF model.
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8    CONCLUSIONS

In this paper, fractional order derivatives Riemann-Liouville (RL), Caputo-Fabrizio(CF),Atangana-Baleanu (AB) 
and Tempered-Caputo(TC) have been incorporated in a uniform manner in the photothermoelastic with hyperbolic 
two temperature model. Laplace and Henkel transforms are used to solve the problem. Normal force, thermal 
source, carrier density sources are taken to study the impact of HTT, 2T and 1T under different fractional order 
derivatives. From numerically computed results we conclude following:
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In case of HTT, the immensity of zzt enhances due to TC model, whereas this model have less impact on  and 

N as compare to other assumed models for NF. The curves correspond to zzt and  are more impacted due to CF 

model , however N attain maximum magnitude due to RL model for TS. The Impact of CF model is minimum on 

zzt and  and maximum on N in case of CDS.

For 2T, the fractional order derivative CF have more impact on zzt and N and less impact on for NF. The 

curves correspond to ,zzt  and N appear with parabolic pattern due to all models for TS. For CDS, the curves 

correspond to zzt decreases monotonically in the initial range of radial distance. A non-uniform pattern is noticed 

due to all assumed models for  and N.

For 1T, The impact of TC model is more on zzt as compare to and N for NF. In case of TS, magnitude of ,zzt 
and N increases due to CF and RL models respectively. For CDS, non-uniform pattern is noticed for all models.

It is observed that present study is significant to the physical understanding of transient photothermoelastic 
interaction with distinct fractional order derivatives.
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