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ABSTRACT
This work is a study of the elastic fields’ effect (stresses and
displacements) caused by dislocations networks at a heterostructure
interface of a InAs / GaAs semiconductors thin system in the cases of
isotropic and anisotropic elasticity. The numerical study of this type of
heterostructure aims to predict the behavior of the interface with
respect to these elastic fields satisfying the boundary conditions. The
method used is based on a development in Fourier series. The
deformation near the dislocation is greater than the other locations far
from the dislocation.

© 2021 TAU, Arak Branch.All rights reserved.

Keywords : Elastic fields; InAs/GaAs; Anisotropic; Isotropic;
Semiconductors.

1 INTRODUCTION

HE production of new miniaturized semiconductors is highly demanded by the electronics industry for their

important physical and chemical properties [1, 2]. The manufacturing of this semiconductor creates mechanical
stresses which generate failure and reliability problems because of the elastic fields (displacements, stresses) caused
by different types of dislocation networks at the interfaces in anisotropic and isotropic elasticity cases. This leads to
studies allowing to know the effects of these elastic fields on the interface of the heterostructure. The heterojunction
formed by two different semiconductors as for InAs / GaAs is of great interest practically because of the association
of specific properties (electrical and opto-electronic properties of the two semiconductors and to overcome the
difficult problems to solve with only one material. The heteroepitaxial system of III-V InAs/GaAs semiconductors
(001) attracted interests and researches for these promising optoelectronic properties [3, 4]. Yonemoto et al. [5]
studied the adsorption - desorption behavior on the surface of the InAs wetting layer cultivated on (001) GaAs
substrate. A stress calculation method was proposed by improving the force and moment equilibrium method to
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calculate stress in semiconductor layers such as InGaAs/GaAs multilayers [6]. Derardja et al. [7] treated, taking into
account the anisotropic elasticity specific to each crystal, the elastic fields relating to a layer / substrate system and
to an ultra thin bi-crystal when the network of dislocations is hexagonal. The stress relaxation processes in InAs
heteroepitaxy on substrates was studied by Akihiro et al. [8]. The Stranski-Krastanov SK growth pattern occurs in
the InAs/GaAs (001) system with a 7.2% parametric disagreement reported by Leonard et al. [9]. An optimization of
the morphological and optical characteristics of BQs InAs / GaAs quantum dots as a function of the nominal
thickness of InAs epitaxied by chemical jets on a GaAs substrate (001) was studied by Jihene Zribi [10]. Stress
relaxation of ultrafine InAs layers on InGaAs substrates during heteroepitaxy plays a central role in the growth and
engineering of 11 - V single crystals [11].

In this work we studied the elastic behavior of a thin bimetallic strip whose interface is lined with a parallel
network of dislocations of parametric disagreement. The analytical method used is a formulation in Fourier series in
which the analytical expressions of its coefficients was determined numerically with an accuracy which was checked
with respect to the series convergence. It is necessary to have models, which can describe in explicit form the elastic
fields for different cases in the cases of isotropic and anisotropic elasticity. We also examined the contrast of
different results.

2 BASIC FORMULATIONS

Based on a double Fourier series formulation proposed by Bonnet [12], the elastic fields (displacements and
stresses) [13], were calculated in the case of isotropic and anisotropic elasticity.

2.1 Formulation in the isotropic case

In the isotropic case, the deformation is assumed to be plane and periodic along the Ox; axis. The displacement field
u, components can be written:

2rxin
w, =y U,f")exp( A XI] for n =0 ()

n=-0w

The period A of the network is determined by A = Il Where b is the modulus of the Burgers vector and ¢ the
£
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(a+—a_) . We take o= 77[ . Eq. (1) becomes u, = Z U™ exp™+ . Where the U™ depends only
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on x,.
The field of displacements as defined must satisfy the differential equation of elasticity obtained by combining
the equilibrium equations of a volume element with the linear equations of Hooke.
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where 4 and u are the Lamé coefficients of the deformed medium. For 7, k=1, 2, 3 and by inserting Eq. (1) into Eq.
(2), we get for each harmonic n of non-zero rank a system of equations.

(A+2u)(—n*&* W, + (A +2u)(-inw)u,, + s, , =0 (3)
(A+ ) (-inw)u,, +(A+2u)U,, + u(-n*w*u, =0 (4)
p(—n*o*)u, + g, =0 ®)
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The fields of displacement components are:

(4 +Bnax, Jexp! ")
ul = . (imox ) eXp
n==| +i (C +Dnax, )exp"

(inwx]) (6)
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For the expression of the stress field in the case of plane strain:

=A8uy , +p, ; +u, ;)
By elimination the parameter 4 and using the classical relation (Hirth and Loth), we get the following constraints:
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In our work, we considered the fact that a periodic series of dislocations produces in each medium a
displacement field u; and a stress field 6;; whose components can be developed in a double Fourier series. The field
of displacements u is bi-periodic parallel to the hetero-interface, in media noted respectively with the signs + and -.

The boundary conditions relating to a thin bimetallic strip valid for the isotropic and anisotropic case are
summarized as follow:

a) Condition on the linearity of the interfacial relative displacement:

o0
b,
Au S —u, —sin(nwx )
k k Z n
= ib
Au, =u; —u; = k
k k k n:Z:m 2n

b) Condition on the stresses continuity o, at the interface
o,, +o,, for x,=0
c) Condition of the stresses nullity o,, at free surfaces

=0

+
O-Zk

X,=h

=0

Ok |xy=h

To explicitly find each of the Fourier coefficients, the components of the displacement field U ,g") of the
displacement field (1), it is necessary to solve Egs. (6), (7) and (8). It remains to solve a linear system of twelve
equations with twelve complex unknowns4*,B*,C*,D*",E*,F",A",B~,C ,D ,E",F~ . This system splits into
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two independent sub-systems. The first contains only the unknowns E*,F",E ,F .The solutions are purely

complex. The component of the displacement field parallel to the dislocations therefore depends on the Burgers
vector b, the coefficient v and the ratio & of the shear moduli. The other system of equations has eight

unknowns 4*,B",C",D",4",B~,C",D . It is written in the form of a matrix product, where the column
matrix X (A " B*,C*",D",A",B~,C ’,D’) contains these eight complex unknowns written in the same order from

top to bottom 4.X =B.

In this equation, the matrices 4 and B are respectively an 8 x 8 complex square matrix and a column matrix. The
equation was solved analytically and we obtained the explicit expressions of the field of displacements for the two
mediums:
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The explicit expressions of the stress field for the two media are:
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2.2 Formulation in the anisotropic case

In the case of anisotropic elasticity and during the epitaxy of two materials, where the two lattice parameters are
different, an interface composed of a periodic network of dislocations will appear to relax the constraints of
parametric disagreement "misfit dislocations ".

Xz

T Ci+jkl

Fig.1
Thin bicrystal strip +/-, with a network of dislocations at the

interface, 4 thickness, C U*,(

, elastic constants and A period.

with the assumption that the interface is plane and the displacement field is periodic (period A). The linearity of the
relative displacement can be described by the following expression:

.~ (b b
Up —Uy :[Xk)xl _7k

As the relative displacement u; (x;) is periodic along ox;, it can be developed as Fourier series:

n=1

Au, (x,)= Z(%jsin@i gNnp X )

This displacement field can be written as:
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R 27nx
¢ =207 @,)exp :
n#0 A
u, must satisfy the generalized Hooke's law, linking stresses and strains o, =C,, &, ,U/ (x,) is written as
follows:

3 n_

exp 21 Tgnp X Z

a=

U!(x,)= z exp 2z7zgnpa )

where X and Y represent complex constants which will be determined using the boundary conditions related to

the problem [14].
For more numerical performance, it is convenient to write the equation of the field of displacements in a form
where the summation takes only into account the positive values of the integer n» which can be written as [15]:

u, :z(iji[{cos[na)(x1 +rx,)].Re[(-iX ][4, )exp(-nws x,)+ (=Y ﬁ.ak)exp(na)s x )1}

n>1 a=1

+sin[na(x, +r,x,)].Re[(X "1, )exp(-naws x,)+ ¥ ' 1, exp(nws x,)]} k=123

a ok

In the same way for the stress field, we have:
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with L, =2, [Cy +P.Crya) i,j =123 et 1=1,2

3 DESCRIPTION OF THE PROBLEM AND BASIC FORMULATION

Fig. 2. Shows the Misfit for a layer-to-layer heterostructure.

Free surface,

X2

Misfit

Fig.2
Geometry of the thin bimetal InAs / (001) GaAs with a
dislocation network at the interface x, = 0.

4 1InAs/(001) GaAs SYSTEM
Epitaxy of thin films of InAs on GaAs is possible. Thin epitaxial films have a good interface quality.
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Table 1
General characteristics of InAs/GaAs isotropic bicrystals [16, 17].
Settings InAs GaAs
a 0.6058 0.56533
v 0.30 0.25
H 29.18 46.27
b 0.41405
p 5.984
Table 2
General characteristics of InAs/GaAs anisotropic bicrystals [17, 18].
Settings InAs GaAs
a 0.6058 0.56533
C, 86.5 118
C, 48.5 53.5
Cy, 39.6 59.4
b 0.41405
p 5.984

The relative elasticity constants C; for each crystal are taken in the reference Cartesian frame Ox;x,x;. The
unidirectional network is studied by considering that the dislocations are distributed on both sides of the origin O of
the Cartesian coordinate system Ox;x,x3;, knowing that a dislocation is located at the origin of the axes. The Burgers
vector b is oriented parallel to the Ox; axis. The deposited layer of the InAs single crystal is chosen on the positive
side while the GaAs is chosen on the negative side and therefore represents a substrate.

5 RESULTS AND DISCUSSION
5.1 Displacement fields iso values

We illustrated displacement fields’ iso values around dislocations belonging to the unidirectional network in the
isotropic and anisotropic elasticity cases.

Fig.3

Iso values of the displacement fields u; of the InAs / (001)
GaAs bicystals induced by a network of interfacial
dislocations where b // Ox;; isotropic case.

(2D) (3D)

Fig.4

Iso values of the displacement fields u; of the InAs / (001)
GaAs bicystals induced by a network of interfacial
dislocations where b // Ox; anisotropic case.
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The contrast of the heterogeneous system (Fig. 3 and Fig. 4) indicates values varying from -0.15am up to
+0.15nm. These results provide information on the heterogeneity effect, which will be visible in the representation
of the stress distribution. For the 5nm thick deposited InAs layer, the result appears as an ascending ripple
mechanism along Ox,. Already described in the literature as a 3D growth mode specific to InGaAs layers which is in
accordance with the behavior of Fourier series. In the anisotropic case, the contrast indicates for the heterogeneous
system, values varying from -0.015 nm up to +0.015 nm. The 3D representation of the displacement fields in both
isotropic and anisotropic elasticity cases indicates that the deposited layer is in tension while the substrate is in
compression. These calculations show in particular the fields’ displacement extrema. We also notice that the
symmetry of the displacement fields respects the linear symmetry of the dislocation network.

The theoretical method of development by Fourier series for the case of the heterojunction InAs / (001) GaAs a
clear difference between anisotropy and isotropy was detected knowing that the single crystals of InAs and GaAs are
very anisotropic. Their respective Zener factors are 4 = 2.084 for InAs and 4 = 1.82 for GaAs calculated by the
following expression:

2,
C11 _CIZ

The applied elastic field is felt differently in the two cases due to the effect of anisotropy.

5.2 Stress fields iso values

The stress distributions are shown in Fig. 5-8 for a thin bimetal InAs/(001) GaAs and for two dislocations with a
Burgers vector b = 0.41405 nm parallel to Ox;.

Fig.5
Iso-stresses oy, of the InAs / (001) GaAs bicystals induced by
a network of interfacial dislocations where b // Ox;; isotropic
case.
Fig.6
Iso-stresses o1 of the InAs / (001) GaAs bicystals induced by
a network of interfacial dislocations where b // Oxi;

anisotropic case.

Fig.7
Iso-stresses 0, of the InAs / (001) GaAs bicystals induced by
a network of interfacial dislocations where b // Ox;; isotropic
case.
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(2D) 3D)

Fig.8
Iso-stresses 0, of the InAs / (001) GaAs bicystals induced by
a network of interfacial dislocations where b // Ox;

(:ZD) (3D) anisotropic case.

The iso- stresses ay; correspond to -10 GPa up to +10 GPa for the isotopic case (Fig. 5) and from -3 GPa up to
+3 GPa in the anisotropic case (Fig. 6). For the iso-stresses o,, correspond to -30 GPa up to +30 GPa for the
isotopic case (Fig. 7) and from -1.5 GPa up to +1.5 GPa in the anisotropic case (Fig. 8). We notice positive peaks
and negative peaks which mean that there is a positive tensile stress in the first case, and conversely, we are in
compression if the stress is negative.

6 CONCLUSION

Determining the elastic field’s effect of nanometric materials is important in both experimental applications and
theoretical modeling. In this context we solved the problem of a thin system composed of InAs / GaAs
semiconductors in the cases of isotropic and anisotropic elasticity. We analyzed the results contrast for different
parameters. We analyzed the contrast of the results for different parameters like the deposited layer thickness, the
burger vector orientation and the network dislocation in order to apprehend the tensile and compressive stresses
relaxation.

The iso value results of the displacement fields around the dislocations belonging to the unidirectional network
provide information on the heterogeneity effect. The curves symmetry with respect to the x, axis is very visible,
because of the dislocation network periodicity which reflects the behavior of the Fouries series. For the anisotropic
case, the contrast indicates for the heterogeneous system values varying from -0.015 nm up to +0.015 nm. The
displacement fields in both isotropic and anisotropic elasticity indicate that the deposited layer is in tension while the
substrate is in compression. The iso stress results show positive and negative peaks, it means that there is a positive
tensile stress in the first case, and conversely, we have a compression if the stress is negative.
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