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 ABSTRACT 

 This paper proposes conforming and nonconforming 20-node hexahedral 

finite elements. The elements‟ formulation stems from the so-called 

Space Fiber Rotation (SFR) concept, allowing a spatial rotation of three-

dimensional virtual fiber within the elements. Adding rotational degrees 

of freedom results in six degrees of freedom per node (three rotations 

and three translations) which enhances the approximation of the classical 

displacement field. The incompatible modes approach has been 

adopted in the nonconforming element formulation in order to avoid 

numerical deficiencies associated with the Poisson‟s ratio locking 

phenomenon. The accuracy of the proposed elements is examined 

through a series of three-dimensions linear elastic benchmarks 

including beam, plates, and shell structures. The proposed elements 

were shown to give better results than the standard 20-node hexahedron 

especially when mesh distortion is applied.  This confirms that the two 

proposed elements are less sensitive to mesh distortion. The elements 

also show good performance when compared with analytical and 

numerical solutions from the literature. 
                                  © 2022 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE finite element method (FEM) is considered one of the most powerful tools in numerical simulation owing to 

its reliability, robustness, and efficiency. Since the first mathematical proofs on its formulation Babuska and 

Aziz [1], the FEM has emerged as powerful platform for solving PDEs in a range of fields such as heat transfer, 

fluid mechanics, electromagnetic potential, and even in the development of efficient nanoscale systems [2]. In solid 

mechanics, 3D modeling has been attracting a lot of interest especially with the enormous growth of computational 

resources. The element formulation plays a crucial role in finite element analysis (FEA). Since its early days, many 

attempts have been made to enhance the performance of finite elements in a matter of accuracy, efficiency, and 

versatility. This resulted in a plethora of models and approaches where many pioneering works have been published 

and ended up being integrated into commercial finite element software. To meet the requirement of 3D modeling, 
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the development of low order solid elements with high performance has gained great importance. Standard low 

order hexahedral elements were very beneficial in terms of computational cost. However, these elements suffer from 

some well-known deficiencies under some circumstances. For example, locking, a phenomenon that generally 

occurs when shape functions fail to interpolate a field correctly [3], may lead results. Hughes et al. [4] and 

Zienkiewcs et al. [5] successfully overcame locking phenomena by introducing the reduced and selective reduced 

integration techniques, respectively. Wilson et al. [6] introduced incompatible displacement modes to enhance the 

displacement field of the element. As this approach was just limited to parallelograms, Taylor et al. [7] adjusted this 

formulation by correcting the defective terms and examining the patch test. Working along similar lines, Simo and 

Rifai [8] developed a family of three elements based on the approach of Enhanced Assumed Strain (EAS), a method 

that considers adding an extra field of variables to the strain field, to account for linear problems. Similarly, 

Andelfinger and Ramm [9] used the EAS concept to develop membrane, plate and shell finite elements where the 

equivalence with Hellinger-Reissner (HR) elements was discussed. Associated with the Hu-Washizu principle, this 

EAS technique was implemented to account for the nonlinear regime in the work of Simo and Armero [10] as well 

as in the work of Simo et al. [11]. On the other hand, several 3D finite elements were also developed based on this 

technique. This includes the work of Fredriksson and Ottosen [12] in which a stabilized hexahedral element was 

presented and evaluated through 3D elasticity problems. In the same vein, Sousa et al. [13] presented a class of solid 

finite elements that is less sensitive to mesh distortion, this resulted in high accuracy in 3D and thin shell 

applications. Another approach that has been suggested in the literature in order to produce highly accurate finite 

elements is the hybrid/mixed formulations [14]. Hybrid elements are essentially based on the enforcement of the 

constraint conditions to ensure interelement compatibility by introducing Lagrange multipliers [15] whereas Mixed 

elements are derived from a multifield variational functional. Many other pioneering works have been also proposed 

in this context for linear and nonlinear analysis [16, 17, 18, 19, 20], to name but a few. Moreover, finite elements 

possessing rotational degrees of freedom were shown to be very efficient in and nonlinear structural problems. Since 

the inspiring work of Allman [21], numerous successful approaches to embody rotational DOFs in 2D and 3D finite 

elements have been presented [22, 23, 24, 25]. Yunus et al. [22] used the Hybrid formulation to develop hexahedral, 

quadrilateral, and triangular finite elements for solving 3D and 2D elasticity problems. In the same perspective, a 

hexahedron and a tetrahedron finite element were developed in the works of Yunus et al. [23] and Pawlak et al. [24]. 

The rotational DOFs in these elements were the result of the transformation of the mid-side translational DOF of the 

standard 20-node hexahedron and 10-node tetrahedron, respectively. Recently, Shang et al. [26] presented an 8-node 

hexahedral element to analyze size-dependent problems. The 48-DOF element stems from an earlier formulation 

Shang et al. [27] which is essentially based on the modified couple stress theory. Another pioneering attempt to 

produce high accurate finite elements with rotational DOF is the Space Fiber Rotation (SFR) concept. This 

approach, firstly introduced by Ayad [25], considers the rotation of a spatial virtual fiber within the element which 

results in additional rotational DOFs. This assumption has been adopted by several authors [28, 29, 30, 31, 32, 33, 

34] to develop a family of efficient 2D and 3D finite elements. In his innovative work, Ayad et al. [29] presented 

two 8-node hexahedrons: conforming (SFR8) and nonconforming (SFR8I) finite elements. The later includes three 

incompatible modes and was mainly proposed to overcome the Poison‟s ratio locking problem present within the 

SFR8 element. These elements were adopted in the paper of Meftah et al. [30] to account for geometrical nonlinear 

problems. In the same regard, a multilayer version of the SFR8 element, called SFR8M, was introduced by Meftah 

et al. [31] to model composite laminated structures. Meftah and Sedira [32] suggested a linear four-node tetrahedral 

finite element SFR4 for modeling solid structures. Recently, Ayadi et al. [33] adopted the SFR approach to analyze 

3D nonlinear elastoplastic problems. High order finite element has also gained a renewed interest especially with the 

massive development of computational resources. This was motivated by the fast convergence and high accuracy of 

these elements. Over the past few years, numerous 2D finite elements have been published in this context [35, 36, 

37], to cite but a few. On the other hand, some high order solid finite element has been proposed for 3D modeling. 

Ooi et al. [38] suggested a 20-node hexahedron based on an asymmetric that exploits intrinsic properties of different 

sets of shape functions. This resulted in an efficient finite element with high tolerance to mesh distortion. This 

approach was later extended to include geometric nonlinearities [39]. Li et al. [40] presented a 21-node hexahedral 

spline element that incorporates an internal node and reaches the second order completeness of Cartesian 

coordinates. The element was shown to be better than the standard 20-node serendipity elements especially in terms 

of sensitivity to mesh distortion.  

The paper presents new two high order hexahedral finite elements named SFR20 and SFR20I for solving 3D 

elastic problems. The 20-node elements belong to the family of SFR finite elements which, as previously stated, 

considers the spatial rotation of a virtual fiber within the element resulting in an enhancement in the displacement 

vector approximation. This work is an extension to a previous work by Ayad et al. [29]. The main contribution is to 

increasing the order of shape functions for the displacement fields in order to increase the performance of the 
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element and can be insensitive to particular types of mesh distortion. The SFR20I is a nonconforming version of the 

SFR20 element which is mainly proposed to avoid numerical difficulties related to Poisson‟s ration locking 

phenomena. The remaining part of the paper proceeds as follows: Section 2 presents the variational finite element 

formulation. Section 3 and 4 are concerned with the formulation of the two proposed elements. The numerical 

integration scheme used to obtain the element‟s stiffness matrix is presented in section 5. In order to evaluate the 

performance of the proposed elements, several numerical examples with different geometries are examined in 

section 6. Some concluding remarks are outlined in the seventh and last section. 

2    VARIATIONAL FINITE ELEMENT FORMULATION 

The equilibrium of the solid body depicted in Fig. 1 can be defined as: 

  

0
s V
T dS f dV    (1) 

 

Calling   the continuous domain bounded by boundary Γ , where the first term represents the action of all 

surface forces and the second represents the action of all forces of volume. The boundary of   is split into 
u  and 

 , so that 
u     and 

u    . Based on these notations, the boundary conditions are expressed as:  

 

i i u

ij j i

U U on

n T on 

  


 
 (2) 

 

where T  and *U  are the prescribed boundary values of traction and displacement, respectively, and 
in  is the 

thi  

component of the normal vector, and U  is the displacement vector of Ω . 

Using the divergence theorem, Eq. (1) can be rewritten: 

 

  0vdiv f in     (3) 

 

where   and vf  are respectively the mechanical stress tensor and the body force. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Equilibrium of an elastic domain. 

 

The weak form W  of the equilibrium Eq. (1) can be obtained by introducing the admissible test function U  

verifying: 

 

( ( ) ) 0
v

W U div f d U  


      (4) 
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   
  

    
     (5) 
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where 
intW  and 

extW  are respectively the internal and external mechanical virtual works. 

The virtual linearized strain tensor    is related to U  by the following expression: 

 

    1

2

Tgrad U grad U     (7) 

 

The weak form (5) can be rewritten in a matrix form as follows: 

 

            0
T T TvW d U f d U T dA


   

  

    
     (8) 

 

where   and   are respectively the Cartesian stress and strain vectors given by: 

 

   
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T

xx yy zz xy xz yz

T

xx yy zz xy xz yz
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






 (9) 

 

with 2xy xy  , 2xz xz  , 2yz yz  . 

3    KINEMATICS OF THE SPACE FIBER ROTATION CONCEPT 

This section describes the kinematics of the proposed finite elements. The 20-node hexahedrons are developed based 

on the SFR concept. As depicted in Fig. 2 this approach considers 3D rotation of a virtual fiber iq . The fiber 

rotation represented by the vector   results in an additional displacement vector f  which contribute to the 

definition of the final displacement field and can be expressed as: 

 

 
20
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,
n

i

q i i iU N U f iq




 
 

   (10) 

 

where  
T

i i i iU U V W are the parameters of the nodal displacement and iN  are the shape functions associated with 

the serendipity 20-node hexahedral element, which can be expressed as: 
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(b) 

Fig.2 

The SFR concept; (a) 3D rotation of the virtual fiber iq  inducing an additional displacement, (b) the 20-node hexahedral 

element SFR20 and its nodal variables. 
  

The additional displacement vector is given by:  

 

   ,i i if iq N iq    (12) 

 

where: 

 

;

i xi

q i i i yi

i zi

x x

iq x x y y

z z



 



   
   

       
      

 (13) 

 

The global coordinates ,x y  and z  are expressed in terms of nodal coordinates and shape function as:  

 
20 20 20

1 1 1

‍‍ ‍‍‍‍;‍‍‍‍ ‍‍ ‍‍‍‍;‍‍‍‍ ‍‍i i i i i i

i i i

x N x y N y z N z
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      (14) 

 

Replacing Eq. (13) in Eq. (10) leads to the following improved expression of the displacement field 
qU  of q : 

 

    
20

1

, , ‍, , ;i i i q

i

U N U iq U U      


     (15) 

 

The SFR approximation adopted in Eq. (15) does not affect in any way the inter-element continuity condition of 

the displacement vector in case where iq  vanishes when q  coincides with the node i . By performing the vector 

product between the rotation vector 
i  and the virtual fiber iq , we obtain the following approximation of the 

displacement vector U  (the Einstein summation convention on i  is used): 
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 
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  
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 (16) 

 

The approximation (16) can be expressed in a matrix form: 
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where: 

 

   

   
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   

   
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 (18) 

 

and  nU  is the nodal DOFs vector containing 6 DOFs (three translations and three rotations) per node. 

 

  {                            1,20}T

n i i i xi yi ziU U V W i     (19) 

 

From the standard displacement-based finite element functions, the strains of the element can be written as:  
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 (20) 

 

Using expressions (20) of the mechanical strains and the approximation (17) of the displacement vector, we 

obtain a relationship between the stain vector   Eq. (9) and the nodal degrees of freedom vector 
nU  Eq. (19): 
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where: 
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and lkj  are the Jacobian inverse matrix components     1
j J


 , so the Jacobian matrix takes the following form: 
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Based on Eq. (8), (17) and (20), the virtual potential energy at the element level becomes:  

 

            { } [‍] ‍ Ω   Ω

ee
ext

e e

T Te T T v

n n

fK

W U B H B d U N f d N T dA

 

  

 

 
 

   
 
 

 
 
 
 
  

    (24) 

 

where eK    is the element stiffness matrix in the global coordinate system, e

extf  is the element external force vector 

and  H  is the three dimensional elastic matrix written for a homogeneous and isotropic material: 
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The coefficients G  and   are expressed in terms of Young‟s modulus and Poisson‟s ratio: 
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 (26) 

4    INCOMPATIBLE SPACE FIBER ROTATION ELEMENT 

In this section we present the nonconforming element denoted SFR20I. The element uses a similar approach as given 

by Yunus et al. [23] and Ayad et al. [29] to avoid some shortcomings related to the Poisson locking phenomena. In 

this regard, three incompatible displacement modes at the element level are introduced in the natural space 
ua , 

va  

and 
wa . The natural space extra modes are given as follows: 
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where NC stands for Non-Conforming. Natural or covariant non-conforming strains are determined by: 
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          

  

  
     

  

NC NC NC
NC NC NC NC NC NCU V W

 (28) 

 

and the vector of natural strains is related to the incompatible modes ua , va  and wa  through a matrix  M  as: 

 

  NC M a   (29) 
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(30) 

 

To verify the orthogonality condition between constant stress and non-conforming strain vectors (ensuring the 

satisfaction of the patch test); we consider the following relationship between Cartesian and natural non-conforming 

strains: 

 

        0 0

0 0         NC NC

X

detJ detJ
T T M a

detJ detJ
    (31) 

 

  0

0

NC detJ
M T M

detJ
     (32) 

 

where  0T  is the matrix relating Cartesian and covariant strain vectors evaluated at the element center and detJ  is 

the determinant of the Jacobian (
0detJ  is evaluated at the center of the element). The introduction of incompatible 

modes conduces to an enhanced strain vector: 

 

             E NC NC

nB U M a           (33) 

 

By replacing the new incompatible strain vector  E  in the equilibrium weak form Eq. (5), we obtain the 

following system of equations: 

 

 

 
 

 
0

e e e
uu ua n ext

e e

au aa

K K U f

aK K

                   
               

 (34) 

 

    ‍‍ ‍
e

Te

uuK B H B d

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e

Te NC

uaK B MH d


         (36) 

 

  
T

e e

au uaK K        (37) 

 

 ‍‍ ‍
e

T
e NC NC

aa HK M M d


             (38) 

 

Static condensation of the tangent matrix is performed to eliminate the unknown enhanced parameters  a  at 

element level. And, the final element stiffness matrix of the non-conforming element SFR20I is given as: 

 
1

e e e e e

uu ua aa auK K K K K


                     (39) 
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5    NUMERICAL INTEGRATION SCHEMES 

The Gaussian integration on the reference element is necessary to obtain the element stiffness matrix in a standard 

formulation based on displacement, so the element stiffness matrix is expressed in the parametric reference  , ,    

as the following form: 

 

          

     

1 1 1

Ω , ,
1 1 1

, ,
1 1 1

‍‍

‍‍‍

e

T Te e

m m m
Te

i j k

i j k

K B H B d B H B DetJ d d d

K w w w B H B DetJ

  

  

  
  

  

     

   

   



 (40) 

 

where DetJ  is the Jacobian determinant taken at Gauss points of the transformation between the unit configuration 

and the parametric reference. A  3 3 3   Gauss points scheme is needed to exactly determine the stiffness matrix 

part corresponding to the displacement DOFs while a  4 4 4   Gauss points scheme is necessary to exactly assess 

the second part associated with the rotational DOFs. To render the elements SFR20 and SFR20I computationally 

more effective, we choose to adopt the reduced integration scheme with  3 3 3   Gauss points to assess the 

elementary stiffness matrix e

uuK    (the reduced integration concerns only the part related to rotational DOFs). 

6    NUMERICAL VALIDATION 

In this section, the performance and efficiency of the proposed elements are evaluated through a series of 3D benchmarks. 

In this context, the obtained results are compared with the analytical solution on the one hand and with those of other 

reference elements Table 1 on the other hand. Computations are performed using the finite element code Reflex 

developed by Batoz and Dhatt [41]. 
 

Table 1 

Listing of abbreviations to denote the element types. 

  Element name   Description  

 HEX20  20-node hexahedral standard element tested by MacNeal and Harder [3];  

 HEX20(R)  20-node hexahedral standard element with reduced integration tested by MacNeal and Harder in [3];  

 SHB20  20-node solid-shell element [42];  

 C3D20  20-node second-order classical hexahedral Abaqus element with an exact numerical integration scheme 

( 3 3 3   Gauss points) [43]; 

 C3D20R  20-node second-order classical hexahedral Abaqus element with reduced numerical integration scheme 

( 2 2 2   Gauss points) [43]; 

 SOLID95  20-node element of ANSYS 5.4 [44]; 

 HEXA20  20-node isoparametric hexahedron classical symmetric element [38]; 

 US-HEXA20  20-node Unsymmetric hexahedral element [38]; 

 H27  27-node Lagrange element [45, 46];  

 HS21  21-node hexahedral spline element [40];  

 SFR20  Presented 20-node hexahedral element based upon the "Space Fiber Rotation" concept;  

 SFR20I  Presented 20-node hexahedral element based upon the "Space Fiber Rotation" concept with incompatible 

modes.  

6.1 Maximum aspect ratio test 

This test was examined in the works of Legay and Combescure [47] and Abed Meraim et al. [42] to evaluate the 

aspect ratio limits of elements in beam bending problems. It consists of a clamped beam subjected to a bending load 

at its free edge as depicted in Fig. 3. The analytical solution of this problem can be obtained using the beam theory 

Eq. (41): 
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Fig.3 

Cantilever beam geometry and mesh description. 

 

The length and the width of the beam were constant and equal to 100L   and 10b  , respectively. The beam 

was modeled with one element through the thickness and the width, in the length of the beam 10 elements were used 

in both regular and irregular meshes, the aspect ratio between the width and the thickness is /r b t . The 

mechanical properties of the beam are: 
668.25 10E    and 0.3  . A bending load 4P   is applied at the free 

end of the beam. 
 

 

Table 2 

Normalized displacement at point A for regular meshes. 

Aspect ratio (r = b/t) Ref. Solutions HEX20 SHB20 SFR20 SFR20I 

1 2.344E-5 1.005 1.009 0.993 1.005 

10 2.344E-4 0.984 0.998 0.999 1.009 

100 2.344E-3 0.951 0.997 1.001 1.010 

200 4.689E-3 0.959 0.996 1.001 1.010 

333 7.814E-3 NA 0.998 1.001 1.010 

500 1.172E-2 NA 1.004 1.001 1.010 

 

The results of the displacement at point A of different elements are shown in Tables 2 and 3 for both regular and 

distorted meshes. The findings of the proposed elements and the solid-shell element SHB20 are in good agreement 

with the analytical solution even when the thickness decreases. However, the standard hexahedron HEX20 loses 

accuracy when the aspect ratio increases especially for the distorted mesh. The normalized displacement for regular 

and distorted meshes are plotted against the aspect ratio evolution in Fig. 4 and 5 respectively. 
 

 

Table 3 

Normalized displacement at point A for irregular (distorted) meshes. 

Aspect ratio (r = b/t) Ref. Solutions HEX20 SHB20 SFR20 SFR20I 

1 2.344E-5 0.981 1.010 0.982 0.994 

10 2.344E-4 0.682 0.997 0.988 0.998 

100 2.344E-3 0.345 0.995 0.989 0.999 

200 4.689E-3 0.294 1.002 0.989 0.999 

333 7.814E-3 0.251 0.984 0.989 0.999 

500 1.172E-2 NA NA 0,989 0.999 
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Fig.4 

Convergence of normalized displacement at point A as a 

function of the aspect ration for regular mesh. 

 

 

 

 

 

 

 

 

 

 

Fig.5 
Convergence of normalized displacement at point A as a 

function of the aspect ration for irregular (distorted) mesh. 

6.2 In-plane bending of a cantilever beam 

As shown in Fig. 6, the second numerical example considers a cantilever beam subjected to in plane bending load 
41.0 10yP   . The beam is supposed to have the following physical properties: 

71  .0 10E   , 0.3  . This 

cantilever beam is modeled with six meshes: three regular meshes : M1, M2 and M3 and three distorted ones : M4, 

M5 and, M6 as shown in Fig. 7. The reference solution of the transverse displacement at point C can be obtained 

using the Timoshenko beam theory Eq. (42): 

 
3 6

4 0.03 4.03
3 5

ref

C

PL PL
W

EI GA
      (42) 

 

 

 

 

 

 

 

 

Fig.6 

Geometry and mechanical properties of a thin cantilever 

beam under plane bending. 
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(M1)                                             (M2)                                                        (M3) 

 
(M4)                                               (M5)                                                       (M6) 

Fig.7 

Mesh types of the thin cantilever beam. 
 

   

The findings of different solutions are summarized in Table 4. This table compares the normalized displacement 

at point C of the proposed elements with the results of the quadratic hexahedral element of Abaqus C3D20. Both 

SFR20 and SFR20I show favorable behaviour and good rate of convergence. Especialy, in the distorted mesh unlike 

the element C3D20. 

 
Table 4 

In-plane bending of a cantilever beam. Normalized transverse displacement of point C (the value inside parentheses indicates the 

total number of variables in the model: DOFs plus internal variables). 

       Mesh Shape M1 M2 M3 M4 M5 M6 

C3D20 0.735 0.899 0.972 0.146 0.424 0.859 

 (60) (96) (132) (96) (132) (240) 

SFR20 0.966 0.977 0.981 0.887 0.948 0.988 

 (120) (192) (264) (192) (264) (480) 

SFR20I 0.998 0.999 0.999 0.907 0.957 1.012 

 (123) (198) (273) (198) (273) (498) 

6.3 Straight cantilever beam 

To evaluate the proposed elements‟ performance in terms of sensitivity to mesh distortion, a straight cantilever beam 

is considered. This example was examined in the work of MacNeal and Harder to test the combination of different 

shapes with linearly varying strains [3]. In this respect, The beam is meshed with six elements with different shapes 

(regular bricks, trapezoidal and parallelogram-shaped) and subjected to an in-plane and out-of-plane unit-shear force 

at the free end as shown in Fig. 8. The dimensions of the problem and the physical properties are: 6.0Length  ; 

0.2width  ; 0.1depth  ; 6 1 1mesh    ; 
71.0 10E   ; 0.3  . The theoretical solutions for the problem are 

0.1081refU   and 0.4321refW   for the in-plane and out-of-plane load, respectively. 

 

 

 
Fig.8 

Straight cantilever beam with three types of meshes. A, rectangular; B, parallelogram; C, trapezoidal. 
 
 



                                                                                    New Two 20-Node High-Order Finite Elements Based ….                     264 
 

© 2022 IAU, Arak Branch 

Table 5 

Normalized tip deflection of a straight cantilever beam. 

Element shape Load type HEX20 HEX20(R) SOLID95 USHEXA20 SFR20 SFR20I 

Regular In-plane 0.970 0.984 0.994 0.994 0.990 0.998 

 Out-of-plan 0.961 0.972 0.992 0.992 0.986 0.996 

Trapezoidal In-plane 0.886 0.964 0.966 0.985 0.989 0.995 

 Out-of-plan 0.920 0.964 0.987 0.987 0.975 0.986 

Parallelogram In-plane 0.967 0.994 0.988 0.989 0.985 0.991 

 Out-of-plan 0.941 0.961 0.987 0.987 0.946 0.964 

 

Tables 5 compares the normalized tip deflection of the proposed elements with other reference elements. It can 

be noted that the SFR20 and SFR20I elements show good accuracy when trapezoidal shapes are used for both in-

plane and out-of-plane loads. On the other hand, when parallelograms are used, the accuracy slightly diminishes 

when an out-of-plane load is applied. 

6.4 Distortion tests 

Fig. 9 demonstrates the geometry and boundary conditions of the Clamped beam presented in Areias et al. [48]. The 

mechanical properties are 1500E   and 0.25  . The beam is discretized using two sets of distorted mesh 

( 2 1 1  ) and ( 5 1 1  ) elements for set-I and set-II respectively. Both sets are clamped and subjected to two cases 

of loading in the free end, a pure bending (case A) and a transverse/shear force (case B). The reference transverse 

displacement at point C for (case A) is 100ref

CW   while for (case B) is 102.6ref

CW  . We summarize in Tables 6 

and 7 the normalized transverse displacement of different solutions. 

 

 
Distorted mesh set-I, loading case A. 

 
Distorted mesh set-II, loading case B. 

Fig.9 

Clamped beam with distorted mesh. 
 

 

For both sets, the presented elements exhibit good results. It can be noticed that the SFR20 element is slightly 

performant when compared with other solutions whereas the nonconforming SFR20I element is found to be more 

efficient in terms of convergence rate. 
 

Table 6 

Normalised transverse displacement of point C for set-I. 

Case SOLID95 USHEXA20 C3D20 H27 HS21 SFR20 SFR20I 

A 0.999 1.000 0.962 0.998 1.003 0.981 1.000 

B 0.978 0.978 0.924 0.958 0.939 0.968 0.992 

 

Table  7 

Normalised transverse displacement of point C for set-II. 

Case SOLID95 USHEXA20 C3D20 SFR20 SFR20I 

A 0.997 1.000 0.982 0.999 1.004 

B 1.005 1.011 0.975 0.995 1.091 

6.5 Square clamped plate 

This example is a popular benchmark to evaluate the performance and accuracy of finite elements [3, 38, 48]. Fig. 

10 shows a square plate with clamped supports subjected to a point load of 
44 10P    at the center. The square 
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plate of dimension 2.0L   with uniform thickness 0.01h   and material properties 
71.7472 10E   , 0.3  . the 

convergence of the proposed elements was studied by modelling the square plate using one element through the 

thickness and N = 2, 4, 6, 8 and 10 elements on each side. The analytical solution for square clamped plate under a 

concentrated load is 
65.6 10refW   . The normalized values of the deflection at the central point are given in 

Table 8. 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Square plate subjected to a concentrated load in the center with  
4 4 1   mesh. 

 

From the observation of Fig. 11, it is clear that the best overall results are obtained with the presented elements 

and they converge rapidly to the exact solution. The rate of convergence is significant for a very coarse mesh 

 2N   compared to the other quadratic hexahedral elements. 

 

Table 8 

Normalized transverse displacement at the center. Square plate with clamped supports subjected to a concentrated load. 

Mesh C3D20 C3D20R SOLID95 HEXA20 USHEXA20 SFR20 SFR20I 

2 × 2 NA 0.434 0.313 0.310 0.191 0.847 0.864 

4 × 4 0.822 0.943 0.868 0.868 0.912 0.978 0.990 

6 × 6 0.931 0.979 0.870 0.943 0.952 0.990 0.998 

8 × 8 0.960 0.987 0.959 0.970 0.973 0.994 1.000 

10 × 10 0.973 0.991 0.982 0.982 0.984 0.996 1.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Convergence of normalized transverse displacement at the 

center. Square plate subjected to a concentrated load. 

6.6 Circular plate 

The test considers a circular plate clamped along the circumference and it is loaded with a concentrated force at the 

center. Because of the symmetry of the problem, only a quarter of the plate is discretized and the appropriate 

boundary conditions are applied on the symmetry plans. This quarter is modeled with one element through the 

thickness and N = 2, 4, 6, 8, 10 and 12 elements on each side. Geometry, mechanical properies and boundary 

conditions of the problem are indicated in Fig. 12. The analytical solution of the transverse displacement at the 

center is given by Kirchhoff plate theory [49] Eq. (43): 
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Fig.12 

Problem statement of clamped circular plate under concentrated load. 
 

Normalized values of different elements are presented in Tabel 9. It is clear that SFR20 and SFR20I present very 

accurate results when compared to the classical hexahedral element HEX20 and both Abaqus elements C3D20 and 

C3D20R. Besides, the presented elements are found to fastly converge to the analytical solution even with coarse 

mesh as shown in Fig. 13. Therefore, the SFR approach made adding another layer of elements across the thickness 

unnecessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Convergence of nomalized transverse displacement at the 

center for circular plate problem. 

 
 

Table 9 

Normalized transverse displacement at the center. Circular plate with clamped supports subjected to a concentrated load. 

Mesh HEX20 C3D20 C3D20R SFR20 SFR20I 

2 × 2 0.151 0.151 0.465 0.907 0.931 

4 × 4 0.688 0.688 0.863 0.977 0.990 

6 × 6 0.895 0.895 0.956 0.988 0.997 

8 × 8 0.947 0.947 0.979 0.992 0.999 

10 × 10 0.968 0.968 0.987 0.994 1.000 

12 × 12 0.989 0.978 0.991 0.996 1.000 
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Fig.14 

Computational cost for establishing the global stiffness 

matrix and the solving system equations of the circular 

plate problem. 

 

 

In order to evaluate the run-time efficiency of the proposed elements, the computing time is now assessed for the 

circular plate problem analyzed above. The computational cost to set up the global stiffness matrix and to solve the 

algebraic equations is illustrated in Fig. 14. From the plots, we can conjecture that, for same displacement results, 

the run-time required for both SFR20 and SFR20I elements with the Space Fiber Rotation concept presented here 

appears asymptotically lower than that of the classical hexahedral element HEX20. 

6.7 Pinched spherical shell 

The following example deals with a hollow sphere with two radially opposed point loads as shown in Fig. 15. This 

example is usually used to check the absence of shear and membrane locking in structures exhibiting bending 

behavior. Dimensions, mechanical properties, and boundary conditions are shown in Table 10. Due to symmetry, 

only a quarter of the structure is discretized into 1N N   regular elements (N = 2, 4, 8 and 10 per side). The 

analytical solution of the problem is given in the paper of MacNeal and Harder [3]:
 

         0.094A BU V   

 

 

 

 

 

 

 

 

 

Fig.15 

Hemisphere under diametrically opposite forces. 

 

 
Table 10 

Mechanical properties, geometry, boundary and symmetry conditions of shell tests. 

 Pinched spherical shell Pinched cylindrical shell with end diaphragms 

Geometry and mechanical properties   

   1  0,      0.04,   /    250,R h R h    
7   6.825  1  0 ,      0.3E     

   6,      3,      0.03,L R h    
10   3  1  0 ,      0.3E     

Boundary condition   

    0     W on E             0     YU W on AD    

Symmetry conditions   

            0        X ZV on AC  

            0     Y ZU on BD     

           0     X YW on AB     

           0        X ZV on BC  

           0     Y ZU on CD     

Load   

    2P   0.25ZP    
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Findings of displacements at point A of different solutions are summarized in Table 11. To evaluate the rate of 

convergence, the normalized displacements at point A are plotted against the number of elements in Fig. 16. The 

results show that the SFR20 and SFR20I elements are better than all reference elements in terms of accuracy and 

rate of convergence. 

 
Table 11 

Normalized tip displacement in the force direction for pinched spherical shell problem. 

Mesh C3D20 C320R SOLID95 HEXA20 USHEXA20 SFR20 SFR20I 

2 × 2 NA 0.203 NA NA NA 0.759 0.792 

4 × 4 0.683 0.685 0.021433 0.021217 0.014711 0.994 1.015 

8 × 8 0.984 0.988 0.258461 0.257849 0.611636 1.010 1.047 

10 × 10 0.989 0.994 0.457268 0.456715 0.779302 1.010 1.052 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Convergence of normalized tip displacement of the pinched 

spherical shell. 

 

6.8 Pinched cylindrical shell with end diaphragms 

This last example considers a cylinder with rigid end diaphragms subjected to radially point load at point C, as 

shown in Fig. 17. This problem evaluates the performance of finite elements in both inextensional bending and 

complex membrane states of stress [50]. A reference solution of the present problem is given by Flügge [51] as: 

 

164.24ref C

C

W Eh
W

P
    (44) 

 

 

 

 

 

 

 

 

 

 

Fig.17 

Pinched cylindrical shell with end diaphragms geometry, 

boundary and symmetry conditions; example of a  10 10 1   

mesh. 

 

Dimensions, mechanical properties as well as applied boundary conditions are exposed in Table 10. The cylinder 

is modeled using a regular mesh of N = 2, 4 and 6 elements per side. Due to symmetry, only a segment of 90o
 of 

the cylinder is examined with the appropriate boundary conditions along the symmetry plans. The displacements at 

point C of different element solutions are presented in Table 12. 
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Table 12 

Normalised displacement for the pinched cylinder with diaphragms. 

Mesh HEX20 C3D20 C3D20R SHB20 SFR20 SFR20I 

2 × 2 NA 0.043 0.630 NA 0.468 0.551 

4 × 4 0.140 0.140 0.872 0.883 0.823 0.932 

6 × 6 0.328 0.328 0.952 0.961 0.929 1.057 

 

The SFR20 give better results than the classical hexahedral element HEX20 and C3D20. We can notice a slight 

difference between the proposed element SFR20 and the elements C3D20R and SHB20. On the other hand, the 

findings of the non-conforming element SFR20I are much better than all the other counterparts. 

7    CONCLUSION 

This study set out to investigate the performance of two proposed 20-node hexahedral finite elements; a conforming 

element SFR20 and a non-conforming element SFR20I. These elements belong to the family of elements based on 

the Space Fiber Rotation concept. This formulation considers essentially a 3D rotation of a virtual fiber within the 

element which enriches the definition of the displacement field approximation. Therefore, this approach results in 

additional rotational DOFs per node. The incompatible modes approach was implemented into the non-conforming 

element SFR20I in order to overcome Poisson‟s locking deficiency. The performance of the proposed elements is 

examined through popular benchmarks in which the efficiency is assessed by comparing the findings with analytical 

and numerical reference solutions. The presented elements exhibit good performance in terms of accuracy, rate of 

convergence, and sensitivity to mesh distortion. They are shown to be significantly better than the standard 20-node 

hexahedron. In particular, the SFR20I element showed excellent accuracy even for very coarse meshes. A natural 

progression of this work is to extend the formulation of these elements to account for geometric and material 

nonlinearities. 
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