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 ABSTRACT 

 In this paper, the behavior of free vibrations of the thick sandwich 

panel with multi-layer face sheets and an electrorheological (ER) 

fluid core using Exponential Shear Deformation Theory were 

investigated. For the first time, Exponential shear deformation 

theory is used for the face sheets while the Displacement field 

based on the second Frostig's model is used for the core. The 

governing equations and the boundary conditions are derived by 

Hamilton’s principle. Closed form solution is achieved using the 

Navier method and solving the eigenvalues. Primary attention is 

focused on the effects of electric field magnitude, geometric aspect 

ratio, and ER core layer thickness on the dynamic characteristics of 

the sandwich plate. The rheological property of an ER material, 

such as viscosity, plasticity, and elasticity may be changed when 

applying an electric field. When an electric field is applied, the 

damping of the system is more effective. The effects of the natural 

frequencies and loss factors on the dynamic behavior of the 

sandwich plate are studied. The natural frequency of the sandwich 

plate increases and the modal loss factor decreases. With increasing 

the thickness of the ER layer, the natural frequencies of the 

sandwich plate are decreased.                 

 © 2022 IAU, Arak Branch. All rights reserved. 

 Keywords: Sandwich plate; Electro-rheological materials; Electric 

field; Exponential shear deformation theory; Free vibration. 

1    INTRODUCTION 

AGNETORHEOLOGICAL (MR) and electrorheological (ER) materials belong to a family of controllable 

fluids. Their rheological properties such as viscosity, elasticity and plasticity change in the order of 

milliseconds in response to applied magnetic and electric field levels, respectively. ER materials are electrical 

analogs of MR materials. They are dielectric particles suspended in non-polar liquids. Their reversible rheological 

behavior is controlled by electrical field strength. Both MR and ER fluids are in liquid form when there is no 
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external stimuli. However, when they are subjected to an applied magnetic field (for MR materials) and an electric 

field (for ER materials), their physical appearance changes to be more like a solid gel. As described earlier, during 

this transformation, their rheological properties change as well. Fig. 1 is a schematic drawing of stress–strain 

behavior of ER and MR materials for a varying range of electric and magnetic fields. Although MR and ER 

materials experience different levels of stress and strain in response to different magnetic and electric fields 

respectively, they follow the same type of pattern in their rheological behavior. The ER and MR materials are used 

in adaptive structures to produce variable dynamic response characteristics such as natural frequencies, mode shapes 

and vibration amplitudes. The yield stress depends on the electric field applied to the liquid, but we reach a point 

where the magnification of the electric field does not increase further, and the liquid at this point becomes 

magnetically saturated. Therefore, the fluid behavior of ER can be assumed to be the same as the Bingham plastic 
model, a model that is being further investigated. Therefore, there is no normal stress in the ER layer [1]. 
 

 

 

 

 

 

 

 

Fig.1 

Shear stress–shear strain relationship of ER and MR materials. 

 

To suppress such vibrations two approaches can be used, namely, passive control and active control. In passive 

control the material properties of the structure itself, such as damping and stiffness, are modified so as to change the 

structural response. However, the material properties of such structures are predetermined in their design or 

construction phase, and can be hardly adapted to unexpected environmental changes. In order to overcome this 

disadvantage, intelligent materials such as piezoelectric materials or electrorheological fluids (ERFs) may be 

incorporated into conventional structures in order to adapt to changes of the environment [2]. Early investigations of 

an ER material in the structural vibration control problems can be traced to Coulter and coworkers [3-5], who 

performed theoretical and experimental studies of flexural vibrations of ER fluid-based sandwich beams by applying 

variable electric field levels to the ER material. Yalcintas and Coulter [6, 7] presented a study on the modeling and 

(semi-active) vibration control problem of an adaptive sandwich beam with an ER fluid core treatment as a 

controllable damping layer. Yeh and Chen Wang, studied the dynamic stability problems of the ER sandwich beam 

and also discussed the dynamic behavior of the sandwich plate (annular plate, orthotropic sandwich plates, 

orthotropic annular plate, and rotating polar orthotropic annular plate) on different thickness of the ER layer and 

electric filed strength [8-13]. The higher order sandwich panel theory was developed by Frostig et al. [14], who 

considered two types of computational models in order to express governing equations of the core layer. The second 

model assumed a polynomial description of the displacement fields in the core that was based on displacement fields 

of the first model. He uses the classical thin plate theory for the face sheets. In the higher-order sandwich panel 

theory (the second Frostig's model) The transverse normal stress in the face sheets and the in-plane stresses in the 

core were not considered. An improved high-order theory is presented to investigate the dynamic behavior of thin 

and thick plate with a soft viscoelastic flexible core. Shear deformation theory is used for the face sheets while 

three-dimensional elasticity theory is used for the soft core. In this theory transverse shear and rotary inertia effects 

of face sheets and all stress components are taken into consideration [15]. The improved higher order sandwich plate 

theory (IHSAPT), applying the first-order shear deformation theory for the face sheets, was introduced by 

Malekzadeh et al. [15]. First order shear deformation theory [16,17] incorporates the shear deformation effects but it 

considers a constant transverse shear deformation along thickness of plate. Thus, it violates stress free conditions at 

the bottom and top of the plate and needs a shear correction factor. In order to get accurate results and avoiding to 

use of shear correction factor, higher order shear deformation theory (HSDT) developed. Reddy [16] employed a 

parabolic shear stress distribution along thickness of plate. his model didn’t need shear correction factor because of 

satisfying free stress conditions at the bottom and top of plate. The mechanical behavior of sheets is often studied 

and analyzed using plate theories. Most plate and shell theories are based on a kinematic assumption of 

displacement or the deformation of the object in three dimensions. Sayyad and Ghugal [20] presented exponential 
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and trigonometric shear deformation theories for bending and free vibration analysis of thick plates. Bending 

analysis of composite sandwich plates with laminated face sheets with new finite element formulation has been done 

by Belarbi and Tati [19]. Free vibration of functionally graded rectangular nanoplates has been studied by Khorshidi 

and Asgari [20]. They used exponential shear deformation theory in their analysis. Bahrami and Hatami [21] studied 

free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element 

method. Mozaffari et al. [22] examined the memory alloys on the free vibration behavior of flexible-core sandwich-

composite panels. Ghajar et al. [23] also analyzed the dynamic response of the double-curved composite shell under 

low velocity impact. Khorshidi et al. [24] investigated the electro-mechanical free vibrations analysis of composite 

rectangular piezoelectric nanoplate using modified shear deformation theories. Ghorbanpour Arani et al. [25] 

investigated the analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face 

sheets on viscoelastic foundation. One of the most important damages of sandwich structures is the separation in the 

middle layer between the core and the Shell. The reason for this separation is the difference of the Young's modulus 

ratio between the core and the face sheet. Use of a material with high shear stress tolerance in the core will weaken 

the adhesion of the middle layer. The core use of FGM or ER smart fluids eliminates all of these problems. Under 

the influence of electric fields, intelligent fluids exhibit rapid changes in hardness and damping properties. These 

fluids are also very suitable for vibration control over very large ranges. The concept of material-based ER adaptive 

structures was first put forward by Carlson et al. [26]. Most of the work published in the last few years has focused 

mainly on the experimental and theoretical aspects of ER adaptive structures [27-6]. Free vibration and buckling 

analysis of sandwich panels with flexible cores using an improved higher order theory has been studied by 

Malekzadeh Fard and Malek-Mohammadi [28]. However, research on adaptive MR sandwich structures is in its 

infancy. Some research has investigated the vibrational and damping properties of ER and MR materials with 

adaptive structures [29-30]. Yeh et al. [12] examined the vibrational properties and modal damping coefficient of 

circular sandwich sheets with orthotropic face sheet and ER core. Ramkomar and Gensan [31] used ER fluids as the 

core of a sandwich hollow column wall and compared the performance of ER fluid application with viscoelastic 

materials in changing the vibrational properties of the column. The most recent work on MR fluids is the work of 

Rajamohan et al. [32]. They modeled a sandwich beam with an MR core, considering the shear effects of the MR 

binding layer on the core and applying the equivalent shear modulus. They applied the finite element method to 

solve the problem and investigated the effects of magnetic field intensity on vibrational properties for different 

boundary conditions and forced loading. Rajamohan et al. [33] also for the first time investigated the vibrational 

properties of a partially filled MR sandwich beam both via the finite element method and experimentally. 

Rajamohan et al. [34] also for the first time explored the model presented in reference [33] to find the optimal 

location of partial MR layers for maximizing the modal damping coefficient of sandwich beams. They tested the 

optimal location of the partial MR layers to maximize the first five modal damping coefficients of the beam 

separately and simultaneously. Free vibration of sandwich panels with smart magneto-rheological layers and flexible 

cores has been studied by Payganeh et al. [35]. 

In this study, based on the displacement field of each layer, the kinetic energy and strain energy are separately 

obtained for each layer. With the replacement of total kinetic energy, total strain energy and energy variations, in the 

Hamiltonian principle, the structural motion equation is obtained. Primary attention is focused on the effects of 

electric field magnitude, geometric aspect ratio, and ER core layer thickness on the dynamic characteristics of the 

sandwich plate.  Natural frequencies and loss factor for the electric fields as well as the ratio of different thicknesses 

calculated are by Galerkin analytical method. As the applied electric field increases, the natural frequency of the 

sandwich plate increases and the modal loss factor decreases. With increasing the thickness of the ER layer, the 

natural frequencies of the sandwich plate are decreased. 

2    THEORETICAL FORMULATION 

The assumptions intended for modeling the problem are as follows: 

Face sheets are elastic and can be isotropic , orthotropic, or composite material. It is assumed that there is no slip 

between the elastic layers of the ER layer. Transverse displacement is assumed to be identical for all points on a 

hypothetical cross-sectional area. It is assumed that there is no normal stress in the ER layer. The ER is modeled as a 

linear viscoelastic material in pre-submission conditions. The ER used in the core completely covers the core with 

the displacements considered linear and small, and the face sheet are assumed as thin. Fig. 2 shows a flat sandwich 

sheet with two laminated composite sheets on its faces. The thickness of the top sheet, the bottom sheet and the core 

are as follows , ,t b ch h h . The sandwich panel is supposed to have length a, width b and total thickness h. The 
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orthogonal coordinates   , , , ,i i ix y z i t b c   are also shown in Fig. 1. In this study, the t index corresponds to the 

upper sheet, the b index to the lower sheet, and the c index to the core. 

 

 

 

 

 

 

 

 

Fig.2 

Sandwich plate with laminated composite sheets on the 

surfaces.  

2.1 Displacement fields and strain relations displacement for face sheets and cores 

According to the exponential shear deformation theory, the displacements u, v, and w face sheets in the x, y and z 

directions assuming small linear displacements as Eqs. (1): 
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where 
iz  is vertical coordinate of the each face sheet  ,i t b , measured upward from the mid-plane of each face 

sheet. Kinematic equations of the face sheets are as follows: 
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As can be seen, zz  for the face sheets is equal to zero. This means that the face sheets are assumed to be rigid in 

the Z direction. Displacement relations are based on Frostig's second model for the thick core in the form of a 

relation (4) [14]: 
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The kinematic relationships of the core in a sandwich sheet are based on the relation of small deformations (5): 
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2.2 Compatibility cnditions  

The research assumes that the face sheets are ideally attached to the core. In other words, there is a displacement 

continuity in the subscriber season. Thus, all three components of the upper-case and core displacements are equal in 

the common season. This is also the case for the low-core joint face sheet chapter. Thus, assuming complete bending 

between the core and the surfaces, the compatibility conditions for the top and bottom joining of the core and the 

surfaces are as follows: 
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By replacing Eqs. (4) and (6) in relation (5) and some simplification, the compatibility conditions are 

transformed into (7): 
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According to Eq. (7), it is observed that the number of unknowns in the core layer is reduced to five, which 

are:
1 0 0 1 0, , , ,c c c c cu u v v w . Thus, in general, all the unknowns for a flat composite sandwich sheet are 15, which are [36]: 

 
t t t t t b b b b b c c c c c

x y x yu v w u v w u u v v w   0 0 0 0 0 0 0 1 0 1 0{ , , , , , , , , , , , , , , }  (8) 

2.3 Relationships of stresses, resulting stresses, and moments of inertia in the core and face sheet 

Based on the existing information on the ER material pre-yield rheology, only the electric field dependence of ER 

material in the pre-yield regime needs to be considered. The complex modulus of the used ER fluid was 

experimentally measured by Don [27] and can be expressed as follows: 
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where C

aG   is the shear storage modulus and C

aG   is the loss modulus and E is the electric field in kV/mm. In the 

following discussions, another modified ER material presented by Yalcintas [6] is also investigated in this study. 

The modified material properties of the ER fluid is: 
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The effect of the electric field on the vibration response of the ER sandwich plate can be seen for electric  field 

levels of  0.5 , 1.5 , 2 , and 3.5 kV/mm, respectively.  The results of the stress for the core can be written as follows 

[37]: 
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Stress resultants per unit length for the face sheets can be defined as follows: 
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where sk  is Shear correction factor and i if z f z1 2( ), ( ) denotes iz ,
iz

h

iz e

 
 
 

2

2

respectively. 

2.4 Lamina constitutive relations 

The linear constitutive Relations for kth orthotropic Lamina in the principle material coordinates of a lamina are:  
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where ( )k

ijQ  are the plane stress-reduced stiffnesses. The coefficient ( )k

ijQ  are known in terms of the engineering 

constants of the kth layer: 
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Since the laminate is made of several orthotropic layers, with their material axes oriented arbitrarily with respect 

to the laminate coordinates, the constitutive equations of each layer must be transformed to the laminates 

coordinates. The stress- strain relations in the direction of the sandwich panel geometrical axes as follows: 
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where ijQ  denotes the transmitted stiffness in the geometric axis of the sandwich panel. The relationship between 

axial stiffness and the transferred stiffness is given by the relation:  
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The basic multi-layer relationships of the face sheet are derived from the following relationship: 
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In the above equations,some of the stiffness coefficients for multilayer sheets are defined as follows:  
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(20) 

 

The moment of inertia of the core is as follows: 
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Also the moment of inertia of the face sheets in relation is: 
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2.5 Applying the Hamiltonian principle 

To obtain the equations governing motion we use the Hamiltonian [34] principle which states: 
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0 0

0
t t

extLdt K U W dt         (23) 

 

where,  K  represents the kinetic energy changes,  U  denotes the potential energy changes, and extW  shows 

the energy changes caused by the forces on the problem. extW  is zero due to the analysis of free vibrations. 
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0extW   (24) 

 

The kinetic energy variations, assuming homogeneous conditions for displacement and velocity with respect to 

the time coordinate for a sandwich plate, can be generalized as: 
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The first variation of internal potential energy of the sandwich panel is as follows [39]: 
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Finally, the equations of motion for the flat sandwich plate with the ER core are obtained as a partial differential 

equation with 15 equations and 15 unknowns by replacing the stress relations, the resulting stresses and the moment 

of inertia of the core and the face sheet  (Eqs. (18-8)), as well as the substitution of the relations of the displacement 

fields and the strain-displacement relations (terms (7-1)) in the relations of kinetic energy changes and system 

potentials (relationships (20-21)), along with using the Hamiltonian principle (relation (20)) and the fundamental 

principle of the calculus of variations. 
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In order to express the equations of motion in terms of displacement terms and to facilitate the process of solving 

the equations of motion, the following integrals are defined. 
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(42) 

 

By substituting relation (43) in relations (12), Constitutive equations for thick core layer can be written as: 
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According to the relationship (19) and (44-47) equations of plane motion are obtained based on displacements.    

In this study, simply supported boundary conditions are assumed for all four edges of the sandwich plate. It can be 

shown that the assumed responses of the relationship satisfy simply supported boundary conditions [17]. 
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where  
m

m

a


    and  

n

n

b


  .  

In Eq. (48), 
0

j

mnU , 
0

j

mnV ,
0

j

mnW , j

xmn , j

ymn , c

kmnU , c

kmnV and j

lmnW are the Fourier coefficients while m and n 

represent half wave numbers along x and y directions, respectively. By replacing Eqs. (48) in the governing 

equations of motion, the governing equations are transformed into ordinary coupled differential equations: 

 

       M c K c  0 ,  
t b t b t b t b t b c c c c c

mn mn mn mn mn mn xmn xmn ymn ymn mn mn mn mn mnc u u v v w w u u v v w   0 0 0 0 0 0 0 1 0 1 0{ } { , , , , , , , , , , , , , , }  
(49) 

 

Hence, the problem of free vibration of the sandwich plate with a simple support becomes the standard equation 

of structural response; [K] represents stiffness matrices and [M] shows matrices of mass. Finally, by assuming free 

vibrations, one can calculate the natural frequencies, ω, and modal damping coefficients 
v  for different vibrational 

modes from Eqs. (45) [11-12]: 

 
2

2

2v

Im( )
Re( )

Re( )


  


   (50) 

3    RESULTS AND DISCUSSION  

3.1 Validation of equations 

Here are two examples for the structure and the results. To verify the equations obtained, we first compare the 

results obtained with the present work with the recent work in the literature and definitely with flexible core. Then, 

we review the results obtained with the ER core.  

Example1: Flat sandwich panel with flexible core: 

The mechanical and geometrical properties of the structure considered in this example are presented in Table 1. 

The upper and lower portions of the pure aluminum are [0,0,0] and the sheet is symmetrical to the middle plate. 

 
Table 1 

Mechanical and geometrical properties of flat sandwich sheets with flexible core [40]. 

Geometry a = 0.4 m b = 0.4 m hc = 0.005 m ht = hb =0.005 m 

Core G = 4 GPa G13 = G23 = G (1+I  ( 0 38.   32000kg / m   

Face sheets 1 2 3 207E E E GPa    
12 13 23 77 58G G G . GPa    

12 13 23 0 334v v v .    37800kg / m   

G: real part of the complex shear modulus 

 :loss factor of the damping material 

 

Table 2 provides the results of the present study for flat sandwich sheets with MR core using the improved high-

order theory of sandwich sheets, and further compared with the results obtained from the classical high-order theory 

of multilayer sheets [8]. Exponential shear deformation theory is used in the face sheets of the present study. 

 
Table 2 

Normal frequency values first to fourth for flat sandwich sheets with flexible core. The lay-up sequences for face sheets were  

[0/core/0] and G = 4 MPa and a / b = 1, hc/ ht  = 1. 

Natural frequency 

(rad/s) 

Present model 

 modal factor 

Reference 

[8] modal factor 

Reference 

[40] 

modal factor Error Difference(%) 

 

(1,1) 974.716 0.04383   972.89 0.044   975.17  0.04431 0.047 

(1,2) 2347.82 0.01910 2346.45 0.019 2350.79  0.01918 0.126 

(2,1) 2347.82 0.01910 2346.45 0.019 2350.79  0.01918 0.126 

(2,2) 3717.78 0.01221 3711.90 0.012 3725.33 0.1224 0.203 

 

Example2: Flat sandwich plate with aluminum face sheet and ER smart liquid core: 

The mechanical and geometrical properties of the structure in this example are presented in Table 3. The lay-up 

sequences for face sheets were [0/90/0] and the sandwich panel was symmetric about the mid-plane. 
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Table 3 

Mechanical and geometrical properties of flat sandwich sheets with aluminum face sheet and ER core [2]. 

Geometry a = 0.4 m b = 0.4 m hc = 0.5 m  ht = hb =0.5 m  

Core 
2 ( ) ( ) ( )

c c c

b xz b xz b xzG G G    

 

2 ( ) ( ) ( )

c c c

b yz b yz b yzG G G    
 

2

( ) ( )

( ) ( )

50.000

2600 1700

c c

xz b yz

c c

xz b yz

G G E

G G E





  

   

 
31700kg / m   

Face sheets 1 2 3 70E E E GPa    
12 13 23 26 9G G G . GPa  

 
12 13 23 0 3v v v .    

 32700kg / m   

 
 

Table 4 presents the results of the present study for flat sandwich sheets with ER core using the improved high-

order theory of sandwich sheets, with the results obtained from the classical high-order theory of multilayer sheets 

[39]. Kirchhoff's theory has been used in the face sheet for reference [2]. 

 
 

Table 4 

Normal frequency values first to fourth for flat sandwich sheets with Aluminum face sheet  and ER Core. The lay-up sequences 

for, E =0, a/b=1, hc/ ht  = 1.  sheets were [0/core/0] 

Natural frequency (rad/s) Present model modal factor Reference [2] modal factor Error Difference(%) 

(1,1) 13.1929 0.01719 13.1925 0.0172 0.003 

(1,2) 32.9808 0.0068 32.9808 0.0069 0.00 
(2,1) 32.9808 0.0068 32.9808 0.0069 0.00 
(2,2) 52.7686 0.0042 52.7693 0.0043 0.002 

3.2 Free vibration analysis 

In this section, the free vibrations of sandwich sheets with composite and ER core are investigated. The effects of 

changing the thickness of the ER layer and the electric field intensity are also examined on the natural frequencies of 

the sheet. The lay-up sequences for face sheets were [0/0/0/core/0/0/0] and the sandwich panel was symmetric about 

the mid-plane. Mechanical and geometrical properties of flat sandwich panel with aluminum face sheet and ER core 

is in Table 3. Table 5 presents the results of the present study for flat core sandwich sheets with ER core using the 

improved high-order theory of sandwich sheets, with the results obtained from the classical high-order theory of 

multilayer sheets [2]. Kirchhoff's theory has been used in the face sheets for reference [2]. 
 

Table 5 

Normal frequency first-fourth frequency values and modal damping coefficients for the first four vibration modes for core 

thickness, field intensity, and different aspect ratio coefficients of flat sandwich sheets with aluminum face sheets and ER core 

plates. 

 E=0.5 KV/mm E=1.5 KV/mm E=2 KV/mm E=3.5 KV/mm 

Mode  a/b *( )Hz  v  *( )Hz  v  *( )Hz  v  *( )Hz  v  

 

 

(1,1) 

 

1 

1 13.9948 0.02641 18.8419 0.02317 21.8042 0.01871 29.7528 0.009341 

2 33.8013 0.01146 39.5583 0.01462 43.7319 0.01393 57.6382 0.0098 

4 112.96 0.0035 119.324 0.0057 124.53 0.0064 145.649 0.0067 

 

4 

1 11.0131 0.0394 16.652 0.0308 20.2136 0.0248 31.1417 0.01398 

2 26.1349 0.0175 32.8503 0.0203 37.6871 0.0188 54.4442 0.0131 

4 86.5289 0.0054 94.0419 0.0085 100.127 0.0092 124.608 0.0091 

 

 

(1,2) 

 

 

1 

 

1 

 

33.8013 

 

0.01146 

 

39.5583 

 

0.01462 

 

43.7319 

 

0.01393 

 

57.6382 

 

0.009828 

2 53.5933 0.0073 59.6525 0.01057 64.3118 0.01081 81.2693 0.0090 

4 132.746 0.0029 139.153 0.0049 144.445 0.0056 166.298 0.0062 

 

4 

1 26.1349 0.0175 32.8503 0.02038 37.6871 0.0188 54.4442 0.01818 

2 41.2369 0.0112 48.3397 0.01516 53.7398 0.0149 73.6221 0.0119 

4 101.624 0.0046 109.197 0.0074 115.394 0.0082 140.74 0.0085 

 

 

(2,1) 

 

1 

 

1 33.8013 0.01146 39.5583 0.01462 43.7319 0.01393 57.6382 0.009828 

2 112.96 0.0035 119.324 0.0057 124.53 0.00640 145.649 0.0067 

4 429.514 0.0009 436.101 0.001674 441.756 0.0020 467.177 0.0027 

 

4 

 

1 26.349 0.0175 32.8503 0.02038 37.6871 0.0188 54.4442 0.01318 

2 86.5289 0.0054 94.0419 0.0085 100.127 0.0092 124.608 0.0091 

4 328.021 0.0014 335.851 0.00257 342.547 0.0030 372.404 0.0040 
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(2,2) 

 

1 

 

1 53.5933 0.00731 59.6525 0.01057 64.3118 0.01081 81.2693 0.009032 

2 132.746 0.0029 139.153 0.0049 144.445 0.0056 166.298 0.0062 

4 449.294 0.00088 455.885 0.0016 461.548 0.0019 487.053 0.00264 

 

4 

 

1 41.2369 0.0112 48.3397 0.01516 53.7398 0.01498 73.6221 0.01197 

2 101.624 0.0046 109.197 0.0074 115.394 0.0082 140.74 0.0085 

4 343.111 0.00138 350.946 0.000247 357.653 0.0029 387.624 0.0038 

3.2.1 Natural frequency of flat sandwich plate with ER core 

In Fig. 3, the comparison diagram of the damping coefficient is shown in terms of vibrational modes and different  

electric fields. 
 

 

 

 

 

 

Fig.3 

Diagram of changes in the natural frequency of the sheet, for 

different electric field intensities. 

 

In general, it can be stated that the natural frequency grows with increasing electric field intensity due to a 

reduction in flexibility, where the modal damping coefficient decreases. 

3.2.2 Influence of the ratio of core thickness to total sheet thickness on natural frequency 

The core thickness has a very significant effect on the vibration of the sheet. Fig. 4 reveals the diagram of the first 

frequency changes of the flat sandwich plate with the ER core in terms of different core thickness to plate thickness 

(hc/ h) ratios for different electric field intensities (KV/mm) at a = b. 

 

 

 

 

 

 

Fig.4 

Diagram of changes in the damping coefficients in the first 

four vibrational modes, for different electric field intensities. 

 

 

 

 

 

Fig.5 

Diagram of the first frequency changes of the sheet in 

different ratios of core to sheet thickness, for different 

electric field intensities.  

 

According to Fig. 5, it is observed that by increasing the ratio of core thickness to total sheet thickness, the 

natural frequency of the sheet diminishes. Since the core is made of oil and composite surfaces, the core modulus is 
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smaller than the surfaces. Also, as the core thickness-to-whole ratio increases, the overall sheet modulus drops. As a 

result, the natural frequency of the sheet is also reduced. The oil density is also high and as the amount of oil 

increases, the sheet becomes significantly heavier and the stiffness-to-mass ratio falls, resulting in a decline in the 

natural frequency of the sheet. 

3.2.3 Influence of fiber angle on natural frequency 

Fig. 6 shows the diagram of the natural frequency changes of the first flat sandwich plate with the ER core in terms 

of the lay-up sequences for face sheets. 

 

 

 

 

 

 

Fig.6 

Diagram of the first frequency changes of the sheet in terms 

of the Chinese layer of the composite face sheets. 

 

 
According to Fig. 6, it is observed that most of the natural frequency occurs in a state θ equal to 45 degrees. 

Because in this case the flexural stiffness has its maximum value. 

3.2.4 Influence of electric field intensity on natural frequency 

 

 

 

 

 

Fig.7 

Diagram of the first frequency changes of the sheet in terms 

aspect Ratio for different electric field intensities. 

 

 

According to Fig. 7, it is observed that as the electric field intensity increases, so does the natural frequency of 

the sheet. However, this increase in frequency only proceeds partly from the increase of the electric field intensity 

and does not increase from one value to the next, and is almost proved to be saturated as the intensity of the electric 

field, which in this study is approximately 3.5 kV /mm. 

3.2.5 The effect of aspect ratio on natural frequency 

 

 

 

 

 

Fig.8 

Diagram of the first frequency change of the sheet in terms of 

electric field intensity for different aspect ratio. 
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According to Fig. 8, it is observed that with increasing the aspect ratio, the natural frequency of the sheet 

increases. With the rise of the aspect ratio, the sheet gradually becomes a beam with enhanced transverse stiffness 

and thus augmented natural frequency. By raising the intensity of the electric field from one point to the next, its 

effect on the natural frequency increases. This is due to the saturation point; by increasing the intensity of the 

electric field, it saturates the oil at a given electric field intensity, after which increasing the field will not have much 

effect on increasing the rigidity and natural frequency of the sheet. 

3.2.6 Influence of lenght-to-thickness ratio on natural frequency 

 

 

 

 

 

 

Fig.9 

Influence of lenght-to-thickness ratio on natural frequency. 

 
According to Fig. 9, it is observed that with increasing the length to thickness ratio, the natural frequency of the 

sheet decreases. As the ratio grows, the sheet becomes thinner and, as a result, its stiffness drops. 

3.2.7 Flat sandwich plate displacement diagrams based on different mode shapes 

 

 

 

 

 

Fig.10 

Displacement diagram of a flat sandwich plate based on the 

first mode shape. 

 

 

 

 
(a) First mode shape 

 
(b) The fourth mode shape 

Fig.11 

Displacement diagram of a flat sandwich plate based on the a) first and b) fourth mode shape. 
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4    CONCLUSION 

In this study, vibration of a sandwich plate with an ER fluid core, multi-layer face sheets, and four simply-supported 

edges were investigated. The Hamilton’s solution method was used for the vibration analysis of sandwich structures. 

The generality of the problem indicates an increase in the natural frequencies of the sandwich plate for the ER state 

in the nucleus with increasing electric field intensity. However, this increase in frequency is only partially sustained 

by an increase in the intensity of the electric field and does not grow from one value to another and is almost 

constant. Thus, by creating an electric field whose intensity can be controlled, the natural frequencies and thus the 

vibrations of the structure can be controlled. 

The effect of the thickness of the ER layer on the core is such that by increasing the ratio of the core thickness to 

the thickness of the whole sheet at a constant electric field intensity, a frequency drop is observed. Since the core is 

made of fluid and composite surfaces, the rigidity of the core is lower than that of the core, and as the core 

thickness-to-thickness ratio increases, the overall rigidity decreases. Also, as the fluid content rises, the sheet 

becomes significantly heavier and the stiffness to mass ratio diminishes. As the aspect Ratio increases, the sheet 

gradually becomes a beam whose transverse stiffness grows and thus the natural frequency increases. Thus, by 

altering this parameter, the natural frequency of the structure within the desired range can be obtained. 

By increasing the length to thickness ratio, the natural frequency of the sheet decreases. As the ratio grows, the 

sheet becomes thinner and, as a result, its stiffness declines. Thus, by changing this parameter, the natural frequency 

of the structure can also be obtained within the desired range. 
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