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 ABSTRACT 

 In this study, the transient dynamic analysis of grid-stiffened 

composite conical shells is discussed. The transient dynamic 

response of the composite conical shell with simply supported 

boundary conditions under the lateral impact load, which is applied 

extensively and uniformly on a certain surface, is obtained using 

the convolution integral and based on the method of addition of 

modes. The validation of the obtained results has been done with 

the help of references and ABAQUS finite element software. The 

effects of various parameters such as fiber angle, geometric ratios, 

type, etc. have been investigated in forced vibrations. Finally, the 

effect of reinforcing the conical shell with the help of grid-stiffened 

structures has been studied. 

                                 © 2022 IAU, Arak Branch.All rights reserved. 

 Keywords : Dynamic Analysis; Grid-stiffened; Composite Conical 

Shells. 

1    INTRODUCTION 

OST composite structures are weak against impact loads. Applying a small impact load can lead to major 

damage and reduce the stiffness of the composite structure. Numerous studies have been conducted to 

investigate the dynamic response under low-velocity and high-velocity impact loads. Dobyns [1] presented an 

analysis of the motion of a multilayer plate under sinusoidal, stepped, and triangular impacts. Ramkumar and Chen 

[2] compared analytical and experimental solutions for predicting scaling and the starting point for the failure of 

fibers under low-velocity impact loads. Cederbaum and Heller [3] studied the dynamic response of a single-layer 

orthotropic cylindrical shell under local impact loads using thick-walled theory. Reddy and Khdeir [4] studied the 

transient response of the cylindrical shell using the high-order shear deformation theory. Davar et al. [5, 6] also 

examined the transient dynamic response of the composite cylinder under axial compression load and the 

optimization of the response. However, no research has been done so far on the transient dynamic response of 

conical shells. Grid-stiffened cylindrical and conical shells are shells with stiffeners inside, outside, or both sides of 

the shell. These stiffeners significantly increase the load-bearing capacity of the shells without much weight gain. 

The appropriate stiffener is selected based on the type of application, loading status, cost, and other factors [7-8]. 

The number of papers dealing with the mechanical behavior of composite cylinders with inclined stiffeners is small, 
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and most research in this field is related to cylinders stiffened with longitudinal and peripheral ribs. Kidan et al. 

[9,10] obtained the buckling load of composite cylinders with inclined and horizontal stiffeners by developing a 

method for determining the stiffness parameters equivalent to a grid-stiffened composite cylindrical shell. Also, 

Yazdani [11] and Yazdani and Rahimi [12] conducted an experimental study on the buckling behavior of composite 

cylindrical shells with an inclined stiffener. They also studied the effect of the number of spiral ribs and the changes 

in the type of stiffening grid on the buckling loads of these shells [13,14]. Rahimi et al. used a finite element method 

to investigate the effect of the cross-sectional profile of the stiffener on the buckling strength of composite 

cylindrical shells [15]. Recently, Hemmatnejad [16] has calculated the free vibrations of grid-stiffened cylindrical 

shells with inclined ribs based on the first-order shear deformation theory. He also studied the effect of changes in 

shell thickness and boundary conditions on shell frequencies. However, so far, no research has been done on the 

dynamic response of grid-stiffened (cylindrical and conical) shells, and free vibrations of conical shells with grid-

stiffened structure. Methods of research and experiments have shown that many composite structures are weak 

against impact loads [17]. Applying a small impact load may cause a large deformation and a decrease in the 

strength of the composite structure. Therefore, in designing the desired composite structures, the dynamic response 

of the structure should be examined in detail. This chapter discusses the transient dynamic response of composite 

conical shells with simply supported boundary conditions, under the lateral impulse load applied to the outer surface 

of the conical shell.  

To examine the dynamic response of the shell, the results of the analysis of free vibrations (i.e., natural 

frequencies and the shape of normalized modes), which were calculated in the previous chapter, have been used.       
Finally, the changes in shell displacement in the three x.ϴ.z directions over time have been calculated using Laplace 

transform and based on the mode-superposition technique. Here it is necessary to define two characteristics of the 

desired impulse load to explain the problem statement: The location and dimensions of the applied impulse load 

surface on the shell changes in load value over time. 

2  THE LOCATION OF THE IMPULSE LOAD AND THE DIMENSIONS OF THE APPLIED LOAD 

SURFACE ON THE SHELL 

The impact load of f(t) on a rectangular surface is applied to the surface of a conical shell with an average radius of 

2

a b
R


  and a length L

 
according to Fig. 1. It is assumed that the load is applied uniformly on the desired surface. 

According to Fig. 1, the coordinates of the midpoint of this surface are defined as follows: 

 

 

 

 

 

 

Fig.1 

Load applied on a rectangular surface. 
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and the dimensions of the applied load surface are defined as follows: 
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Therefore, for ease of definition, the location and dimensions of the applied load surface are referred to as 

follows: 

Dimensions of the applied load surface: 1 22 *2l l
   

 

Coordinates of the location of the applied load:
L

L

x x

 





 

3    CHANGES IN LOAD VALUE OVER TIME 

The load applied on the surface is in the form of an impulse or pulse, i.e. it is applied on the shell surface as a time-

varying pressure. The diagram of the pressure in terms of time is shown in Fig. 2 for the types of the studied pulses. 

In these diagrams, 1t  is the end time of the load applying, and 0f  is the maximum amount of the applied pressure. 

One of the cases in which time-varying pressure is produced is the pressure caused by the explosion, which can be 

considered as a saw-tooth pulse.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Pressure diagram of different pulses over time. 

4    EQUATIONS GOVERNING THE FORCED VIBRATIONS OF COMPOSITE CONICAL SHELLS 

In the section of free vibration analysis, time-varying external stimuli were omitted in defining the relations related 

to the forces xp , yp , and zp . However, to analyze forced vibrations, phrases related to time-varying external 

stimuli should be considered as follows [18]: 
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 (5) 

 

where xq , yq , and zq  are time-varying external stimuli in the directions of z and θ.x, respectively, and are defined 

according to the boundary conditions. Considering that according to the applied load definition, the external 
stimulus is applied only in the z-direction and there is no external stimulus in the directions of x and θ, we have: 
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5    TRANSIENT DYNAMIC RESPONSE OF SIMPLY SUPPORTED COMPOSITE CONICAL SHELL  

Because of the importance of the subject, here the dynamic response of the simply supported composite conical shell 

under axial load is investigated. The equations of motion of the simply supported composite conical shell are 

expressed as follows [18]: 
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(7) 

 

Considering the simply supported boundary conditions, the external stimulation is defined as follows [18]: 
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In this relation, mnP  are the Fourier coefficients that depend on how the load is applied. To calculate these 

coefficients, the sides of Eq. (7) are multiplied by sin cos
m x

n
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
  and the integrals are taken from the sides. As a 

result, we will have: 
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To simplify the calculations, it is assumed that the amount of load is uniform and equal to one ( , ) 1zQ x   . By 

integrating, we have: 
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and in a special case where the midpoint of the surface of the load is in ( / 2 , 0L Lx L   ), using the expansion 

of trigonometric functions, after simplification we have [18]: 
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By substituting the assumed changes in the equilibrium Eqs. (7), we have: 

 

111 12 13

21 22 23 1

31 32 33 1

( )

( ) ( )

( ) ( , , )

mnmn mn

mn mnmn mn

mn mnmn z

T t I R AAL L L

L L L B T t T t I R B

L L L C T t I R C q x t R

   
      

    
             

 (12) 

 

Using the free vibration relations ( ( ) mni t
mnT t e


 ), the right side of the above relation can be substituted as 

follows: 
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By substituting relation 11 by relation 12, the following relation is obtained [18]: 
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The sides of the relationship 14 are multiplied by mnA , mnB , and mnA , respectively. After adding the sides of 

the relation, we have: 
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By factoring and integrating with respect to x and θ from the sides of the above equation, an ordinary second-

order differential equation in terms of time is obtained as follows: 
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The expression on the right side of the above equation is called generalized forces and is obtained as follows: 
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The denominator of the above fraction is called the normalized mass [18]. By substituting (7) in the numerator 

and denominator of the fraction on the other side of Eq. (17) and by integrating, we have: 
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By considering: 
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We have: 
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The Laplace transform is obtained from the sides of Equation (20): 
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Assuming that 0t  , we have[18]:  
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where ( ) L( ( ))mn mnT s T t  , ( ) L( ( ))F s f t . Assuming the initial zero conditions ( (0) (0) 0)mn mnT T  . 

We have: 
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By simplification, we have: 
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By multiplying the numerator and denominator by mn , we have: 
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By taking the inverse Laplace transform from both sides of the above relation and using Convolution theorem, 

we have [18]: 

 

0

( ) ( )sin ( )

t
mn mn

mn mn
mn mn

P C
T t f t d

N
   


   (26) 

 

Finally, the temporal response of the composite cylindrical shell with simply-supported boundary conditions, 

under the defined impact load, is obtained based on the mode-superposition theory as follows: 
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6    THE TEMPORAL FUNCTION OF THE SHELL DISPLACEMENT RESPONSE  

As shown in Eq. (26), the shell displacement response consists of a spatial function and a temporal function. The 

spatial function of the response is the same as the mode shape, and its temporal function is the convolution integral, 

which must be calculated according to the type of pulse. The convolution integral for the various pulses are 

calculated below [19 and 20]: 
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Triangular pulse-1  
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Triangular pulse-2  
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Triangular pulse-3  
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Continuous pulse  

 

 

 

 

 

 

 

 

Fig.3 

Continuous pulse. 
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7    MODELING AND ANALYSIS IN ABAQUS SOFTWARE 

To validate the analysis of forced vibrations of conical shells and grid-stiffened conical shells, this structure is 

modeled in ABAQUS software and modal analysis and analysis of radial displacement changes over time are 

performed by this software. Here is how to model and analyze a composite conical shell. 

8  MODELING AND ANALYSIS TO CALCULATE THE NATURAL FREQUENCIES OF THE GRID-

STIFFENED CONICAL SHELL 

Geometry. In order to model the conical shell, the method of rotation around the cone axis is used and the geodetic 

path is selected for inclined stiffeners. 

 

 

 

 

 

 

 

 

 

Fig.4 

Grid-stiffened conical shell model. 
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Material type. Composites are linear elastic materials. For two-dimensional composites (plate stress) in which 6 

components of elastic constants are given, the following method is done to determine the properties of elastic 

materials (the property section): Mechanical Elasticity Elastic: Type: Lamina. 

Determining the properties of shells and stiffeners and the direction of fibers is done with the help of the 

composite Lay-Up module. 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Determining the direction of the fibers. 

 
Force and boundary conditions. Simply-supported boundary conditions based on the cylindrical coordinate 

system are applied to the structure. Also, the Amplitude section is used to check the transient dynamic loading to 

report force changes over time to the software. 

 

 

 

 

 

 

 

 

 

 

Fig.6 

How to apply loading and boundary conditions on the model. 

 

Meshing. The S4R element is used for meshing. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Meshing of a composite grid-stiffened conical model. 

9  INVESTIGATING THE RESULTS OF FORCED VIBRATIONS OF THE COMPOSITE CONICAL 

SHELL WITH A SIMPLE SUPPORT 

In computer code, the number of modes (m × n) must be selected to obtain the answer. The number of m and n must 

be such that the answer is convergent [17]. Fig. 8 shows the convergence of the response for different m × n. After 

observing the convergence of the answers after m = 20 and n = 30 and also to reduce the calculation time, the 

number of modes m = 20 and n = 30 were selected. In all cases, the time of applying the impulse load from zero to t1 

is equal to the natural period of the structure (i.e. the reverse of the base frequency in Hertz). The coordinates of the 
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place of applying the load (xL ϕL) and the coordinates of the point on the shell where the temporal response is 

calculated are in the position (x = L⁄2. φ = 0), except for the cases specified .The load applied to the shell is also 

indicated by F0 (force) and f0 (pressure).  

 

 

 

 

 

 

 

 

Fig.8 

Investigating the convergence of the temporal response of the 

shell with simply-supported boundary conditions a = 1m. L = 

1m . h = 2mm, CFRP material, lay-up [0/90/0/90/0/90], load 

applying area 2l1 × 2l2 = 5 × 5 cm2, triangular pulse type 1, f0 
= 25kPa, 60  -vertex angles.  

10  VERIFICATION OF DYNAMIC RESPONSE WITH REFERENCES AND FINITE ELEMENT 

SOFTWARE 

To verify the results obtained from the transient dynamic analysis, in Figs. 9 and 10, the results obtained from the 

present method for changes in radial displacement (radial displacement is the same as the amplitude of vibration in 

the radial direction perpendicular to the edge) in terms of time for the simply-supported conical shell are compared 

with the reference answer and ABAQUS finite element software. Since there was no reference to investigate the 

dynamic response of the conical shell at the time of writing this paper, a reference that examined the specific state of 

the conical geometry, the cylinder, was selected for comparison, as shown in Fig. 11. Then, to validate the dynamic 

response of conical geometry, the answer obtained from the computer program was compared with the answer 

obtained from Abacus finite element software. As shown in the figures, the answers are well matched. The reason 

for the slight difference in the diagrams is the difference in the theories used.  
 

 

 

 

 

 

 

Fig.9 

Comparison of temporal response of cylindrical shell with 

simply-supported boundary conditions a = 0.2m. L = 0.2m. h 

=1.2mm, CFRP material, lay-up [0/90/0/90/0/90], load 

applying area 2l1 × 2l2 = 6.2 × 2 cm2, triangular pulse type 1, 

F0 = -300kN. 

 

 
  

 

 

 

 

 

 

 

Fig.10 

Comparison of the temporal response of simply-supported 

conical shell, CFRP material, a = 1m, L = 1m, h = 2mm, lay-

up [0/90/0/90/0/90], load applying area, triangular pulse type 
1, f0 = 10kPa, 30 -vertex angle. 
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11    SHELL FREQUENCY RESPONSE USING FAST FOURIER TRANSFORM  

Each of the different defects that occur for rotating structures has specific vibrational characteristics. One of the 

important characteristics of vibration is vibrational frequency.  
Usually, vibration measured from a structure is a complex signal and a combination of several vibrational signals 

with different frequencies. Frequency analysis, also called spectrum analysis or FFT, is a signal processing process. 
The frequency content of the vibrational signal is obtained using this process. In FFT curves, the horizontal axis, 

frequency, and vertical axis indicate the amplitude of vibration. Sometimes it is difficult to find the value of natural 

frequencies by looking at the temporal response diagram of a vibrational system. Using the Fourier transform, the 

response of the vibrational system is shifted from the time domain to the frequency domain. Then, the system 

frequency response spectrum is obtained [20].  

Finally, the natural frequencies of the system are easily discussed. The frequency response of the studied shell in 

Fig. 10 is shown in Fig. 11. Frequencies stimulated by the impulse load applied to the shell can be formed in this 

figure. As can be seen in this figure, the predominant stimulated frequency is 97.1 Hz. Fig. 12 shows the natural 

frequencies of this shell for the number of different half-wavelengths in terms of the number of peripheral waves. As 

can be seen in this figure, the base natural frequency of this shell is the same as 97.1 Hz and occurs at m = 1 and n = 

11. By applying the impulse load, the base natural frequency of the shell is more stimulated than other natural 

frequencies, so that the effect of the rest of the frequencies can be negligible compared to the effect of the base 

frequency on the temporal response. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

The frequency response of the studied shell in Fig. 10. 

  

 

 

 

 

 

 

 

 

Fig.12 

Natural frequencies of the simply-supported conical shell 

according to the number of peripheral waves, CFRP material, 
a = 1m, L = 1m, h = 2mm , lay-up [0/90/0/90/0/90], 30   -

vertex angle. 

12    PULSE PHENOMENON 

As a result of applying the impact load to the shell, the pulse phenomenon occurs. Pulse phenomenon is a type of 

oscillation in which the amplitude of the oscillation first increases, then decreases regularly. These increase and 

decrease continue intermittently [19]. This phenomenon will be observed if the graph of changes in the amplitude of 

vibration in the radial direction is drawn to periods much larger than the natural period of the shell. This is done in 

Fig. 13 for a simply-supported shell. 
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Fig.13 

Presentation of the pulse phenomenon in the temporal 

response of the shell with simply-supported boundary 

conditions a = 1m. L = 1m. h = 2mm, CFRP material, lay-up 

[0/90/0/90/0/90], load applying area 2l1 × 2l2 = 5 × 5.2 cm2, 
sine pulse type, f0 = 10kPa, 30  - vertex angle. 

 

13    INVESTIGATING THE PARAMETERS AFFECTING THE TRANSIENT DYNAMIC RESPONSE OF 

THE SHELL 

In Fig. 14, the radial displacement changes over time are plotted for different lay-ups using 0° and 90° angles. As 

can be seen, if all angles are 0° or 90°, the shell resistance to deformation will be less than when a combination of 0° 

and 90° angles is used together. Table 1 shows the base frequencies of the shell studied in Fig. 14 for different lay-

ups. 
 
Table 1 

The base frequencies of the shell studied in Figs. (4-26) 

Lay-up [0;0;0] [0;90;0] [90;0;90] [0;90;90] [90;0;0] [90;90;90] 

Frequency (Hz) 62.6 65.7 95.7 77.0 71.0 76.9 

 

Among the layouts of the layers shown in Fig. 14, the layout [90/0/90] has a minimum vibration amplitude and 

leads to a maximum displacement faster than other lay-ups. As mentioned, by applying the impulse load, the base 

natural frequency of the shell is stimulated more than other natural frequencies. The base frequency corresponding 

to lay-up [90/0/90] is larger than the base frequencies corresponding to other lay-ups. In fact, by increasing the base 

frequency value, the maximum displacement value of the shell decreases, and the temporal response of the shell 

becomes faster. Also, by decreasing the base frequency value, the maximum displacement value of the shell 

increases, and the temporal response of the shell becomes slower. 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Effect of fiber angle on the temporal response of the shell 

with simply-supported boundary conditions, a = 1m. L = 1m 

.h = 2mm, CFRP material, load applying area 2l1 × 2l2 = 5 × 
5 cm2, triangular pulse type 1, f0 = 25kPa, 60   vertex angle. 

14    GEOMETRIC PARAMETER EFFECT 

As mentioned earlier, geometric parameters such as the ratio of thickness to the radius (h / R) and the ratio of 

generator length to the small radius (L / R) affect the natural frequencies of the shell. Therefore, they also affect the 

temporal response of the shell. Fig. 15 shows the effect of the ratio of length to shell radius on radial displacement 

changes over time. As can be seen, with increasing this ratio, the maximum displacement of the shell increases, so 

that with doubling this ratio, the maximum displacement becomes 1.37. Since with increasing this ratio, the natural 
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frequency decreases, the time delay of the response increases, that is, the maximum displacement of the shell occurs 

later. Fig. 16 shows the effect of the ratio of thickness to the radius on the changes in radial displacement over time. 

As shown in the figure, by increasing this ratio, the maximum shell displacement decreases. By doubling the 

thickness to radius ratio, from 0.004 to 0.008, the maximum displacement is reduced by 78%. Since with increasing 

this ratio, the natural frequency increases, the response time delay decreases, that is, the maximum shell 

displacement occurs earlier. 

 

 

 

 

 

 

 

 

 

Fig.15 

Effect of ratio (L / R) on temporal response of the shell with 

simply-supported boundary conditions, a = 1m. L = 1m. h = 2 

mm, CFRP material, lay-up [0/90/0/90/0/90 ], Load applying 

area 2l1 × 2l2 = 5 × 5cm2, triangular pulse type 1, f0 = 25kPa, 
60   vertex angle. 

 
  

 

 

 

 

 

 

 

 

Fig.16 

Effect of ratio (h / R) on temporal response of the shell with 

simply-supported boundary conditions, a = 1m. L = 1m. h = 

2mm, CFRP material, lay-up [0/90/0/90/0/90], Load applying 

area 2l1 × 2l2 = 5 × 5cm2, the triangular pulse type 1, f0 = 25 
kPa, 60   vertex angle. 

 

15  INVESTIGATING THE EFFECT OF LOADING MODE ON THE TRANSIENT DYNAMIC 

RESPONSE OF THE SHELL 

Various parameters affect the loading mode applied to the shell including the pressure change curve in terms of time 

(pulse type applied on the shell), duration of applied load (t1), pressure amplitude (f0), and location coordinates of 
the applied load (xL, ϕL). Here, the effect of the above parameters on the transient dynamic response of the composite 

conical shell has been investigated. 

Fig. 17 shows a graph of radial displacement changes over time, respectively, for a simply-supported shell, under 

the effect of five types of step, sine, triangle 1, triangle 2, and triangle 3 pulses, respectively. By comparing the 

responses related to the different pulses, it can be seen that the maximum displacement of the shell corresponding to 

any pulse which has more area below the curve, is greater than others. In the case of triangular pulses 2 and 3, which 

have the same area below the curve, it is important to note that the maximum displacement corresponding to 

triangular pulse 2, is larger than triangular pulse 3. This is because, in a triangular pulse 3, the load starts from zero 

and gradually increases, but in a triangular pulse 2, the load at zero time immediately jumps from zero to f0. 

Therefore, the inertia (mass-induced inertia) of the shell is not able to withstand this drastic load change. 

Fig. 18 shows the continuous pulse and its effect. As shown in the diagram, due to the continuous pulse, no 

oscillation occurs around the zero strain. However, this pulse leads to a maximum allowable radial strain at a much 

lower pressure. 
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Fig.17 

Comparison of radial strain changes of different pulses with 

time for the shell with simply-supported boundary 

conditions, a =1m. L =1m. h =2mm, CFRP material, lay-up 

[0/90/0/90/0/90], Load applying area 2l1 × 2l2 = 5 × 5 cm2, f0 
= 25kPa, 60   vertex angle. 

  

 

 

 

 

Fig.18 

Radial strain changes of the continuous pulse with time for 

the shell with simply-supported boundary conditions, a =1m. 

L =1m. h = 2mm, CFRP material, lay-up [0/90/0/90], Load 
applying area 2l1 × 2l2 = 5 × 5cm2, f0 = 20kPa, 60   vertex 

angle. 

16    THE EFFECT OF THE DURATION OF THE APPLIED LOAD 

Fig. 19 shows the effect of the change in the duration of the applied load on the shell (t1) on the changes in the radial 

displacement of the shell over time. As can be seen, if this duration is close to the natural period of the shell (N.P.), 

which is equal to 0.0115 s, the maximum displacement of the shell will be greater. If the duration of applied impact 

load is close to the normal period, the mode shape corresponding to the base frequency, and other mode shapes 

corresponding to the frequencies close to the base frequency, are further stimulated. As a result, the movement will 

be increased. 

 

 

 

 

 

 

 

Fig.19 

The effect of the duration of the applied impulse load (as a 

multiple of natural periods) on the surface of the shell with 

simply-supported boundary conditions, a =1m. L =1m. h = 

2mm, triangular pulse type 1, CFRP material, lay-up 

[0/90/0/90/0/90], load applying area 2l1 × 2l2 = 5 × 5 cm2, f0 
= 25kPa, 60   vertex angle. 

16.1 Load amplitude effect  

Fig. 20 shows the effect of the maximum amount of applied load (f0) on the shell on radial displacement changes 

over time. As can be seen in this figure, by changing the amount of applied load f0, only the size of the vibration 

amplitude changes. This change has no temporal effect on the displacement variation diagram (because the natural 

frequencies have not changed). Also, the size of the resulting vibration amplitude has a direct and linear relationship 

with the value of f0.  
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Fig.20 

The Effect of f0 value on radial displacement changes of the 

shell with simply-supported boundary conditions over time, a 

= 1m. L = 1m. h = 2mm, triangular pulse type 1, CFRP 

material, lay-up [0/90/0/90/0/90], load applying area 2l1 × 2l2 
= 5 × 5 cm2, f0 = 25kPa, 60   vertex angle. 

16.2 Effect of location coordinates of the applied load  

Fig. 21 shows the effect of the location coordinate of the applied load (xL, ϴL) on radial displacement changes over 

time. As shown in this figure, the closer the location coordinates of the applied load are to the coordinates of the 
point at which we calculate the displacement (x = L⁄2, θ = 0), the greater the maximum displacement value of that 

point. Thus, it is concluded that the farther the location of the applied load is from the point of interest for 

calculating the temporal response, the later the maximum displacement of that point occurs. The reason for this 

delay is the wave propagation in a continuous medium (conical shell). Wave propagation speed is limited in a 

continuous medium. So, it takes a while to move from one point to another. 

 

 

 

 

 

 

 

Fig.21 

The effect of impact load location x = xL .Ɵ = 0 on radial 

displacement changes of simply-supported shell over time, a 

= 1m. L = 1m. h = 2mm, triangular pulse type 1, CFRP 

material, lay-up [0/90/0/90/0/90], Load applying area 2l1 × 
2l2 = 5 × 5 cm2, 60   vertex angle. 

16.3 The effect of the vertex angle of the cone  

As shown in Fig. 22, by increasing the vertex angle of the cone, due to the decrease in natural frequency, the 

maximum displacement of the shell increases. As a result, the time delay of the response increases, and the 

maximum displacement of the shell occurs later. 

 

 

 

 

 

 

 

 

Fig.22 

The effect of the cone vertex angle on radial displacement 

changes of simply-supported shell over time, triangular 

pulse-type 1, CFRP material, lay-up [0/90/0/90/0/90], a = 1 

m. L = 1m. h = 2mm, load applying area 2l1×2l2=5×5 cm2. 

 

16.4 Effect of orthotropic ratio   

According to Fig. 23, the behavior of composites with higher orthotropic ratios is closer to the behavior of isotropic 

materials, and this parameter has a great effect on the amount of impulse-induced displacement. 
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Fig.23 

The effect of material orthotropic ratio on radial 

displacement changes of simply-supported shell over time, a 

= 1m. L = 1m. h = 2mm, triangular pulse-type 1, lay-up 
[0/90/0/90/0/90], Load applying area 2l1 × 2l2 = 5 × 5cm2, 60   

vertex angle. 

17    VERIFICATION 

Figs. 24 and 25 show the results of the computer code obtained from the ABAQUS finite element software. Besides, 

by adding horizontal ribs that make the stiffener grid denser, the results of the calculations based on the theory of the 

present study are closer to the results of the finite element software. This shows that the denser the grid, the more 

valid the equivalence method is. 

 

 

 

 

 

 

 

 

 

 

Fig.24 

Comparison of the natural frequency of grid-stiffened 

structure without horizontal rib. 
  

 

 

 

 

 

 

 

 

 

Fig.25 

Comparison of the natural frequency of grid-stiffened 

structure with horizontal rib. 

 

The mode shapes obtained from the analysis in Fig. 26, is shown below. 

 

 

 

 

 

 

 

 

 

 

 

Fig.26 

Mode shapes obtained from the modal analysis of composite 

grid-stiffened conical shell m = 1. 
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18   INVESTIGATING THE EFFECT OF ADDING STIFFENER TO STRUCTURES WITH THE SAME 

MASS 

The masses of the conical shell (with and without stiffener) are considered constant values and the natural frequency 

and the structure response to the transient dynamic load are investigated. 

Fig. 27 shows that adding a stiffener increases the natural frequency and base frequency of the system. Also, Fig. 

28 shows that by increasing the base frequency corresponding to the stiffened shell, the maximum displacement of 

the shell decreases, and the temporal response of the shell becomes faster. Also, the base frequency increases and 

occurs in a lower mode (n = 4). The modified specifications in this comparison are given in Table 2. 
 

 

Table 2 

Specifications of the conical shell with and without stiffener with the same mass. 

Type Stiffener thickness Shell thickness  

CFRP 6 1 Shell with stiffener 

CFRP 0 2.56 Shell without stiffener 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.27 

Comparison of the natural frequency of the conical shell with 

and without stiffener, m =1. 

 

Adding a stiffener reduces the maximum displacement of the shell by 25% against transient dynamic loading 

where the mass of both structures is the same. 

 

 

 

 

 

 

 

 

 

 

 

Fig.28 

The effect of stiffener on radial displacement changes of 

simply-supported conical shell over time, triangular pulse-

type 1, f0 = 25kPa. 

19    EXAMINING THE STIFFENER HEIGHT CHANGES 

The effect of increasing the height of the rib (H) is shown in Figs. 29 and 30. As the thickness increases, the natural 

frequency increases in the modes higher than the base natural frequency. Also, an increase in the thickness of the 

stiffener reduces the maximum displacement of the shell. 
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Fig.29 

Effect of increasing rib height (H) on the natural frequency of 

conical grid-stiffened shell, m = 1. 

 
  

 

 

 

 

 

 

 

 

 

Fig.30 

The effect of increasing the height of the rib (H) on the radial 

displacement changes of the grid-stiffened simply-supported 

conical shell over time, triangular pulse-type 1, f0 = 25kPa. 

 

20    INVESTIGATING THE CHANGE OF UNIT CELL DIMENSIONS  

Two sets of the unit cells, A and B, with the properties listed in Table 3 have been investigated. As can be seen from 

the calculated volume fraction, with decreasing the dimensions of the unit cell and increasing the stiffener density, 

the volume fraction of the stiffener is increased. Comparing the results in Fig. 31 shows that increasing the density 

of stiffeners increases the natural frequency, especially at high modes. Fig. 32 also shows that increasing the density 

of the stiffeners reduces the maximum displacement of the shell. 
 

 

Table 3 

Parameters of cell units. 

 ast bst Vst Vst 

A 138 153 0.44 0.56 

B 69 67.5 0.58 0.42 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.31 

The effect of increasing the stiffener density on the natural 

frequency of the grid-stiffened conical shell, m = 1. 

  



Transient Dynamic Analysis of Grid-Stiffened ….                    330 
 

Journal of Solid Mechanics Vol. 14, No. 3 (2022) 
© 2022 IAU, Arak Branch                                                                               

 

 

 

 

 

 

 

 

Fig.32 

Effect of increasing stiffener density on radial displacement 

changes of grid-stiffened simply-supported conical shell over 

time, triangular pulse-type 1, f0 = 25kPa. 

21    CONCLUSIONS 

The transient dynamic response of a composite conical shell with simply-supported boundary conditions is 

influenced by various parameters such as fiber angle, layer arrangement, thickness to radius ratio, length to radius 

ratio, orthotropic ratio, loading mode, and the vertex angle of the cone. The effect of these parameters is as follows: 

 A certain combination of angles of 0   and 90   degrees can be found in which the maximum amplitude of the 

shell vibration is the lowest possible value. 

 As the length-to-radius ratio increases, the amplitude of the shell vibration increases. As a result, the 

maximum amplitude of the shell vibration occurs later. 

 As the thickness-to-radius ratio increases, the amplitude of the shell vibration decreases. As a result, the 

maximum amplitude of the shell vibration occurs earlier. 

In general, with increasing the base frequency value, the maximum value of the shell vibration amplitude 

decreases, and the shell temporal response becomes faster. Also, as the base frequency decreases, the maximum 

value of the shell vibration amplitude increases and the time response of the shell slows down. Besides, the temporal 

response frequency is equal to the same base frequency. Thus, increase or decrease in the base frequency value may 

be due to various reasons such as changes in the arrangement of the layers, changes in the ratio of length to the 

radius, changes in the ratio of thickness to the radius, changes in the vertex angle of the cone, and so on. 

Among the various pulses applied to the shell, the step pulse causes more deformation in the shell. This is due to 

the more area below the diagram corresponding to the step pulse. If the duration of applying the impulse load is 

close to the natural period of the structure, the amplitude of the shell vibration will be increased. The reason is that 

the mode shape amplitude corresponding to the base frequency is higher and as a result, the base frequency is 

stimulated more than other frequencies. The shell vibration amplitude under the influence of the impulse load 

changes linearly as the load size changes. After applying an impact load, the points far from the load applying area 

reach their maximum vibration amplitude later than the points close to the load applying area. The use of grid 

stiffeners affects the natural frequency and transient dynamic response of the composite conical shell. The results of 

the studies are as follows: 

 In equating the grid-stiffened composite conical shell, the higher the grid density, the closer the results of 

this equivalence theory are to the results of the finite element software. 

 By equating the stiffness matrix of a grid-stiffened composite conical shell and comparing it to a composite 

conical shell of the same mass, the natural frequency increases and its effect is more pronounced in a large 

number of peripheral waves (n). Also, the shell vibration amplitude is reduced and the temporal response of 

the shell becomes faster. 

 Increasing the thickness of the stiffener and the density of the stiffener grid increases the natural frequency 

and reduces the vibration amplitude of the grid-stiffened composite conical shell. 
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