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ABSTRACT
In this study, a nonlocal refined plate theory based on the stretching effect is 
extended to examine the buckling behavior of three-layered simply 
supported nanoplates resting on orthotropic foundation by taking into 
account the surface effects. The core properties are considered non-
homogeneous properties based on the power-law distribution, which is 
gradually varying in the thickness direction of core. In this regard, due to the 
asymmetry of the material properties in the core thickness direction, the mid-
plane of structure and the neutral plane is not coincided. Accordingly, it is 
necessary to consider the neutral surface concept and select it as the 
reference plane. The position of neutral surface is determined based on the 
nonlocal higher order shear deformation theory and then linear governing 
equilibrium equations are derived by employing the principle of minimum 
potential energy. On the other hand, face sheets are assumed using 
piezoelectric materials and considered as sensors and actuators.  Eventually, 
Navier-type solution is utilized to obtain the analytical results of three-
layered nano-plate  subjected to electric field.  In order to check the accuracy 
and efficiency of the current model, a validation study is carried out based 
 on the obtained results and available results in the previous literature. The 
achieved results have a good  agreement with the results in the previously 
published literature. Finally, the influences of different  foundation, residual 
stress, surface effects, stretching effect, neutral surface, aspect ratio, 
thicknesses  ratio, non-local parameter, length scale parameter, gradient index 
and initial voltage are examined on  critical buckling load of sandwich nano-
plate in details. Numerical results show that the residual surface  stress and 
neutral surface position have an undeniable influence on the critical buckling 
load in the high thicknesses of nano- plate. It is expected that the results of 
current study to be utilized in designing micro/nano-electro- mechanical 
systems components based on smart nanostructures.                               

Keywords: Bi-axial buckling load; Neutral surface; Nonlocal strain 
gradient theory; Surface effects.

______
*Corresponding author. Tel.: +98 31 55913434; Fax: +98 31 55913444.
E-mail address: aghorabn@kashanu.ac.ir (A. Ghorbanpour Arani)



Size-Dependent Buckling Analysis of Three-Layered Nano-Plate ….                          98

Journal of Solid Mechanics Vol. 16, No. 1 (2024)  

1    INTRODUCTION

EVELOPMENT and advancement in various industries including aerospace and thermal power plants is 
caused that the requirement for materials with high thermal and mechanical strength is more taken into 

consideration than ever before. Functionally graded materials (FGM) are inhomogeneous materials including two or 
more various materials by varying the microstructure from one material to another material with a specific gradient. 
Their dating as an engineering concept reaches to the last quarter of the 20th century. The aircraft and aerospace 
industry, the computer circuit industry and the fabrication of electrical, electrochemical as well as biomaterials 
devices are examples of the use of these materials. FGMs as materials with improved properties have attracted the 
attention of many researchers [1-7]. Piezoelectric materials are materials that have the ability to generate internal 
electrical charge from applied mechanical stress. As well as in reverse direction, they can be created a strain when 
subjected to an electric field. These technologies are used as actuators and sensors due to the excellent mechanical 
properties and tunable electric properties in a wide range of the applied devices and products in modern societies 
especially. Thus far, many researchers have focused their research on studying and investigating the behavior of 
piezoelectric materials [8-13].

A multi-layered plate is a special form of a sandwich structure comprising a combination of different laminates 
which are bonded to each other so that its properties are considered as the properties of an integrated structure. The 
primary advantage of multi-layered plates is very high stiffness-to-weight and high bending strength-to-weight ratio. 
Lightweight and stiff laminated panels are vital elements of many modern civil, aircraft and spacecraft designs. 
Subsequently, researchers started to investigate the behavior of the multi-layered structures in the last few years. 

Cao et al. [14] studied dynamic analysis of viscoelastically subjected to moving loads using multi-layer moving 
plate method. They extracted the governing equations of connected double-plate system by using Reissner-Mindlin 
plate theory. Ragb and Matbuly [15] introduced different numerical schemes to formulate and solve nonlinear 
vibration analysis of elastically supported multilayer composite plate resting on Winkler - Pasternak foundation by a 
first order shear deformation theory (FSDT). The obtained results show that the used method is an accurate efficient 
model in the dynamic analysis of discontinuity structure resting on nonlinear elastic foundation. Taghizadeh et al. 
[16] investigated mechanical behavior of a novel multi-layer sandwich panels subjected to indentation of a spherical 
indenter load experimentally and numerically. Amoozgar et al. [17] employed a combining a two-dimensional a 
one-dimensional nonlinear beam analysis to study the influences of initial curvature and lattice core shape on the 
vibration of sandwich beams. They used a time-space scheme to obtain nonlinear governing equations of the 
sandwich beam. Their results show that the lattice unit cell shape affects both in-plane and out of plane stiffness and 
result in changes the dynamic behavior of the beam. Sahoo et al. [18] predicted nonlinear vibration analysis of FGM 
sandwich structure under linear and nonlinear temperature distributions numerically using the higher-order shear 
deformation theory (HSDT). A parametric study on buckling behavior of sandwich beam consisting of a porous 
ceramic core including the effects of length-to-thickness ratio, volume fraction of FGM and various porosity 
patterns based on third-order shear deformation theory (TSDT) was presented by Derikvand et al. [19]. The 
governing equilibrium equations were solved for different end conditions using the differential transform method 
and physical neutral axis of the beam. Li et al. [20] used hyperbolic tangent shear deformation theory for analysis of 
free vibration of FG honeycomb sandwich plates with negative Poisson’s ratio. They solved the derived governing 
dynamic equations by applying the Navier’s method and fluid–solid interface conditions. The corresponding results 
display that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Instability 
analysis of axially moving sandwich plates with magnetorheological core and polymeric face sheets reinforced with 
graphene nanoplatelets by using FSDT were studied by Ghorbanpour Arani et al. [21]. The Halpin–Tsai model and 
the rule of mixture are utilized to estimate the effective mechanical properties. A novel unified model for vibration 
analysis of a thick-section sandwich structure was presented based on the variational asymptotic method by Li et al. 
[22]. They studied the effects of temperature gradients in the thickness direction, core thickness and boundary 
conditions by a detailed parametric study. Liu et al. [23] analyzed the buckling and vibration studies of the sandwich 
plates based on the isogeometric analysis in conjunction with the refined shear deformation theory.

Many researchers have studied the mechanical behavior of structures over the past centuries. Today, with the 
advancement of technology and the development of industries, achieving to the exact results requires the use of new 
models and methods. Laminated structures are used in many engineering industries. The different theories are used 
to simulate and obtain analytical results that the most common of these theories are Classical plate theory (CPT), 
FSDT and HSDT. As the thickness of the sheet increases, the accuracy of these theories decreases. Size effects play 
a significant role in predicting mechanical behavior when structure is being studied in a small scale. The best 
alternative approach to study the mechanical behavior of materials is the use of the continuum mechanics 
relationships. The effect of size is not taken into account in classical continuum mechanics theory. For this reason, 
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this theory cannot predict the mechanical behavior of nanostructures and micro-structures well. Various theories 
including Strain gradient theory (SGT) and Modified strain gradient theory (MSGT), Couple stress theory (CST) 
and Modified couple stress theory (MCST) is proposed in order to elimination of this defect. Layer-wise (LW) and 
zig-zag (ZZ) theories provide sufficiently accurate response for relatively thick laminated structures. These theories 
have the ability to capture the inter-laminar stress fields near the edges. Refined plate theories (RPT) are theories 
that assume the uniaxial and lateral displacements have bending and shear components. In them the bending and 
shear components do not contribute toward shear forces and bending moments, respectively. The most interesting 
feature of these theories is that they have high accuracy for a quadratic variation of the transverse shear strains 
across the thickness also satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate 
without using shear correction factors. Several models of RPT with different form functions by dividing the 
transverse displacement into bending and shear parts for plate structures are proposed. Quasi-three-dimensional and 
Three-dimensional (3D) are the new contributions of the proposed theories which are compatible with the numerical 
method and naturally taken into account in the thickness direction. Examples of the use of these theories in the 
published articles are expressed as follows. 

Ren et al. [24] derived the nonlocal strong forms for various physical models in traditional methods. They 
derived the nonlocal forms of electro-magneto-elasticity thin plate and phase-field fracture method based on 
nonlocal operator method by using the variational principle/weighted residual method. Pham et al. [25] studied the 
nonlocal dynamic response of sandwich nanoplates with a porous FG core using higher-order isogeometric theory. 
They extracted the governing equations of motion of sandwich nanoplates by the Hamilton principle and solved by 
the Newmark method. Dynamic instability behavior of graphene nanoplatelets-reinforced porous sandwich plates 
subjected to periodic in-plane compressive loads based on a four-variable refined quasi-3D plate theory were 
investigated by Nguyen and Phan [26]. They used Bolotin's method to solve the Mathieu–Hill equation. Their results 
show that the thickness stretching effect should be carefully evaluated for moderate to thick plate structures, such as 
sandwich plates. Free vibration and buckling analyses of piezoelectric–piezomagnetic FG microplates in thermal 
environment using MSGT were investigated by Hung et al. [27]. They derived the equilibrium equations by using 
Hamilton’s principle. They reported the effect of the electric voltage, power index, magnetic potential, length scale 
parameters and geometrical parameter on the dimensionless frequencies and critical buckling loads of microplates. 
Jin [28] used a refined plate theory to examine Interlaminar stress analysis of composite laminated plates reinforced 
with FG graphene particle. Tharwan et al. [29] utilized a novel refined three-variable quasi-3D shear deformation 
theory to study the buckling behavior of multi-directional FG curved nanobeam rested on elastic foundation. They 
used a novel solution to effectively address a range of boundary conditions. Quasi 3D free vibration and buckling 
analysis of non-uniform thickness sandwich porous plates in a hygro-thermal environment utilizing a refined plate 
theory and novel finite element model were provided by Hai Van and Hong [30]. They considered the non-uniform 
thickness sandwich porous plates as bi-directional FGM. Their results reveal that the novel porosity patterns and the 
boundary conditions have a substantial impact on the mechanical behaviors sandwich porous plates. 
Shahmohammadi et al. [31] extended the modified nonlocal FSDT to study buckling analysis of multilayered 
composite plates reinforced with FG carbon nanotube or FG graphene platelets resting on elastic foundation. A 
novel quasi-3D hyperbolic HSDT in association with nonlocal MSGD was considered by Ghandourah et al. [32] to 
analyze bending and buckling behaviors of FG graphene-reinforced nanocomposite plates. The modified model of 
Halpin–Tsai and the rule of mixture were employed to compute the effective young’s modulus, Poisson’s ratio and 
mass density of FG graphene-reinforced nanocomposite plates. The inclusion of thickness stretching, nonlocal 
parameter and the length-scale parameter has a significant effect on the response of the GRNC plate. Hung et al. 
[33] employed a quasi-3D HSDT to study bending response of FG saturated porous nanoplate resting on elastic 
foundation. According to their findings, the deflection and stresses increase by increasing the values of the nonlocal 
parameter. Daikh et al. [34] proposed a Quasi-3D HSDT to examine the buckling behavior of bilayer FG porous 
plates based on nonlocal strain gradient theory (NSGT). They developed the equilibrium equations using the virtual 
work principle and solved utilizing the Galerkin method to cover various boundary conditions. Shahzad et al. [35] 
analyzed the size-dependent nonlinear dynamic of piezoelectric nanobeam subjected to a time-dependent 
mechanical uniform load. They formulated the NSGT based on a quasi-3D beam theory to take into account the size 
dependency.

Sandwich structures are one of the most advanced and modern structures that are utilized for  strengthening based 
on the materials used in their construction. Fixed and mobile refrigerated warehouses,  metal industries, spatial 
structures, industrial and  semi-industrial cold stores are examples of the use of sandwich structures in different 
industries. Piezoelectric materials have been widely employed as sensors and actuators in  microelectromechanical 
systems (MEMS) and nanoelectromechanical systems (NEMS). In addition, various piezoelectric materials have 
been considered for  applications in energy harvesting, biomedical engineering, and additive  manufacturing. 
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Therefore, due to the existence of piezoelectric layers, piezoelectric nano-sandwiches  have many applications in the 
medical industries including drug delivery, cartilage, nerve, skin,  tendon and muscle regeneration and as well as 
military industrials.
Many researchers have investigated behavior of structures over the past   centuries. Today, based on the growth and 
development of industries and the increasing progress of technology, it is necessary to achieve accurate and reliable 
results using new models and methods. The use of piezoelectric face sheets as sensors and actuators as well as 
protection and prevention of damage to FGMs is of great importance considering the cost of construction and the 
production process of these materials. According to the comprehensive mentioned literature survey and to the best of 
the authors’  knowledge, there has been no attempt in relation to the study of the bi-axial buckling analysis of FG 
nano-plate covered with  piezoelectric face-sheets by considering elastic foundations.  Motivated by these 
considerations, the current paper is the first attempt in present the exact  solution for size dependent quasi-3D 
buckling analysis of a three-layer FG nanoplate  integrated with piezoelectric layers supported by orthotropic 
Pasternak medium subjected to electric field and in-plane forces. Surface effect responsible for size-dependent 
characteristics can become distinctly  important for piezoelectric nanomaterials in which large surface-to-volume 
ratio. Also,  understanding the buckling behavior of sandwich nano-systems could be a key point for the  application 
in electromechanical resonators, hence, for the first time surface effect, neutral surface position of FGMs and 
 thickness stretching effects together with NSGT are applied to sandwich  piezoelectric nanoplate. Eventually, one of 
the  innovations of the presented research is the presentation of comparative results in different  models for the critical 
buckling load of the nano-plate.

2    MATHEMATICAL MODELING  

2.1 Non-local strain gradient theory

The used assumptions and modifications are presented as following. In order to simulate the behavior of the 
structure and also to be close to the reality of the behavior of the material, the equations are considered based on the 
quasi-three-dimensional theory. The proposed theory has assumed higher order variations of transverse displacement 
along the thickness direction. In general, it is assumed that 3 is small compared to 13 and 23 , except in the shell 

edges, so that the hypothesis is a good approximation of the actual behavior of thick plates. The sheets are assumed 
to be ideally attached to the core, such that there is complete continuity between the layers and they are considered 
integral. No slip condition existed between the core and face sheets it is assumed. The FGM is modeled as a linear 
elastic material in the pre-yield condition.

In order to study of the size-dependent behavior of structures, the NSGT for solids is used. On the basis of the 
NSGT, the constitutive relations of this theory include the effects of nonlocal elastic stress field and strain gradient 
stress field. It is assumed that the components of stress and electric displacement can be stated in the following form 
[36-38]:

(1)(0) (1)
ij ij ij   

(2)(0) (1)
i i iD D D 

In these equations the classical and higher-order stresses are (0) (1),ij ij  as well as the classical and higher-order 

electric displacements are (0) (1),i iD D that are related to strain and strain gradient ,,ij ij j  , respectively. 

Mathematically, ignoring the effect of body force, the general constitutive relations of NSGT incorporated with both 
non-locality and SGT for the homogeneous piezoelectric material can be simplified as follows [39]: 

(3)2 2 2 2 (1)(1 ) (1 )ij ij      

(4)2 2 2 2 (1)(1 ) (1 )i iD D    

(5)2 2 2 22 x y     
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These parameters denote the size effect on the behaviors of Nano-scale structures. The 3D constitutive equation 
of piezoelectric face-sheets based on the non-local MSGT can be defined as [38-42]:

(6)   2 2 2 2(1 ) (1 )ij ijkl kl kij kC e E       

(7)   2 2 2 2(1 ) (1 )i ikl kl kij kD e E       

In which ,ijkl kijC e and kij are the stiffness, piezoelectric and dielectric coefficients for the piezoelectric Nano-

plate, respectively. Also kE are the components of electric field which can be defined in terms of electric potential 

as follow [40-41]:

(8)  ( , , , )x y z x y z t
x y z

E E E
  




 
 

 



(9) 0 )( , , , ) (2 cos( ) , ,p px y z t zV h z h x y t    

In Eq. (9) 0V is applied external electric voltage between top and bottom of piezoelectric layers. Also  , ,x y t

represents the spatial variation of the electric potential in two-dimensional directions. The converted coordinate for 
upper and lower layers according to middle of piezoelectric face-sheets are assumed 

( 2) ( 2)c pz z h h   and ( 2) ( 2)c pz z h h   , respectively.

2.2 Surface piezoelectricity effects

In nano-scale structures, the surface or near-surface atoms are usually exposed to various environmental influences 
from their bulk counterparts. Factually, the fraction of energy stored in surface layers are significant compared with 
those stored in the bulk of the element. Indeed, one of the main features of nanostructures is high ratio between their 
surface and volume. Therefore, the surface elasticity is mixed with the non-classical continuum theories to 
investigate these important effects. The primary relations of stresses and electric displacements for the surface of the 
piezoelectric materials considering NSGT can be presented as [40-42]:

(10)   2 2 2 2(1 ) (1 )sij sijkl kl skij k sC e E          

(11)   2 2 2 2(1 ) (1 )i sikl kl skij kD e E       

, ,sij sij sijC e  and s are the surface elastic constants, surface piezoelectric constants, surface dielectric constants 

and the residual surface stress tensor. Surface and residual stress effects are considered only at the upper and lower 
surfaces of the piezoelectric face-sheets. Also,  s b s b(w w ) y , (w w ) x       .

2.3 FG properties

The concerned FG Nano-plate is compound of ceramic and metal that the volume fractions of material and the 
effective properties of are continuously considered to be variable in the thickness direction. Neutral axis of FG 
materials is not coinciding with its mid-plane due to asymmetry of material properties in these materials. For this 
reason, by choosing a suitable origin of the coordinates in the direction of changes, the stretching and bending 
coupling is eliminated and investigation of FG plate behavior can easily be done since the properties are symmetric 
around it.
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Here, msz and nsz are specify the distance the middle surface and neutral surface of FG nano-plate, respectively as 

illustrated in Fig. 1. ()C and ()M are the subscripts that refer to ceramic and metal and also k is the gradient index 

that is attributed to the change in volume fraction of the material composition [43-46].

(12)01 1

2 2

k k

ms ns
C

c c

z z z
V

h h

   
      
   

(13)01
( ) ( )

2

k

ns
C M M

c

z z
P z P P P

h

 
    

 

(3)
2 2

0
2 2

( ) ( )
c c

c c

h h

ms ms ms ms ms
h h

z E z z dz E z dz
 

   
   
   
   
 

The parameter 0z is the distance of neutral surface from the middle surface. The position of the neutral surface 

of the FG plate is specified to satisfy the first moment with respect to young’s modulus [43]. It is necessary to 
mention that the material properties in the top 02cz ( h ) z  and the bottom surfaces c 0z ( h 2 ) z   of the FG 

plate are pure ceramic and pure metal, respectively. The computation of nonzero elastic constant cijC by considering 

the thickness stretching can be introduced as [44]:

(15)   2 2 2 2(1 ) (1 )ij cijkl klC         

(46)

 
  

  

11 22 33

12 13 23

44 55 66

1

1 2 1

1 2 1

2(1 )

c c c

c c c

c c c

C C C

C C C

C C
E

C

E

E


 


 



  

  

  


 

 



Fig. 1
Neutral surface position of FG nano-plate.
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Fig. 2
Geometry of three-layered FG nano-plate integrated with piezoelectric face-sheets.

2.4 Displacement Field and Strains

The geometry and dimensions of a rectangular sandwich nano-plate of length a and width b is assumed as 
illustrated in Fig. 2. This sandwich structure is made of a FG base layer and piezoelectric face-sheets in top and 
bottom of core. The thickness of core and bonded layers are ch and ph , respectively. In this research a quasi-3D 

deformations plate theory based on the assumptions of the refined plate theory is used. The four-variable plate 
theory is developed by considering the thickness stretching. Consequently, the considered displacement field 
satisfies the conditions of transverse shear stresses in conjunction with shear strains at on the top and bottom 
surfaces of the sandwich plate. Accordingly, the orthogonal components of the displacement field can be defined as 
below [35,48];

(17)0( , , , ) ( )b s
ns ns ns

w w
u x y z t u z f z

x x

 
  

 

(58)0( , , , ) ( )b s
ns ns ns

w w
v x y z t v z f z

y y

 
  

 

(6)( , , , ) ( ) ( , , )ns b s nsw x y z t w w g z x y t  

where u and v are the bending and shear components of mid-plane surface as well as bw and sw describe the 

unknown displacement functions of deflection, respectively. In these equations ( )nsf z is the transverse shear 

function in order to illustrate the transverse shear stresses and strains through the thickness. The shape functions can 
be expanded from the trigonometric, polynomial, hyperbolic functions and so on. In this study, the polynomial 
function is adopted as in the hybrid type quasi-3D shear deformation theory. The shape functions ( )nsf z and 

( )nsg z can be expressed as [26,49];

(20)
2

01 5
( )

4 3
ns

ns ns
z z

f z z
h

      
   

(7)( ) 1 ( )ns nsg z f z 

The linear kinematic relations according to the displacement field can be written as follows:
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(22)   

0
0

0
0

0

( ) , ,

xxxx x

z
yy z

x
xz xz

yy y y
y yz

zns ns ns n

xy xy

s

xyxy

f g gz z z z
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 

     
 

  

      
                                     

            
            

where

(23)

2

0
2

0

2
0 0

2

0
2

0 0

2

2

2

2

2

,

2

2

b

xx x
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                    

        
             

      
 
 

  
          
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2.5 Equations of motion

Hamilton’s principle is applied herein for deriving the equilibrium equations of the size-dependent sandwich nano-
plate. This principle can be described in analytical form as [50-53,59]; 
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The variation of strain energy and the virtual work done by external applied forces and foundation can be 
expressed by U and W . The sandwich nano-plate is resting on the orthotropic Pasternak foundation. Contrary to 
other models, this foundation models both normal and shear loads in arbitrary directions. The applied force from the 
elastic foundation is calculated according to the orthotropic Pasternak model as [51,54-57]:
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In Eq. (26) longitudinal ( xxN ) and transverse ( yyN ) resultant are xx exN N and yy eyN N , respectively. The 

variations of total potential energy of the rectangular sandwich nano-plate consist of a FG core integrated with 
piezoelectric face-sheets can be expressed as
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In the above equation, 1z and 2z are defined as c p 0( h 2 ) h z   and c p 0( h 2 ) h z  . Also, ,N M and Q

refers to the force, moment and transverse shear stress resultants that can be defined as: 
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where 1rh  and rh are the top and the bottom of the r th layer, respectively. Also, the converted coordinate based 

on the neutral axis is ns ns c p 0z z ( h 2 ) ( h 2 ) z    . The bulk and surface coefficients can be obtained by 

substituting Eqs. (6)-(7) into Eqs. (30)-(33). Finally, based on the Hamilton’s principles, integrating by parts and 
setting the coefficient of mechanical and electrical  , , , , ,b su v w w      to zero, separately, the non-local 

equilibrium equations of sandwich nano-plate resting on elastic foundation are derived for the refined plate theory 
as:
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which the stiffness and piezoelectric coefficients for bulk and surface FG sandwich nano-plate after simplification 
are given by:
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3    SOLUTION PROCEDURE OF SIMPLY-SUPPORTED NANO-PLATE   

The analytical method is employed in order to solve motion equations. Based on Navier’s solution procedure, the 
expansions of displacement functions can be defined in space variables as [14];
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where  , , ,, ,mn mn bmn smn mn mnU V W W   are the unknown coefficients which should be determined. Also m a 

and n b  are constant coefficients related to the mode numbers ( , )m n in x and y directions, respectively. By 

inserting Eq. (40) into Eqs. (34)-(39), buckling analysis of sandwich nano-plate with FG core and piezoelectric face-
sheets subjected to a system of uniform in-plane compressive loads can be expressed as follow:

(53)      0mnK S  

(54)    det 0K S 

in which  K and  S denote the stiffness and in-plane forces matrix's and also  mn represents unknown 

coefficients  , , ,, ,mn mn bmn smn mn mnU V W W   . In order to obtain the critical buckling load for various kinds of 

boundary conditions, it is necessary to calculate the determinant of the coefficient matrix in Eq. (41) and set it equal 
to zero. The critical buckling load is the smallest value of 0N . 

4   NUMERICAL RESULTD AND DISCUSSION

In the numerical results, bi-axial buckling behavior of FG nano-plate covered with piezoelectric face-sheets is 
presented based on the surface piezoelasticity theory. The FG nano-plate in the following examples is assumed to be 
made up of metal (aluminum) and ceramic (alumina) which the material properties are as follows: 

70 , 380 , 0.3m cE GPa E GPa    [50]. On the other hand, piezoelectric face-sheets are supposed to be composed of 

ZnO which its bulk and surface properties are used based on Ghorbanpour Arani et al. [56]. The common values are 
chosen to carry out the following analyses.
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Table 1
Comparison of buckling load of FG plate for various power-law index

P Model
Axial/Bi-

axial

Non-dimensional critical buckling load

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0

El Meiche et al. [50]
Axial

13.00552 13.00552 13.00552 13.00552 13.00552 13.00552

Present Model 13.00552 13.00552 13.12398 13.00552 13.07977 13.00552

El Meiche et al. [50]
Bi-axial

6.50276 6.50276 6.50276 6.50276 6.50276 6.50276

Present Model 6.50326 6.50425 6.56199 6.50276 6.53988 6.50280

1

El Meiche et al. [50]
Axial

5.16629 5.83941 6.19371 6.46450 6.94952 7.50719

Present Model 5.16712 5.84012 6.21936 6.46750 6.96728 7.50991

El Meiche et al. [50]
Bi-axial

2.58315 2.91970 3.09686 3.23225 3.47476 3.75359

Present Model 2.58317 2.92010 3.10968 3.23245 3.48364 3.75652

5

El Meiche et al. [50]
Axial

2.65679 3.04141 3.40280 3.57873 4.11157 4.73463

Present Model 2.65600 3.04527 3.41752 3.57900 4.12120 4.73785

El Meiche et al. [50]
Bi-axial

1.32839 1.52071 1.70140 1.78937 2.05578 2.36731

Present Model 1.32840 1.52070 1.70876 1.79136 2.06060 2.37011

10

El Meiche et al. [50]
Axial

2.48574 2.74498 3.09111 3.19373 3.70686 4.27964

Present Model 2.48998 2.74652 3.10632 3.19993 3.71037 4.28215

El Meiche et al. [50]
Bi-axial

1.24287 1.37249 1.54556 1.59687 1.85343 2.13982

Present Model 1.24381 1.37989 1.55316 1.60120 1.85915 2.14001

At this stage, it is necessary to provide a comprehensive comparison in order to validity and accuracy of the used 
model. Therefore, a comparison study of axial and bi-axial critical buckling loads of FG sandwich plate is presented 
in Fig. 3. In addition, the accuracy of the presented plate theory and appropriateness of solution approach are 
assessed by simulating the response the dimensionless buckling load of sandwich plate with different thickness ratio 
as shown in Table 1 [50]. It is observed from Table 1 and Fig. 3 that the numerical results have excellent agreements 
with the obtained results in available references [50]. On the other hand, comparison of nondimensional critical 
buckling load of isotropic plate under different loading types are in Table 2.  In this Table, the results based on the 
FSDT, TSDT and sinusoidal shear deformation theories with the present model have been examined according to 
length to width ratio as well as thickness to width ratio. Table 2 shows that in different loading conditions, there is a 
good agreement between the existing results and the investigated model.

The size-dependent behavior of FG nano-plate based on material characteristic and non-local parameter is 
demonstrated in Fig. 4. As can be observed nonlocal and length scale parameters have a stiffness-softening influence 
on behavior of FG nano-plate structure. The critical buckling load of FG nano-plate is reduced by applying non-
local theory. On the other hand, inclusion of length scale parameter leads to increasing in critical buckling load of 
FG nano-plate, especially in the lower non-locality parameter. In addition, the effect of the softening enhancement 
of sandwich nanostructure  is applied by considering NSGT. Increasing the nonlocal parameter result in a decrease in 
the stiffness of the sandwich nano plate and therefore its critical buckling load   decreases. The length scale 
parameter, as a fundamental factor, plays an important role in approximating the critical load values of 
nanostructures. As mentioned in the mathematical modeling section, in this research, this parameter is applied using 
NSGT. Increasing this parameter increases the stiffness of the structure and also increases the critical load, which 
results in an increase in the static stability of the structure.
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Table 2
Comparison of nondimensional critical buckling load of isotropic plate under different loading types

a/b h/b Method
Loading type ( 1 2,  )

(-1,0) (0, -1) (-1, -1)

1

0.1

FSDT [58] 3.7865 3.7865 1.8932

TSDT [58] 3.7866 3.7866 1.8933

SSDT [57] 3.7869 3.7869 1.8935

Present 3.7875 3.7881 1.8952

0.2

FSDT [58] 3.2637 3.2637 1.6319

TSDT [58] 3.2653 3.2653 1.6327

SSDT [57] 3.2666 3.2666 1.6333

Present 3.2684 3.2692 1.636

1.5

0.1

FSDT [58] 4.025 2.0048 1.3879

TSDT [58] 4.0253 2.0048 1.3879

SSDT [57] 4.0258 2.0049 1.388

Present 4.0274 2.0082 1.4006

0.2

FSDT [58] 3.3048 1.7941 1.2421

TSDT [58] 3.3077 1.7946 1.2424

SSDT [57] 3.3096 1.7951 1.2427

Present 3.3123 1.7973 1.2461

2

0.1

FSDT [58] 3.7865 1.5093 1.2074

TSDT [58] 3.7866 1.5093 1.2075

SSDT [57] 3.7869 1.5094 1.2075

Present 3.7875 1.5108 1.2084

0.2

FSDT [58] 3.2637 1.3694 1.0955

TSDT [58] 3.2654 1.3697 1.0958

SSDT [57] 3.2666 1.37 1.096

Present 3.2684 1.3726 1.0987

Fig. 3
Comparison present results with those obtained by El Meiche et al. [50].
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Fig. 4
Effects of length scale parameter on the buckling load for various non-local parameter.

The variations of bi-axial buckling response versus electrical preload for face-sheets subjected to an electric 
potential are investigated in Fig. 5. According to this figure, the positive and negative electrical preloads are as 
tensile and compressive loads. The application of tensile and compressive preloads caused by external voltage leads 
to the creation of prestresses in the structure. By applying a negative voltage load, the stiffness increases and the 
static stability of the structure improves, and considering the positive initial voltage, the stiffness decreases and as a 
result, the critical load of the structure decreases. The changes of critical buckling load with increasing the initial 
voltage from -5 to 5 volt, for different power-law index, is equal 9.54%, 13.7%, 14.78%, 15.66% and 16.31%, 
respectively. Also, Fig. 5 shows an increase in the power-law index, which leads to an increase/decrease in 
metallic/ceramic properties along the thickness of the structure. Due to the lower elastic modulus and as a result the 
stiffness of the metal material compared to the ceramic material, the rigidity of the core is reduced and as a result the 
critical load of the structure is reduced.

Fig. 6 examines the influences the external electric voltage and the thicknesses ratio on critical buckling load of 
non-local nano-plate under electrical field. The critical load decrease with the increasing value of the thicknesses of 
face-sheets. According to the material considered for the FG core, increasing the thickness of the core compared to 
the total thickness leads to a reduction in the stiffness of the structure and a reduction in the critical load. The results 
reveal that the effect of reducing buckling load in lower values of ph h is more noticeable.
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Fig. 5
Influence of gradient index on the critical load with respect to various initial voltage.
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Fig. 6
Variation of buckling response with respect to various thicknesses ratio.
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Fig. 7
Critical buckling load versus aspect ratio for various core-to-face-sheets thicknesses ratio.

In Fig. 7 shows buckling results of FG nano-plate various the core-to-face-sheets thickness and length-to-width 
ratios, simultaneously. It can be seen that by constant consideration of the total thickness and the core 
nonhomogeneous  parameter, increasing thickness of core means a reduction at the  thickness of piezoelectric layer. 
Since the stiffness of the core is higher than piezoelectric face-sheets, the increase in the thickness of the core leads 
to the improvement of the stiffness of the whole structure, and as a result, the critical load increases. On the other 
hand, the increase in the length-to-width ratio of nano-plate has an extraordinary efficacy on reduction the stiffness 
of the nano-plate, which decreases the buckling load. Increasing the length of the structure compared to its width, in 
general, changes the shape of the structure and ultimately changes the behavior of the nano -sandwich plate. Since 
with the increase of the length-to-width ratio of the nano-plate, the state of the structure tends to the beam model, 
finally in  this state, the change of the buckling behavior is decreasing. 

The effect of applying neutral axis on critical buckling load behavior of FG nano-plate coupled with 
piezoelectric face-sheets is depicted in Fig. 8 versus power-law-index and core's thickness. The employment of the 
neutral axis causes to a symmetrical arrangement of material properties in the thickness direction and consequently, 
the critical buckling load is reducing. It is clearly evident that the consideration of neutral axis is more noticeable at 
higher thicknesses. Both parameters of nonhomogeneous factor and core thickness are very effective in calculating 
the location of the neutral surface of FGM. It should be noted that the power-law index is more effective at higher 
thicknesses.
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Fig. 8
buckling load versus power-law index and core's thickness with and without neutral surface.
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Fig. 9
Response of buckling load versus thickness-to-length ratio with and without stretching effect.

Fig. 9 presents the effect of stretching parameter on critical load of non-local FG nano-plates. Also, the effect of 
thickness-to-length ratio is examined. It can understand from this figure that the critical buckling load is reduced by 
considering the stretching effect. As can be seen, the predicted results of present quasi-3D and 2D models are almost 
the same at low thickness-to-length ratios and with the increase of this ratio, the difference between quasi-3D and 
2D models increases greatly. Considering the parameters related to the relationships of the quasi-3D model shows 
results closer to reality and as Fig. 9 shows, the critical load in this case is lower than the two-dimensional case. This 
shows the omission of some parameters and the simplification of the equations in the 2D model, which has led to the 
calculation of a higher critical load. It can be concluded that the stretching effect is directly related to the thickness. 
As the thickness increases, the efficacy of the stretching is also increased. Fig. 10 illustrates the size-dependent 
behavior of nano-sized plate by considering surface elastic based on non-local and scale material parameters. It can 
be seen that when the non-local parameter is small and scale material parameter is large, the critical load of FG 
nano-plate increases significantly by applying surface effects. As the results show, considering the effects of the 
surface increases the stiffness of the structure and thus increases the criticality of the structure.

In order to understanding the effect of residual stress on the behavior of buckling load, Fig. 11 is given according 
to the aspect ratio. It is found that the influence of residual stress on critical load is more obvious at low aspect ratio. 
The positive and negative residual stress predicts different effect on increasing of critical load. It is due to this fact 
that the negative and positive residual stresses can be modeled as compressive and tensile loads, respectively. 
Considering the positive pre-stresses for the piezoelectric nano-sandwich leads to the improvement of the rigidity 
and stiffness of the structure and as a result, the critical buckling load of the structure increases. By considering the 
negative pre-stresses, this behavior is exactly reversed.
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Fig. 10
Variation of critical buckling load versus surface effects.
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Fig. 11
Influence of residual stress on the buckling load for different aspect ratio.

The behavior of critical load of non-local FG nano-plate with piezoelectric face-sheets based on the surface 
elasticity theory and quasi-3D theory is plotted in Fig. 12. The results show that the decreasing trend is more 
prominent at lower ratios of length-to-width. This is due to the fact that presence of surface elastic leads to greater 
flexural rigidity. In other word, the nano-plate becomes stiffer by taking into account the surface piezoelectricity, 
which means an increment in the critical load. On the other hand, the assumed quasi-3D theory considers both the 
effects of shear deformation and stretching and give more accurate results with compared to other shear deformation 
theory and consequently, the critical load is greatly reducing. According to the obtained results, it can be found that 
both stretching and surface effects have a significant influence on the critical buckling load that should not be 
ignored. 
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Fig. 12
Stretching and surface effects on buckling critical load of three-layered FG nano-plate.
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Fig. 13
Critical buckling load of nano-plate in terms of various Winkler coefficients.

The effect of the surrounding elastic medium on critical buckling load of nano-plate versus values the non-local 
is plotted in Fig. 13. It can be seen that the critical buckling load of nano-plate increases by increasing the Winkler 
constant. In this range, the stiffness of the FG nano-plate is enhanced due to the increasing of foundation stiffness 
that leads to an increasing in the total stiffness of the structure. These conditions can be improved with decrease of 
non-local parameter. Figs. 14 (a) and (b) can be utilized to better understanding of the influences of the orientation 
of the shear layer and orthotropic foundation on the buckling responses of non-local plate resting on orthotropic 
Pasternak foundation. In Fig. 14(a), the bi-axial critical load of nano-plate integrated with two piezoelectric layers 
versus the orthotropy angle is depicted for various Pasternak shear constant. Three-dimensional plot of bi-axial 
buckling load versus Pasternak shear coefficients in both directions are demonstrated in Fig. 14(b). It can be 
concluded that increasing gxk and gyk leads to improvement stability of sandwich nano-plate. Thus, the critical 

buckling load increases. As can be seen from Figs. 14(a)-(b), the orthotropy angle has a significant influence on the 
variations of critical load. Therefore, it is clearly evident that the effect of both coefficients ( , )gx gyk k is the same at 

4  and the drawn graph is perfectly symmetrical.
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(b) variations of shear layer coefficients(a) variations of orthotropic angle

Fig. 14
Pasternak coefficients effect on buckling load with respect to orthotropic angle.

The critical load of a rectangular FG nano-plate according to the stretching and piezoelectric effects versus small 
scale parameter is depicted in Fig. 15 for various elastic foundations. As shown in the figure, the buckling load of 
the rectangular nano-plate increases by considering the elastic medium. This figure shows that the highest critical 
buckling load is related to the orthotropic medium. It is due to this fact that the Orthotropic Pasternak model is 
capable to describing both the transverse shear and normal loads of the elastic medium besides that this model is an 
arbitrarily oriented foundation. It can be understood that the selection of appropriate elastic medium plays an 
important and decisive role in system stability, since elastic medium makes the system stiffer and more stable.
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Fig. 15
The effect of different foundation on the critical buckling load.

5    CONCLUSIONS

In this paper, surface effect on the buckling characteristics of three-layered nano-plates including FG core and 
piezoelectric face-sheets rested on elastic foundation based on NSGT are investigated. In order to extraction of 
governing equations, a refined plate theory according to the stretching effect is utilized incorporating physical 
neutral surface concept. An analytical procedure is applied to solve the nonlocal governing equations extracted by 
Hamilton’s principle. Finally, the influences of various parameters such as gradient index, non-locality parameter, 
elastic medium, geometric ratios, length scale parameter and etc. on buckling responses of FG nano-plate are 
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investigated. The length scale parameter has an increasing effect on critical load, especially in the lower non-locality 
parameter. Surface effects play very important role in the increasing critical buckling load of FG nano-structure. 
These effects are strongly dependent on size parameters. In addition, it can be seen that the stretching effect has a 
significant efficacy on reducing critical load, especially at higher thicknesses. So that by ignoring the stretching 
parameter in the low thickness of the nanoplate, major changes in the critical buckling load are not occurred. It can 
be concluded that the response of buckling analysis with considering surface effects is sensitive for variations of the 
power-law index and aspect ratio. The presence of orthotropic foundation leads to an essential increment in critical 
buckling load of the FG nano-plates.

In conclusion, it can understand that the present model is accurate and efficient in predicting critical load of FG 
nano-plates. This study can provide significant reference in analyzing the mechanical behavior of nano-structure and 
it is also expected to be useful for designing and improving the nano-smart devices or sensors and actuators.
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