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 ABSTRACT 

 An analytical solution was used for obtaining the maximum 

allowable heat flux in symmetric composite laminates containing a 

quasi-square cutout with different stacking sequences subjected to 

uniform heat flux. The Tsai-Hill criterion was used to assess the 

maximum allowable heat flux of the laminate. The analytical 

solution was obtained based on the thermoelasticity theory and the 

Lekhnitskii’s method. Furthermore, by employing a suitable 

mapping function, the solution of symmetric laminates with a 

circular cutout was extended to the quasi-square cutout. The quasi-

square cutout was studied in a symmetric laminate made of 

Glass/epoxy with different stacking sequences of [0/90]S, [45/-45]S 

, [30/-30]S. The results showed that the maximum allowable heat 

flux experienced in perforated plates can be improved by 

considering the appropriate stacking sequence and the optimal 

values of the cutout parameters. According to the results, the best 

cutout geometry was not always a circle, as in some cases by 

choosing the appropriate values of bluntness parameter, cutout 

orientation, heat flux angle, cutout aspect ratio and laminate 

stacking sequence, a non-circular cutout provided higher maximum 

allowable heat flux value for a perforated plate than a circular 

cutout.                      © 2022 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

OLYMERIC composites are being extensively used in various industries. In order to adapt composite 

laminates for engineering applications, cutouts may be introduced into the structures [1,2]. However, the 

presence of cutouts in structures can lead to strength reduction and consequent premature structural failure [3]. 

______ 
*
Corresponding author. Tel.: +98 77240540; Fax.: +98 77240540. 

E-mail address: khoramishad@iust.ac.ir (H. Khoramishad) 

P 



                                                                                                                                      M.H. Bayati Chaleshtari et.al.                 362 
 

Journal of Solid Mechanics Vol. 14, No. 3 (2022) 
© 2022 IAU, Arak Branch                                                                           

Therefore, it is of high importance that the stress concentration and strength reduction due to cutouts are predicted 

prior to manufacturing for reaching to an acceptable design. One of the service conditions that structures may 

experience is thermal loading. The stress distribution in perforated plates was studied analytically by many 

researchers. First, Muskhelishvili [4] and Lekhnitskii [5] used conformal mapping and complex variable method for 

stress analysis of isotropic and anisotropic plates with a central cutout.  Muskhelishvili [4] introduced the complex 

variable method for stress analysis of isotropic plates. Afterward, Lekhnitskii [5] used an analytical solution for 

stress analysis of anisotropic plates with circular and elliptical cutouts using the complex variable method based on 

the Kolosov-Muskhelishvili formulation. Florence and Goodier [6,7] employed the complex variable method in 

solving the boundary value problems of two-dimensional thermoelasticity. They obtained thermal stresses in an 

elastic isotropic plate with circular and elliptical cutouts under uniform heat flux. Hasebe [8] derived formulations 

for two-dimensional thermo-elastic problems. The material properties of the plates were isotropic, homogeneous and 

linear elastic governed by the Hooke's law. By applying the complex variable method, complex functions were 

obtained for various thermal and mechanical conditions. Tarn and Wang [9] extended the Lekhnitskii’s complex 

variable method and obtained thermal stresses in an anisotropic elastic plate with a circular cutout or a rigid 

inclusion by assuming plane strain and stress conditions. Rezaeepazhand and Jafari [10] utilized the Lekhnitskii’s 

complex variable method to analyze stresses in composite plates with a central cutout. Then, Jafari and Bayati [11] 

applied the metaheuristic algorithms to optimum stresses in composite plates with a central cutout. Parametric 

studies were conducted to examine the effects of the material properties and the cutout bluntness and orientation for 

the circular, triangular and square shaped-cutouts on the location and the value of the maximum stress in a flat 

composite plate subjected to uniaxial tension load. The stacking sequence of laminated composites is an important 

parameter to determine the strength of the plate under different load such as buckling loading [12], fatigue loading 

[13], mechanical loading [14,15], thermal loading [16]. Ukadgaonker and Rao [17] employed a complex variable 

technique to determine the mechanical stress distribution around various cutouts in symmetric laminates. The 

orientation angle and the stacking sequence were the important parameters they studied. Sharma [18] obtained a 

general solution based on the complex variable method to determine stresses around a non-circular cutout in a 

laminated composite infinite plate subjected to arbitrary biaxial loading, with layers of arbitrary fiber orientations 

and stacking sequences. Sharma [19] examined the effect of cutout geometrical parameters on stress distribution in 

infinite isotropic plates under in-plane loading. A complex variable technique and conformal transformation were 

employed to determine the mechanical stress distribution around various cutouts in isotropic plates. Sarvestani et al. 

[20] proposed an analytical method to determine the inter-laminar stresses in symmetric laminated composite plates 

subjected to shear loading. Moreover, they employed the first-order shear deformation theory and Reddy’s layer-

wise theory to determine the inter-laminar stresses in composite laminates under tension load with various stacking 

sequence. Zhou et al. [21] presented an analytical solution to determine the thermoelectric behavior of materials in 

an infinite plate with a circular cutout subjected to a uniform heat flux. They used the complex variable method and 

mapping function to obtain the stress concentration around the cutout. Kaczynski [22] employed an analytical 

method to investigate thermal stresses in a transversely isotropic plate with insulated inclusion under a uniform heat 

flux. Dave and sharma [23] examined the stress distribution around a square cutout in a functionally graded plate 

under mechanical loading. Rasouli and jafari [24] applied conformal mapping technique and extended the 

Lekhnitskii’s method to obtain the thermal stress values around circular and elliptical cutouts in an anisotropic plate 

subjected to a uniform heat flux. The effect of cutout orientation and flux angle as significant parameters was 

examined on stress distribution. Chao et al. [25] introduced a new analytical solution based on the complex variable 

method to determine the stress distribution around two circular inclusions in an infinite plate under remote uniform 

heat flux. Chao and Gao [26] applied the Lekhnitskii’s method to provide general analytical solution for an infinite 

anisotropic laminate containing an elliptical inclusion subjected to uniform heat flux. Chaudhuri and Seide [27,28] 

obtained the transverse shear stresses around elliptical cutout and inter-laminar shear stresses around the circular 

cutout in an edge loaded laminated composite plate by applying the equilibrium compatibility method. Rao et al. 

[29] used Tsai-Hill, Hashin-Rotem and Tsai-Wu criteria to determine the failure strength of a symmetric composite 

laminate containing a square cutout with various stacking sequence under in-plane loading. They used complex 

variable formulation and mapping function to obtain the stress concentration around the cutout. Zhou et al. [30,31] 

examined the fiber and matrix damages in a multilayer composite plate with cutout based on the Tsai-Wu and 

Hoffman failure criteria under mechanical loading. Patel and Sharma [32] applied an analytical solution based on the 

complex variable method for obtaining the optimum stacking sequence in a composite laminate with triangular and 

square cutouts subjected to in-plane loading. They analyzed failure strength using Tsai-Hill criterion. Zhou et al. 

[33] studied the effect of different stacking sequences of composite laminates with a cutout on the failure of 

laminates under tensile loading by finite element and analytical methods. Sharma et al. [34] obtained the optimum 

value of stress concentration factor in a symmetric multilayer composite with an elliptical cutout subjected to 
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mechanical loading. They used complex variable method and Tsai–Hill criterion to achieve the failure strength of 

the laminate with different stacking sequence. Jafari et al. [35] used an analytical solution based on the complex 

variable technique to minimize the stress in a symmetric composite laminate with a polygonal cutout under 

mechanical loading. They applied Tsai-Hill criterion for investigating the failure strength of the laminate with 

different stacking sequence. Furthermore, the distribution of stress and displacement over the square cutout in an 

orthotropic infinite plate under uniform heat flux was examined by Jafari [36].  

The purpose of this paper is investigating the effect of stacking sequence on the maximum allowable heat flux in 

a symmetric composite laminate with a quasi-square cutout under uniform heat flux using an analytical solution 

based on the complex variable method, the mapping function and the Tsai-Hill criterion. The symmetric 

Glass/epoxy laminates with different stacking sequences containing a quasi-square cutout were studied analytically. 

The effect of the heat flux angle and different geometrical parameters of cutout were studied on the thermal stresses 

and allowable heat flux. 

2    THEORETICAL FORMULATIONS 

The symmetric composite laminates considered in this study was assumed to be linear elastic and anisotropic 

governed by the generalized Hooke's law. The edges of the quasi-square cutout were thermally insulated. The size of 

cutout in comparison with the dimensions of the laminate was small enough for assuming infinite laminate. The 
cutout angular position represented by β indicates its orientation relative to the horizontal axis. As shown in Fig. 1, 

the laminate was subjected to a remote uniform heat flux q in steady state condition. 

 

 

 

 

 

 

 

Fig.1 

Symmetric composite laminate containing quasi-square cutout 

under uniform heat flux. 

 

The uniform heat flux was disturbed by the presence of a thermally insulated quasi-square cutout giving rise to 

thermal stresses around the cutout. Due to the absence of heat source in the laminate, the maximum stress occurred 

on the edges of the cutout. Moreover, because of the boundary conditions around the cutout, the only stress induced 

on the edges of cutout was σθ by considering the normal and tangential coordinate system (,) according to Fig. 1. 

The plane stress condition and small deformation were assumed. The thermal stress components can be obtained 

using Eq. (1) [37]. 
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where T  is temperature gradient,
 lz  and 1lz   represent the z  components of the upper and lower boundaries of 

the l
th

 layer, H is the  total thickness and  
l

  is the vector of the coefficient of thermal expansion of the l
th

 layer 

that is determined using Eq. (3). 
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where α11 and α22 are the coefficients of thermal expansion in the principle material coordinate system. Furthermore, 

m and n are the corresponding cosine and sine of the fiber angle (γ). The stress components are defined as Eq. (4) by 

considering the Airy’s stress function E(x,y) [4]. 
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According to the Likhnitskii’s complex potential technique, using Eqs. (1) and (4) and the stress-strain 

relationship and the compatibility equation, the constitutive equation for an anisotropic material can be obtained in 

terms of the stress function as Eq. (5). 

 
4 4 4 4 4

11 16 12 66 26 224 3 2 2 3 4

2 2 2

2 2

2 2 2

x xy y

E E E E E
a a ( a a ) a a

y x y x y x y x

T T T

y x y x
  

    
    

       

  
   

   

 (5) 

 

where
x y,  and 

xy are the coefficients of thermal expansion of the laminate and aij are the coefficients of the 

reduced compliance matrix [35]. The solution of Eq.(5) is divided into two parts including the homogenous part 

(E
(h)

) and the particular part (E
(p)

). The generalized biharmonic equation for an anisotropic material in terms of the 

stress function (E) is: 
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Using four first-order linear differential operators 
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The roots of Eq. (7) can be considered as Eq. (8). 
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where 
1 , 

2  ,
1  and 

2  are real numbers. For symmetric laminates, 
16 26 0a a  . Given the roots of the 

characteristic equation, the Airy's stress function E in Eq. (4) can be represented as Eq. (9) [9]. 
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where Zk=x+sky  (k=1,2). In Eq. (9), E1 and E2 are analytic functions and 
1E and 

2E are their conjugates. The new 

stress function ( ) is derived using the stress function E as below: 
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By substituting Eqs. (9) and (10) into Eq. (4), the stress components are determined as Eq. (11). 
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In which 
1 1( Z )   and  

2 2( Z )   are the derivatives of functions 
1 1( Z )  and 

2 2( Z )  with respect to Z1 

and Z2 , respectively. In order to relate the on-axis heat flux q and temperature gradient in an orthotropic laminate, 

the Fourier’s law is employed in the form of Eq. (12) [39]. 
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In Eq. (12),  
on

k is the on-axis anisotropic thermal conductivity matrix. It is assumed that the unidirectional 

laminae are transversely isotropic. The Fourier's law of thermal conduction in the global coordinate system can be 

presented as Eq. (13). 
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By considering n = sinγ and m = cosγ, the components of the off-axis thermal conductivity matrix 

 
off

k k   
are defined as Eq. (14). 
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By integrating the thermal conductivity coefficients across the laminate thickness, the resultant of thermal 

conductivity coefficients for a multilayer laminate can be determined using Eq. (15). 
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In which, l  is layer number and  K  is the resultant thermal conductivity matrix and H is the total thickness of 

the laminate. For a laminate without internal heat source or sink we have [9]: 
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The governing thermal equation for a homogeneous anisotropic material according to Eq. (12) and Eq. (16) can 

be obtained as Eq. (17). The general solution of Eq. (17) can be considered as T= Et(x+st y) where st are the roots of 

the characteristic Eq. (18) [36]. 
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The thermal conductivity matrix is invertible and positive definite ( 2

x y xyK K K ).Thus, the characteristic Eq. 

(18) has a pair of conjugate roots, which the roots with positive imaginary part are considered. Therefore, the 

general solution of Eq. (18) can be introduced as Eq. (19) [9]. 
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In which 
tE  is a complex function. By substituting Eq. (19) into Eq. (5), the particular solution of the stress 

functions E
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 can be obtained as Eq. (20). 
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So, by substituting Eq. (20) into Eq. (11), the stress components and displacement field are obtained in terms of 

stress functions as Eq. (21). 
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In which x  is defined in Eq. (23). 
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2.1 Conformal mapping function 

To extend the analytical solution of a circular cutout to a quasi-square cutout, the infinite areas outside the quasi-

square cutout is mapped to the outside areas of a unit circle as shown in Fig. 2, [38]. 
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Fig.2 

Conformal mapping. 

 

Eq. (24) defines the mapping function used in this study. 
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In which sk are the roots of the characteristic equation and   is defined in Eq. (25) in the mapped plane. 
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For a unit circle  =1. In Eq. (24), The parameter c determines the aspect ratio of the cutout and w determines 

the cutout corner curvatures (bluntness parameter). The condition of 0w<1/n ensures that the cutout shape does not 

have loops. Fig. 3 shows the effect of w on the shape of cutout. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of the parameter w on the shape of cutouts. 

 

Applying the Euler's formula, the conformal mapping function for a quasi-square cutout can be presented as Eq. 

(26). 
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Eq. (28) is applied to model the cutout angular position (). 
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In which x and y represent the Cartesian coordinates in the laminate with quasi-square cutout. It should be noted 
that β determines the cutout orientation and θ is the angular position around the cutout. 
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2.2 Boundary condition function 

Based on Eq. (21), to achieve the stress components, the stress functions i  and t  need to be determined. For this 

purpose, the following matrices are defined as Eq. (29) [9]. 
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The boundary of the quasi-square cutout is free from external load and then the mechanical boundary conditions 

using Eq. (29) can be rephrasing as Eq. (30).  

 

0t tL L l l        (30) 

 

Moreover, because the boundary of the quasi-square cutout is insulated, the Newman boundary condition can be 

denoted as Eq. (31). 

 

( ) ( ) 0t t       (31) 

 

The function ( )t   can be represented by two functions ( )tr   and ( )tp   that are holomorphic in the inner and 

outer areas of the unit circle, respectively.  

 

( ) ( ) ( )t t tr p       (32) 

 

The function ( )t   can be expressed as the Laurent series in which the term ξ
-1

 exists. Consequently, by 

integrating the function ( )t  , the function ( )t   contains the term logξ. Therefore, ( )t  is considered as Eq. 

(33). 

 

( ) ( ) ( ) ogt t tR P l        (33) 

 

In which ( )tR  and ( )tP 
 

are holomorphic functions inside and outside the unit circle, respectively. 

Furthermore, the function ( )   can be considered as Eq. (34).  

 

( ) ( ) ( ) ogr p l        (34) 

 
where r(ξ) and p(ξ) are the holomorphic functions inside and outside the unit circle respectively. By substituting Eq. 

(33) and Eq. (34) into Eq. (30) and multiplying it by 
2 ( )

d

i



  
 and applying the Cauchy integral, ( )   can be 

rephrased as Eq. (35). 

 
1 1 1 1 1( ) ( ) ( ) ( ) ( ) logttr L L r L lP L l R                (35) 

 

where 

 
1

1 1 1 1 1( ) ( ) ( ) ( )L M M a a A M M l l


                    
1M A L   (36) 

 

In which, L, a, l and A are defined in Eq. (29) and  can be obtained using boundary conditions. When the heat 

flux is applied on an anisotropic laminate with no cutout, the thermal stress function is presented as Eq. (37).  
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(37) 

 

In which δ is the heat flux angle. In the presence of a quasi-square cutout, in addition to t  , the function 
M

t  , 

which is holomorphic outside the unit circle, is added to the thermal stress function. Therefore, the stress function 

can be expressed as Eq. (38). 
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(38) 

 

it are the components of conformal mapping function for a quasi-square cutout. By comparing Eq. (38) and Eq. 

(32), the function ( )tr   is obtained as Eq. (39). 
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(39) 

 

Therefore, ( )t   is obtained as Eq. (40). 
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 (40) 

 

 can be obtained by integrating Eq. (40) and comparing it with Eq. (33) as Eq. (41). 
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As mentioned, t  expresses the thermal stress function for a laminate with no cutout. Hence, it only causes the 

laminate deformation and does not create stress. Thus, for the purpose of achieving thermal stresses, 
M

t  should be 

obtained using Eqs. (37), (38) and (40). The result is presented in Eq. (42). 
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By comparing Eq. (42) and Eq. (33), the functions ( )tR  and ( )tP   can be obtained and subsequently by 

substituting them into Eq. (35), the function ( )   can be achieved. Finally, the stress components are obtained 

using Eq. (21). 
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2.3 Tsai-Hill criterion 

In this study the Tsai-Hill criterion (Eq. (43)) is used to determine the allowable heat flux that can be applied on the 

laminated composite plate with quasi-square cutout. The values of stresses , ,x y xy    are transformed into the 

material principal coordinate in each layer (
1 2 6, ,   ) and then they are introduced into Eq. (43). The allowable heat 

flux is determined based on the first ply failure (FPF) scheme [29]. 

 

2 2 261 2 1 2

2
( ) ( ) ( )
X Y

Tsai Hill
S X

   
     (43) 

 

In Eq. (43),  X  is the tensile strength in longitudinal direction, Y  is the tensile strength in transverse direction 

and S is the shear strength of the unidirectional lamina. 

3    VALIDAATION OF THE ANALYTICAL SOLUTION 

The ABAQUS finite element code was utilized to validate the proposed analytical solution. The two-dimensional 

models of Glass/epoxy laminates with quasi-square cutouts under uniform heat flux were developed. The laminates 

were modeled using the four-noded quadrilateral (S4R) elements. S4R is a general-purpose element, reduced 

integration with hourglass control, finite membrane strains, and bilinear temperature in the shell surface. A mesh 

sensitivity analysis was undertaken to ensure the independence of the numerical results to the element size. The 

region around the cutout was modeled using fine mesh. For the mesh sensitivity analysis, the number of elements 

was increased from 40 to 360 and it was observed that further refining the mesh did not change the results. Fig. 4 

shows the mesh convergence diagram for the Glass/epoxy material with the stacking sequence of [45/-45]s in and w 
=0.15, β =30° and δ =270°.  

 

 

 

 

 

 

 

 

 

Fig.4 

Mesh convergence diagram. 

 

The numerical and analytical stress distributions (  ) around the quasi-square cutout were compared for two 

different stacking sequences of [0/90]s and [45/-45]s in Fig. 5. The parameter θ determines the angular position on 

the cutout border with respect to the horizontal axis. Fig. 5 indicates reasonable correlation between the numerical 

and analytical results. 

 

 
 w=0.1, β=0o, c=1, δ=270o with [0/90]s lay up 

 
w=0.05, β=45o, c=1, δ=270o with [45/-45]s lay up 

Fig.5 

Comparison between the finite element and analytical results. 
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4    RESULTS AND DISCUSSION 

This section presents the maximum allowable heat flux that can be tolerated by the symmetric composite laminates 

containing a quasi-square cutout under a uniform heat flux. The effect of the cutout bluntness and orientation angle, 

the heat flux angle, the cutout aspect ratio and the laminate stacking sequence were studied on the maximum 

allowable heat flux analytically. The laminate studied in this paper was made of Glass/epoxy with the stacking 

sequences of [0/90]s, [45/-45]s and [30/-30]s. The laminates were subjected to a uniform heat flux. The Tsai-Hill 

criterion was used to determine the strengths of the laminates. Note that the default values of the parameters in 
section 4 are δ =270°, w =0.05, β =0° and c =1, unless the parameter is altered in order to study its effect on the 

maximum allowable heat flux value. The material properties considered in this study are presented in Table 1. 
 

Table 1 

Mechanical properties of the Glass/epoxy material. 
Material E11(GPa) E22(GPa) G12(GPa) υ12 α11 (K

-1) α22 (K
-1) X(MPa) 

 
 

Glass/epoxy 

50 15.2 4.7 0.254 6.34×10-6 2.3×10-5 1000 

K11 (Wm-1K-1) K22 (Wm-1K-1) Y(MPa) S(MPa) 

2.2 1.1 30 70 

E33=E22, G12=G13=G23 , v12= v 13= v 23 , α 33= α 22, K33=K22 , K12=0 

4.1 Effect of rotation angle of cutout 

Fig. 6 shows the maximum allowable heat flux versus the cutout rotation angle (β) for the laminates with different 

stacking sequences of [0/90]s, [45/-45]s and [30/-30]s containing a cutout with different bluntness values (w). As can 

be seen in Fig. 6, the maximum allowable heat flux value was considerably dependent on the cutout bluntness and 

rotation angle and the laminate stacking sequence. According to the Tsai-Hill criterion, the maximum allowable heat 
flux value obtained for the stacking sequence of [0/90]s was 352 w/m

2
 for the cutout rotation angle of β = 45°. 

Whereas, for the stacking sequences of [45/-45]s and [30/-30]s, the maximum allowable heat flux values were 456 
and 422 w/m

2
, respectively for the cutout rotation angles of  β = 0° or 90°. Therefore, the highest allowable heat flux 

value was obtained for the stacking sequence of [45/-45]s. Moreover, it was found out that a laminate with non-

circular quasi-square cutout with w = 0.05 tolerated higher allowable heat flux compared to a laminate with circular 

cutout. Hence, the circular cutout was not the optimum shape for the cutout in the symmetric composite laminate 

subjected to uniform heat flux.  

 

 
[0/90]s 

 
[45/-45]s 

  

 
[30/-30]s 

 

 

 

 

 

 

Fig.6 

Effect of cutout rotation angle on the maximum allowable 

heat flux for different values of cutout bluntness. 
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Fig. 7 shows the effect of cutout aspect ratio on the maximum allowable heat flux of perforated Glass/epoxy 

laminates with different stacking sequences. As it was clear, the maximum allowable heat flux of laminate 

containing a quasi-square cutout decreased by increasing the aspect ratios of the cutout, so the strength of the 

laminate decreased. It was noteworthy that, in addition to the stacking sequence and the cutout orientation angle, the 

cutout aspect ratios have a significant effect on the values of the strength in laminated composite plates. It can be 

seen that the maximum value of the allowable heat flux for the stacking sequence of [0/90]s was equal to 397 w/m
2
 

at c =0.5 and  =25° and 155°. For the stacking sequence of [45/-45]s, the maximum allowable heat flux was equal 

to 509 w/m
2
 at c =0.5 and  =90°, while for the stacking sequence of [30/-30]s, the maximum allowable heat flux 

was equal to 643 w/m
2
 at c =0.5 and  =80° and 100°. The lowest maximum allowable heat flux was attained for the 

stacking sequences of [0/90]s, [45/-45]s and [30/-30]s at  =40° and 140°,  =75° and 105°, and  =90° for c =2, 

respectively. Therefore, the values of cutout aspect ratio and the laminate stacking sequence as important parameters 

have significant effects on the maximum allowable heat flux of laminate. 

 

 
[0/90]s 

 
[45/-45]s 

  

 
[30/-30]s 

 

 

 

 

 

 

 

 

Fig.7 

Effect of rotation angle on the maximum allowable heat flux 

for different values of c. 

4.1 Effect of heat flux angle 

The effect of heat flux angle on the maximum allowable heat flux of the perforated laminated composite plate for 

different values of bluntness parameter (w) is illustrated in Fig. 8. As observed in the previous section, the maximum 

values of allowable heat flux for the stacking sequences of [0/90]s, [45/-45]s and [30/-30]s were attained at  = 45°,  

= zero or 90° and  = zero or 90°, respectively. Hence, in this section, these values are used to calculate the effect of 

heat flux angle on the maximum allowable heat flux. According to Tsai-Hill criteria, it was observed that the 

maximum allowable heat flux for the stacking sequence of [0/90]s for  = 45° was equal to 456 w/m
2
 when δ = 45°, 

135°, 225° and 315°.  Moreover, for the stacking sequence of [45/-45]s at  = 0°, the maximum allowable heat flux 

was equal to 350 w/m
2
 when δ = 0°, 90°, 180°, 270° and 360°, while, for the stacking sequence of [30/-30]s at  = 

0°, the maximum allowable heat flux was equal to 422 w/m
2
 when δ = 90° and 270°. It was noteworthy that the 

maximum value of the allowable heat flux was achieved in a non-circular cutout (w = 0.05). So, a circular cutout (w 

= 0) is not always an optimum shape of the cutout. According to the results of Fig. 8, the stacking sequence of 

laminate and heat flux angle play important roles in the values of the maximum allowable heat flux in the composite 

laminates containing a quasi-square cutout made of Glass/epoxy material. 

 



373                        Analytical Study on the Effect of Stacking Sequence …. 

Journal of Solid Mechanics Vol. 14, No. 3 (2022) 
© 2022 IAU, Arak Branch                                     

 
[0/90]s 

 
[45/-45]s 

  

 
[30/-30]s 

 

 

 

 

 

 

 

 

Fig.8 

Effect of flux angle on the maximum allowable heat flux in 

different values of w. 

 

 

Fig. 9 shows the effect of heat flux angle on the maximum allowable heat flux of the symmetric laminated 

composite containing a quasi-square cutout with different cutout rotation angles. It was obtained that the maximum 
value of the allowable heat flux for the stacking sequence of [0/90]s was equal to 456 w/m

2
 when δ = 45°, 135°, 

225°, 315° and β = 45°, while that for the stacking sequence of [45/-45]s was equal to 456 w/m
2
 when δ = 0°, 90°, 

180°, 270°, 360° and β = 0°. For the stacking sequence of [30/-30]s, the maximum value of allowable heat flux was 

equal to 422 w/m
2
 at δ = 90°, 270° and β = 0°. The cutout orientation had a significant effect on the heat flux angle 

value for obtaining the maximum allowable heat flux value for the perforated symmetric laminated composite. As 

can be seen in Fig. 9, the location of the maximum allowable heat flux depends on the arrangement of the layers. It 

is clear that for the stacking sequence of [0/90]s by increasing the cutout orientation, the maximum value of 
allowable heat flux was increased. However, by changing the stacking sequence to [45/-45]s or [30/-30]s at β = 30° 

and β = 45° experienced a close-knit behavior. Therefore, in addition to β and δ, the stacking sequences play a key 

role in obtaining higher strength values for composite laminates under uniform heat flux. 

 

 
[0/90]s 

 
[45/-45]s 
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[30/-30]s 

 

 

 

 

 

 

 

Fig.9 

Effect of flux angle on the maximum allowable heat flux in 
different values of β. 

 

Fig. 10 shows the effect of heat flux angle on the maximum allowable heat flux of Glass/epoxy laminate with a 

quasi-square cutout with different cutout aspect ratios. It can be seen that the maximum value of the allowable heat 
flux for the stacking sequence of [0/90]s was equal to 509 w/m

2
 when δ = 45°, 225° and c = 0.5 and for the stacking 

sequence of [45/-45]s was equal to 509 w/m
2
 when δ = 0°, 180°, 360° and c = 0.5. For the stacking sequence of [30/-

30]s, the maximum allowable heat flux was equal to 422 w/m
2
 at δ = 90°, 270° and c = 1. It was noteworthy that, by 

changing the heat flux angle location, the maximum value of the allowable heat flux was changed. According to Fig. 
10, for the stacking sequence of [0/90]s, the highest strength was obtained at c = 1 when δ = 0° while by  changing 

the heat flux angle location, the highest strength was obtained at c = 0.5 when δ = 45°. This behavior was different 

for the stacking sequences of [45/-45]s and [30/-30]s. Therefore, in addition to the stacking sequence, the cutout 

rotation angle and heat flux angle are important in achieving the maximum allowable heat flux. It should be noted 

that the results of Fig. 10 for the stacking sequences of [0/90]s, [45/-45]s and [30/-30]s are presented with the 
assumptions of w = 0.05 and β = 45

o
, β = 0

o
 and β = 0

o
. 

 

 
[0/90]s 

 
[45/-45]s 

  

 
[30/-30]s 

 

 

 

 

 

 

Fig.10 

Effect of flux angle on the maximum allowable heat flux in 

different values of c. 

 

5    CONCLUSION 

This paper examined the maximum allowable heat flux for the symmetric composite laminate containing a quasi-

square cutout with different stacking sequences under uniform heat flux. The analytical solution was obtained based 
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on the thermoelasticity theory and by using the complex variable method. The stress function and conformal 

mapping function were utilized to determine the strength of a composite plate containing a non-circular cutout 

shape. The Tsai-Hill criterion was employed to study the maximum allowable heat flux of laminates with different 

staking sequence. Further, the effect of parameters including the cutout orientation angle, the heat flux angle, the 

cutout bluntness, the cutout aspect ratio and the laminate stacking sequence was investigated on the maximum 

allowable heat flux for Glass/epoxy symmetric laminated plates. The results showed that the laminate stacking 

sequence and the cutout geometrical parameters can considerably influence the maximum allowable heat flux of 

laminates with cutouts. Accordingly, by considering the proper laminate stacking sequence and proper values for the 

cutout orientation and heat flux angle, the maximum allowable heat flux can be increased. Also, the bluntness and 

the cutout aspect ratio parameters were other effective parameters involved in achieving higher maximum allowable 

heat flux. It was found out that for the laminates with the stacking sequences of [0/90]s, [45/-45]s and [30/-30]s 
containing non-circular cutouts with a bluntness parameter of w = 0.05 located at angular positions of β = 45°, β = 0° 

and β = 0° and the heat flux angles of δ = 45°, 135°, 225°, 315°, δ = 0°, 90°, 180°, 270°, 360° and δ = 90°, 270°, 

respectively, the maximum allowable heat flux were obtained. Therefore circle may not be the optimum shape of 

cutout. Finite element analyses were employed for validating the analytical solutions. There was a reasonable 

agreement between the finite element and analytical results. 
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