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 ABSTRACT 

 In this paper, we have studied a model of finite linear Mode-I crack 

in a thermoelastic transversely isotropic medium under Green 

Naghdi theory. The crack is subjected to a prescribed temperature 

and a known tensile stress. The plane boundary surface is 

considered as isothermal and all the field variables are sufficiently 

smooth. The heat conduction equation is written under two 

temperature theory (2TT) for Green Naghdi model which contains 

absolute temperature as well as conductive temperature. The 

analytical expressions of displacement components, stress 

components and temperature variables are obtained by normal 

mode analysis and matrix inversion method. Comparisons have 

been made within Green Naghdi (G-N) theory of type I, type II and 

type III for displacement, stress and absolute temperature variables 

against the crack width for a transversely isotropic material 

(Cobalt) by virtues of graphs. Also, Comparison have been made 

among displacement, thermal stress and absolute temperature for 

different depths.   

     © 2022 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

RACTURE mechanics is an important branch in modern material science used to refine the performance of 

mechanical components and covers the study of different laws to control crack growth. Mode-I crack is created 

by the stress normal to the plane of the crack. In the field of Thermoelasticity dynamical crack problems are 

investigated by many authors [1-5]. In the theory of elasticity, non-isothermal problems have great importance due 

to their applications in Aerodynamics. Modern aircraft produces intense thermal stresses due to high velocity and 

reduces the strength of aircraft structure. The study of Thermoelasticity is worthwhile in composite engineering, 

geothermal engineering, and many more. Nowacki [6] and Nowinski [7] have studied Thermoelasticity with various 

applications in real phenomena. Biot [8] has introduced the theory of coupled Thermoelasticity after eliminating the 

first paradox of the classical theory to conquer the first infirmity. The first generalizations of the coupled theory 

have been introduced by Lord and Shulman [9]. In this theory a wave type heat equation was obtained by assuming 

a new law of heat conduction to replace the classical Fourier’s law which contains time derivative and new constant 
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acts as relaxation time. Dhaliwal and Sherief [10] extended this theory for isotropic medium in the presence of heat 

sources. The second generalizations of the coupled theory of Thermoelasticity with relaxation times is known as the 

theory of temperature-rate-dependent. Green and Laws [11] have studied a problem under this theory. Green and 

Naghdi [12-13] have discussed the linear and non-linear theories of the thermoelastic body with and without energy 

dissipation. These theories of Thermoelasticity based on entropy equality are known as G-N (type I, type II and type 

III) theory. Linearized G-N theory of type I describes the classical heat equation, which is parabolic in nature. G-N 

theory of type II and type III estimates the finite speed of a thermal wave. Othman et al. [14] studied the effect of 

diffusion on the two-dimensional problem of generalized Thermoelasticity with G-N theory. The linear theory of 

elasticity has a major role to analyze the stress for engineering structure materials. In modern time man-made 

materials have demand so much in engineering, geological and biological fields due to their excellent strength 

capacity, lesser weight and low price. A transversely isotropic material such as Epoxy, Copper, Cobalt, Bakelite, etc. 

having physical properties that are symmetric about an axis that is normal to the plane of isotropy. Geological layers 

of rocks are considered as transversely isotropic material for its effective properties of such layers. In the last few 

decades, considerable attempts have been made to study the failure of cracks in solids. Our geological earth structure 

builds with different layers of rocks, some of which are transversely isotropic in nature. Due to the collision of two 

plates and earthquakes, many finite cracks may be formed in that layers. We have considered this configuration in 

Thermoelasticity. The phenomena with finite cracks in the transversely isotropic medium have come across in the 

technologies of space vehicles, missile industry, ship factories and in the industry of small electronic components. 

There are some numerical techniques such as FEM, FDM and BEM for finding thermal stress in this type of 

problem. Normal mode analysis is an analytical method that determines exact expressions of stress, temperature and 

displacement components. We formulated this problem keeping all these things in mind. Sarkar et al. [15] have 

studied a two-temperature problem under G-N theory with a mode-I crack in fiber-reinforced thermoelastic medium. 

Thermoelastic problem has been discussed in transversely isotropic medium by Kaur [16-17] and Sur [18]. 

Reflection phenomena of plane waves have been discussed by Singh [19-20]. Sharma et al. [21-23] have discussed 

the thermomechanical interactions in transversely isotropic medium due to rotation, hall current and inclined load 

for two temperatures Thermoelasticity theory. Two temperature Green-Naghdi theory of type –III in a transversely 

isotropic thick plate is studied by Lata and Kaur [24]. 

In this paper, we used the normal mode analysis to solve the problem of linearized Mode-I finite crack in a 

thermoelastic transversely isotropic medium under G-N theory of type III. The analytical expression for the 

temperature, displacement components and thermal stresses are derived, and represented by graphs for different 

depths. A comparison has been shown within G-N theory of type III, type II and type I.       

2    FORMULATIONS OF THE PROBLEM 

Let us assume a two dimensional problem in a linear, infinite homogeneous thermoelastic transversely isotropic 

medium x   and z   with a finite crack located at | | , 0x a y   (Fig. 1) in Cartesian co-ordinate 

frame ( , , )x y z . The linearized mode-I crack is subjected to a known temperature and normal stress distributions. 

Following Sarkar et al. [15] and Youssef [25], in the absence of body forces, the governing equations are: 

(i) Equation of motion 
 

,i ij ju  , (1) 

 

(ii) The heat conductive equation of two temperature model under G-N theory of type III 

 
*

, , 0ij ij ij ij ij ij EK K T e C T      , (2) 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 
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where 

 

0 ,ijT a   , (3) 

 
* *, ,ij i ij ij i ij ij i ijK K K K       , (4) 

 

ij is the Kronecker delta and 

 

 , ,

1

2
ij i j j ie u u  ,       , 1,2,3 .i j   (5) 

 

Here 
ij  is the thermal elastic coupling tensor, 

0T is the reference temperature, T is the absolute temperature,   

is the conductive temperature, 
EC  is the specific heat at constant strain, 

iu  are the displacement components,  is 

the density of the medium, 
*

ijK is the materialistic constant, 
ijK is the thermal conductivity and 

ij are the stress 

tensor. 

We considered this problem in xz -plane and all the functions will be dependent on time t. So the displacement 

components 
iu will have the form

1 ( , , )u u x z t ,
2 ( , , t) 0u v x z   and 

3 ( , , )u w x z t . The thermal stress 

components in transversely isotropic medium are: 

 

11 13 1xx x zC u C w T      , (6) 

 

13 33 3zz x zC u C w T      , (7) 

 

and 

 

 44xz z xC u w    . (8) 

 

x and 
z denote the partial derivative with respect to x and z variables respectively. Moreover partial 

derivative with respect to time t  is presented by 
t . With the help of Eqs. (3), (6), (7) and (8) equation of motion 

(1) become: 

 

   2

11 13 44 44 1 01xx xz zz x ttC u C C w C u a u               (9) 

 

and 

 

   2

44 13 44 33 3 01xx xz zz z ttC w C C u C w a w              . (10) 

 

The heat conduction equation can be written as: 

 

   * * 2

1 3 1 3 0 1 3 01xx zz xxt zzt xtt ztt E ttK K K K T u w C a                      , (11) 

 

where 2

xx zz    . Considering the scalar potential functions ( , , )x z t and ( , , )x z t  in the non-dimensional 

form: 

 

x zu      and  
z xw     . (12) 

 

Eqs. (9-10) became 
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   2

11 13 44 1 02 1 0xx zz ttC C C a                (13) 

 

and 

 

 11 13 44 44 0xx zz ttC C C C           . (14) 

 

The solution of the Eqs. (11), (13) and (14) can be broken up in terms of normal mode (Othman [5] and Atwa 

[26]) and written in the following form: 

 

, , , , ( , , ) , , , , ( ) t ikz

ij ijT x z t T x e                   , (15) 

 

where , , , , ( )ijT x          are the amplitudes of the functions , , , , ( , , )ijT x z t      ,   is the angular frequency 

and k is the wave number in the z -direction. 

Substituting Eq. (15) in Eqs. (13), (14) and (11) we obtain, 

 

   2 2

1 2 3 1 0D D         , (16) 

 

 2

4 0D      (17) 

 

and 

 

   2 * 2 *

1 3 1 3 2D D D             , (18) 

 

where

 
 

11

1 2

1 01

C

a k






, 

 

 

2 2

13 44

2 2

1 0

2

1

C C k

a k






 



, 0

3 2

01

a

a k
 


, 

2 2

44

4

11 13 44

C k

C C C







 
, * 2

1 1 1 0EK K C a      , 

* 2 2 2 2 2

3 3 3 0E EK k k K C C a k         , * 2

1 0 1T   ,
 

* 2 2

3 0 3T k   ,  2

2 0 1 3ikT     , 
d

D
dx

  and 
2

2

2

d
D

dx
 . 

 

The solution of Eq. (17), bounded as x  , has the form  

 
3

3

m x
A e   , (19) 

 

where 
3A  is arbitrary constant to be determined by the boundary conditions and 

3m is the root of the characteristic 

equation of Eq. (17). 

Eliminating  and   from the Eqs. (16) and (18), we obtain the fourth order ODE for  and   in the 

following form: 

 

   34 2

3,
m x

D PD Q A e       , (20) 

 

where 
* *

1 2 3 1 1 3 3

*

1 1 1 3

P
      

   

  



, 

*

3 2 3

*

1 1 1 3

Q
  

   





 and 

3

3 3 2 3 2

*

1 1 1 3

m m  


   





.  

We write the solution (bounded for x  ) of Eq. (20) in the following form: 

 
3

1 2 3

1 2 4 2

3 3

m x

m x m x A e
A e A e

m Pm Q






    
 

, (21) 

  

and  
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3

1 2 3

1 2 4 2

3 3

m x

m x m x A e
A e A e

m Pm Q






     
 

, (22) 

 

where 
1A , 

2A , 
1A  and 

2A 
 
are some parameters and  2 1,2im i  are the roots of the characteristic Eq. (20). 

Applying Eqs. (21) and (22) in Eq. (16), we acquired the relation 

 
31 2

11 1 12 2 13 3

m xm x m x
J A e J A e J A e      , (23) 

 

where 
2

1 1 2

11 2

3 11

m
J

m

 







, 

2

1 2 2

12 2

3 21

m
J

m

 







, 

 
  

2

1 3 2

13 2 4 2

3 3 3 31

m
J

m m Pm Q

  






  
. 

Using Eq. (23) in the Eq. (3), we obtain the expression of T as: 

 

 31 2

11 1 12 2 13 3

m xm x m x t ikzT H A e H A e H A e e     , (24) 

 

where  
2

2 21 1 2

11 0 1 02

3 1

1
1

m
H a m a k

m

 




  


,  

2

2 21 2 2

12 0 2 02

3 2

1
1

m
H a m a k

m

 




  


 and

 

 
  

 
2

1 3 2 2 2

13 0 3 02 4 2

3 3 3 3

1
1

m
H a m a k

m m Pm Q

  




  

  
. 

The displacement and stress components in generalized thermoelastic transversely isotropic medium are obtained 

with the help of Eqs. (19), (21), and (24) 

 

3 31 2 3

1 1 2 2 3 34 2

3 3

( )
m x m xm x m x m

u x m A e m A e A e ikA e
m Pm Q

        
 

, (25) 

 

3 31 2

1 2 3 3 34 2

3 3

( )
m x m xm x m x ik

w x ikA e ikA e A e m A e
m Pm Q

       
 

, (26) 

 
31 2

1 1 2 2 3 3( )
m xm x m x

zz x a A e a A e a A e      , (27) 

 
31 2

4 1 5 2 6 3( )
m xm x m x

xx x a A e a A e a A e      , (28) 

 

and 

 
31 2

1 1 2 2 3 3( )
m xm x m x

xz x b A e b A e b A e      , (29) 

 

where, 2 2

1 13 1 33 3 11a C m k C H   , 2 2

2 13 2 33 3 12a C m k C H   ,
2 2

3 13 33

3 13 3 33 3 3 134 2 4 2

3 3 3 3

m C k C
a ikC m ikC m H

m Pm Q m Pm Q

 
    

   
, 

2 2

4 11 1 13 1 11a C m k C H   , 2 2

5 11 2 13 1 12a C m k C H   ,
2 2

3 11 13

6 11 3 13 3 1 134 2 4 2

3 3 3 3

m C k C
a ikC m ikC m H

m Pm Q m Pm Q

 
    

   
, 

1 44 12b iC km  , 2 44 22b iC km   and  2 244 3

3 3 444 2

3 3

2iC km
b m k C

m Pm Q


   

 
.  

3    BOUNDARY CONDITIONS AND APPLICATIONS 

The plane boundary subjects to a direct normal point force and the boundary surface is isothermal. The mechanical 

and thermal boundary conditions on the plane 0y  and in the midpoint of the crack at 0x  are shown in Fig. 1. 
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(0, , ) (z, t)zz z t p   , (30) 

 

(0, , ) 0xz z t  , (31) 

 

and 
 

 0, , ( , )z t f z t  . (32) 

 

Using the above boundary conditions, we obtain the following relations 

 
*

1 1 2 2 3 3a A a A a A p    , (33) 

 

1 1 2 2 3 3 0b A b A b A   , (34) 

 

and 

 
*

11 1 12 2 13 3J A J A J A f   . (35) 

 

After applying the Matrix inversion method for the system of Eqs. (33-35), we get the unknown coefficients 

 

   * *

1 3 12 2 13 3 2 3 2

1
A p b J b J f b a a b     

, 

   * *

2 1 13 3 11 1 3 1 3

1
A p b J b J f b a a b     

, 

 

 

and 

 

   * *

3 2 11 1 12 2 1 2 1

1
A p b J b J f b a a b     

,  

 

where 

 

     1 2 13 3 12 2 1 13 3 11 3 1 12 2 11a b J b J a b J b J a b J b J       .  

4    NUMERICAL RESULTS AND DISCUSSIONS 

We represent numerical results graphically for displacement, stress and absolute temperature of a Mode-I finite 

crack in thermoelastic transversely isotropic medium. We considered the following Cobalt material data (Dhaliwal 

[27]) to depict the impact of GN-I, GN-II, and GN-III theories of thermoelasticity. 

 
11 2

11 3.07 10C Nm   , 10 2

13 1.027 10C Nm  
 
,
 

11 2

33 3.581 10C Nm   , 11 2

44 1.51 10C Nm   . 

2 1 14.27 10 degEC jkg    ,  6 2 1

1 7.04 10 degNm     ,   6 2 1

3 6.90 10 degNm    , 3 38.836 10 kgm   ,
 

2 1 1

1 0.690 10 degK Wm    , 2 1 1

3 0.690 10K Wm K   , * 2 2 1

1 0.02 10 sec degK N    , * 2 2 1

3 0.04 10 sec degK N    . 

 

 

Moreover, the following data has been taken into consideration (Othman [5] and Sarkar [15]): 

 

2 i   , 0 293T K , 2k  , 0.1t  , * 4p  , * 0.5f   and 0 2.7a  .  
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Fig. 2 consists of six figures with 3 curves in each figure shows the influence of G-N theories of type-I 

 * 0ijK  , type-II  0ijK   and type-III  0ijK  for displacement thermal stress and absolute temperature 

variables at 0z  and 0.1t  . Fig.3 consists six figures exhibiting the effect of vertical depth of crack for various 

components such as displacement, thermal stress and absolute temperature. 

In Fig. 2(a) horizontal displacement  u has been plotted against crack length  x . Horizontal displacement 

 u has a maximum value at almost center of the crack and u  falls down just near the edge of the crack. In Fig. 2(b) 

vertical displacement  w has been plotted against crack’s length  x . Vertical displacement  w  has a sharp 

increment near the edge of the crack for type I and type III theories, while w decreases near the tip of the crack for 

type II theory. In Fig. 2(c) absolute temperature  T has been mapped against crack’s length  x .Temperature 

 T decreases with increase in crack’s length for type I and type III, while type II shows the reverse effect. 

Temperature  T converges to zero for each G-N theory. Fig. 2(d) is the plot of horizontal stress  xx  versus 

displacement  x . It is evident from the graph that 
xx decreased at the tip of the crack and start increasing in the 

context of type I, type II and type III at the end of the crack. Fig. 2(e) is the map of stress  xz  versus crack’s 

length  x . 
xz decreases from 0x  but after some point it increases and tends to zero for type II and type III; 

whereas type I shows the reverse effect. In Fig. 2(f) vertical stress  zz  has been mapped against x . 
zz increases 

with increase in x  for each instances and tends to zero with increasing value of x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2(a) 

Horizontal displacement versus crack length. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.2(b) 

Vertical displacement versus crack length. 
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Fig.2(c) 

Temperature distribution versus crack length. 

  

 

 
 
 
 
 
 
 
 
 
 
 
Fig.2(d) 

Horizontal stress versus crack length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2(e) 

Shear stress versus crack length. 

  

 

 

 

 

 

 

 

 

 

 

Fig.2(f) 

Vertical stress versus crack length. 
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In Fig. 3(a) horizontal displacement  u has been mapped against x. It is clear from the figure that horizontal 

displacement increases near the center position of the crack. Horizontal displacement converges to zero with 

increase in crack length.  In Fig. 3(b) vertical displacement  w  has been plotted against x. Vertical displacement 

increases near the center of the crack and there is no vertical displacement near the edge of the crack. Fig. 3(c) 

depicts the distribution of temperature  T  against crack’s length x. Absolute temperature decreases with increase 

in distance x. In Fig. 3(d) horizontal stress  xx has been plotted against crack length  x . Horizontal stress 

increases with increase of crack length  x and goes to zero at the end of the crack. The impact of absolute 

horizontal stress is higher for lesser values of z.  Fig. 3(e) reveals the effect of stress component  xz for different 

value of z. At the center of the crack there is no significant effect of  
xz  but with increase in z, 

xz  shows more 

influences on the crack. 
xz  is decreasing in nature near the midpoint of the crack but for 0.5x  , stress component 

xz increases and tends to zero with increase in x. In Fig. 3(f) vertical stress  zz  has been plotted against x. It is 

notable that 
zz  increased in the range 0.5x  and after that it approaches to zero in a constant mode. The effect of  

zz is more prominent for higher values of z. 

All the graphical results are similar in nature with graphs exhibited by Othman and Atwa [5].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3(a) 

Horizontal displacement versus crack length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3(b) 

Vertical displacement versus crack length. 
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Fig.3(c) 

Temperature distribution versus crack length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3(d) 

Horizontal stress versus crack length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3(e) 

Shear stress versus crack length. 
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Fig.3(f) 

Vertical stress versus crack length. 

5    CONCLUSIONS 

The objective of this current study is to unfold the nature of displacement, temperature, and stress components of a 

Mode-I crack in a thermoelastic transversely isotropic medium with the help of Green-Naghdi theory. Analytical 

solution to this problem has been obtained by normal mode analysis. The key points from this paper are noted as 

follows: 

 There is no horizontal and vertical displacement near the edge of the crack for each type of G-N theory. 

 Impact of temperature (T) is not significant for type II G-N theory. 

 All the thermal stress components converge to zero near the edge of the crack for each G-N type theory. 

 Impact of temperature distribution is zero at the tip position of the crack. 

 The crack dimensions are crucial to explain the mechanical shape of solid. 

 The cracks are static in nature but thermal stress is forced to transmit such cracks. 

 This analytical solution demands its accuracy and stability to a wide range of problems in thermoelasticity. 
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