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 ABSTRACT 

 This paper presents a general formulation for an isotropic wedge 

reinforced by an orthotropic coating involving multiple arbitrarily 

oriented defects under out of plane deformation. The exact closed 

form solution of the problem weakened by a screw dislocation in 

the isotropic wedge is obtained by making use of finite Fourier 

cosine transform. Also, the closed-form solutions of the out of 

plane stress and displacement fields are obtained. After that, by 

making use of a distributed dislocation approach, a set of singular 

integral equations of the domain involving smooth cavities and 

cracks subjected to out of plane external loading are achieved. The 

cracks and cavities are considered to be only in the isotropic 

wedge. The presented integral equations have Cauchy singularity 

and must be evaluated numerically. Multiple numerical examples 

will be presented to show the applicability and efficiency of the 

presented solution. The geometric and point load singularities of 

the stress components are obtained and compared with the 

available data in the literature.                  
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1    INTRODUCTION 

EDGES are often subjected to various loadings in the process of working. In the study of the fracture 

mechanics of Wedges, the structure of the coating seems to play an important role in a problem with multiple 

cracks. One important challenge in material design is reduction of the stress intensity factor in the cracked bars. To 

overcome this drawback, an efficient method is to introduce an effective coating layer. Coating is often applied to 

the surfaces of polymeric, metallic or composite structures. Coating layers are used for many reasons such as 

protecting, decorating, serving as a barrier, or providing unique surface properties. An appropriate coating can 

improve efficiency, component durability and fuel economy. In this paper, we use an orthotropic coating layer for 

reducing the stress intensity factor. The orthotropic materials, with properties that differ along three mutually-
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orthogonal twofold axes of rotational symmetry, are increasingly used as a coating of conventional materials in 

aerospace engineering as well as automobile and ship vehicles. This can be attributed to their high strength/density 

and stiffness/density ratios, high resistance to wear and heat penetration, low coefficient of friction and relatively 

low cost. On the other hand, the use of orthotropic materials as a coating for isotropic materials may be suggested 

for structural purposes, such as the reduction of stress intensity factors at the crack tips. In composite bodies, there 

are regions with high-stress levels due to cracks. These regions are the main reasons of failure in structures, even 

subjected to moderate loading. As the main step for designing a structure, the fracture analysis should be evaluated. 

Theoretical approaches are critical in fracture analysis for two important reasons. First, theoretical approaches 

exhibit the type of singularities that is employed to interpret experimental results and also to increase the correctness 

of numerical solutions. Second, theoretical approaches can provide general solutions for simple crack orientations 

and geometries and for specific material behavior that can be employed as a standard analysis for numerical 

evaluations [1]. Therefore, the fracture analysis of planes with simple geometries, including four-sided, wedges and 

circle is significant for the investigators in the fracture mechanic. For the out of plane fracture problems, dislocation 

approaches in solving a crack problem are well known, because a dislocation problem is a Green solution of the 

fracture problems [2]. There are not numerous papers focused on the out of plane problems of finite domains with 

coating weakened by cracks, like the paper of Matbuly et. al [3]. They were focused on the stress analysis of two 

cracks situated between the interface of two orthotropic four-sided domains under out of plane load. By making use 

of the finite Cosine Fourier transform, the solution was simplified to a group of Cauchy type integral equations, 

which had been evaluated numerically to obtain the stress intensity factor at crack tips. The paper was reexamined 

for further development by Li et. al [4] by making use of one interfacial crack.The analysis of wedge domains has 

been studied by multiple researchers. We first review the papers which have analyzed intact wedges. The problem of 

out of plane deformation of isotropic and dissimilar wedges subjected to anti-plane point load on straight borders 

was studied by Kargarnovin et. al [5] and Kargarnovin [6]. Similarly, the solution of an anisotropic wedge under out 

of plane deformation was the title of the paper done by Shahani [7]. In the next study, by making use of the 

aforementioned stress components and changing the angle of the sector, a circular domain weakened by one edge 

crack was analyzed. Recently, the stress intensity factor of double cantilever bars was derived by Shahani [8]. Stress 

analysis of dissimilar wedges subjected to out of plane point loads and weakened by a Voltra type screw dislocation 

by making use of the Mellin integral transform were presented by Lin et. al [9]. The wedges with equal angles had 

been connected to each other along the interface. They employed the Peach Koehler equation to obtain the stress 

components of the image loads applied on Voltra type dislocations. In next article, the stress analysis of an isotropic 

wedge under out of plane deformation was studied by Chen [10]. The boundary conditions consist of traction free 

and fixed conditions were assumed on straight borders of the wedge. The Laplace and Mellin transforms were 

employed to evaluate the problems. The author calculated the stress concentration factor of the wedge for various 

boundary conditions of the problem. Now, the earlier papers on wedges containing several cracks are reviewed.  The 

out of plane solution of wedges weakened by some collinear cracks bisecting the angle of the wedges was presented 

by Mkhitaryan [11]. They employed the Mellin transform and the numerical solutions of Cauchy type integral 

equations to find the solution of the ensuring boundary problem and the stress intensity factors on crack tips. 

Shahani et.al [12] achieved the out of plane solution of an anisotropic sector containing a radial crack. The authors 

obtained the equilibrium equation with regard to complex functions with the aid of the suitable complex variables 

(see [13]  for more details). The solution was simplified by making use of some integral transforms [7], which were 

similar to the typical Mellin transforms. Then, they calculated the stress intensity factor of the crack tips with the aid 

of a numerical evaluation of resultant integral equations.The out of plane analysis of infinite isotropic wedges 

involving several cracks was done by Faal [14]. The author derived the stress components of an intact wedge 

subjected to the point load on the isotropic wedge borders by making use of the Mellin integral transform. The 

Mellin integral transform and an imaginative approach were used by Faal et al. [15] to evaluate the out of plane 

deformation of finite wedges involving several elliptical cavities. Also, they obtained the stress components of intact 

finite wedge subjected to point loads on the borders. Among the numerical techniques, the finite element method is 

an important means to analyze the crack problems. In finite element analysis, it is conventional to model the crack 

tip singularity by using elements in which midside nodes are moved to quarter points. There is a widely used method 

of calculating of stress intensity factors which substitute the displacements, or the stresses, obtained from the finite 

element calculations, into standard field equations in the vicinity of crack tips. (For example, see [16]). One of the 

reasons of considering this reference here is the concept of Volterra distorsioni introduced there which is another 

feature of dislocation distribution technique. Pook, considered a pair of infinitesimal elements which are situated on 

the upper and lower surface of an unloaded crack respectively. These elements are connected by a ring element of 

infinitesimal width having a square cross section and located around the crack tip. He introduced the three of modes 

of dislocations of the six Volterra distorsioni (distortions), correspond to the three modes of crack tip surface 
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displacement. The remaining three Volterra distorsioni involve rotation of the above-mentioned elements which are 

usually called three modes of disclinations. He explained that the modes of crack surface displacements are a 

combination of some modes of dislocation and disclinations. In fact, the six Volterra distorsioni are useful in the 

description of crack displacements under load, and may also be used to describe narrow notch surface displacements 

as a model of crack. An interesting matter mentioned in this reference and also [17] which may be the main reason 

of considering these references here is about that different modes of displacements cannot exist in isolation. It can be 

seen in some applications such as, a cracked square plate and a cracked long bar in Mode III loading, but it is only 

for a special positions of the cracks.  

From the literature survey, it appears that no publication has been devoted to study the effect of an orthotropic 

coating on the stress intensity factor in an isotropic finite wedge, even for a single crack. On the other hand, the most 

significant objective of the present study is to calculate the stress intensity factors of multiple cracks and cavities 

with arbitrary patterns by making use of the distributed dislocation technique. This dislocation arc is considered to 

be parallel with the interface of the isotropic wedge and its coating.  The outline of this paper is as follows. The 

stress solution of an isotropic wedge with an orthotropic coating containing a screw dislocation is achieved in 

Section 2. For the sake of simplicity, the dislocation circular arc instead of a dislocation line is employed to describe 

the dislocation line. In section 3, the stress field of an isotropic wedge with an orthotropic coating under patch and 

point loads is found for the specific boundary conditions where the loads are applied on edges of the isotropic 

wedge. After that, Buckner’s principle is employed to analyze the domain involving multiple smooth defects by 

making use of Sections 2 and 3. This method is presented in Section 4. In section 4, the dislocation approach is used 

to find Cauchy type singular integral equations. Next a group of algebraic equations for the calculation of stress 

intensity factors and hoop stresses around cavities are obtained with regard to the dislocation density function. In 

Section 5 the numerical examples are conducted to check the correctness of the present solutions. Furthermore, the 

effect of the orthotropic coating layer and crack parameters on the stress intensity factors is discussed in detail. 

Finally, concluding remarks are drawn in Section 6. 

2    FORMULATION OF PROBLEM  
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Fig.1 

An isotropic wedge with an orthotropic coating subjected to out of plane loading. 

 

The distributed dislocation technique is an efficient means of treating multiple curved cracks with smooth 

geometries. However, determining stress fields due to a single dislocation in the region has been a major obstacle to 

the utilization of this method. In fracture analysis, a so-called ‘dislocation method’ is frequently used in analyzing 

smooth defects [2]. This approach depends on the stress components corresponding to a dislocation path in the 

domain under consideration. For an isotropic wedge with an orthotropic coating wedge weakened by a Volterra type 

screw dislocation, this approach is developed subjected to out of plane loading. The configuration of the isotropic 

wedge and its orthotropic coating is observed in Fig.1(a), in which 2R  and 3R  are the inner and outer radius of the 

isotropic substrate. The wedge angle of the entire domain is considered to be   and the orthotropic coating 

thickness is 2 1R R . The origin of the cylindrical coordinate system is set at the center of non-straight borders of 

the domain and the angle of the cylindrical coordinate system is measured from the lower border of the domain 

under consideration. The coating of the isotropic substrate is made of orthotropic material, in which rzG  and zG  
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are the shear modulus in r  and   directions. A Volterra type screw dislocation with Burgers vector zb  is 

considered at the location  ,a   of the isotropic wedge shear moduli 0  with the dislocation arc r a . The 

dislocation circular arc instead of a dislocation straight line is offered in this paper (see [14, 15, 23, 24]). Then, the 

domain under consideration divided into three sub-domains 1 2R r R   (region 1), 2 R r a   (region 2) and 

3a r R   (region 3). The circular borders of the domain under consideration at 1r R  and 2r R  are considered 

to be clamped. The only non-zero displacement component subjected to out of plane loading is the displacement 

 ,w r   in each sub-region. The non-vanishing displacement component under out of plane deformation is the 

displacement component  ,w r   in each sub-domain. The equation of equilibrium in the lack of external forces 

and moments in the cylindrical coordinate system is stated as: 
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The non-zero stress components of the problem by making use of the constitutive equations for are written as: 
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By substitution of Eq. (2) into Eq. (1) the governing equation of the orthotropic coating is found as: 
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In which /z rzG G G  denotes the orthotropic ratio. The governing equation of the isotropic substrate is 

easily found by setting 1G   in Eq. (3). Consider the following Fourier transform and whose inversion as: 
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The stress-free conditions on the wedge straight borders and the clamped conditions on the circular edges yield 
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By making use of Fourier transform (4) and the conditions (5) the partial differential Eq. (3) is written as: 
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In which 
G




  and  ,W r n  is the Fourier transform of  ,w r  . The solution of Eq. (6) is found as follows: 
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In which the unknown constants  will be obtained with the aid of the appropriate continuity and boundary 

conditions. The Subscript k  refers to the sub-domains 1 2R r R   , 2R r a   and 2a r R  , in which a  is the 

radius of the dislocation circular arc. With the aid of Eq. (7), the anti-plane displacement  ,w r   is found as 

follows: 
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The boundary condition corresponding to the screw dislocation under out of plane loading is defined as: 
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In which H refers to the unit step function. The self-equilibrium of the stress component in the wedge weakened 

by the screw dislocation is written as: 
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Continuity of stress and displacements between the isotropic wedge and its coating can be expressed as: 
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By applying the finite Fourier transform to Eq. (9) and considering Eq. (11), we have 
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In which 0 / rzG  . It can be realized that the first pair of conditions (5) is automatically satisfied. By 

applying the continuity conditions (12) and the second pair of conditions (5) to Eq. (7) we have 
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Solving the algebraic Eq. (13) yields 
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In which 
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Substituting Eq. (15) into Eq. (2), the stress components is derived as follows: 
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(16) 

 

We can obtain the stress component  ,rz r   in the sub-domain 3a r R   by changing /r a  with /a r  in the 

equation of  ,rz r   for the sub-domain 2R r a  . Similar changes help us find the stress component  ,z r   

for each sub-domain. Furthermore, the changed items are multiplied by a minus sign. By making use of the 

expansion  
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 (see reference [23]). 

After that, the stress field (16) is summed over the domain under consideration as: 
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(18) 

 

The constants κ , 1R , 2R  and 3R  have been removed from Eq. (17) for brevity. Two main reasons can be 

mentioned to rewrite stress filed (16) in the form of Eq. (17). First, the new defined functions  



197                            A.Ajdari 
 
 

© 2022 IAU, Arak Branch 

 1 2 3, , , , ,m
ldq x R R R   and  1 2 3, , , , ,m

ldp x R R R   can converge very fast for large values of m, l  and d  because 

of l m  and 1 32 1
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3 32
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    

. In addition, by setting 1    0R   and 1   the newly defined functions  

are eliminated for all values of m, l  and d  and the stress filed of the finite wedge without coating is derived in term 

of   0
00 2 3, , ,0, ,q x R R   and  0

00 2 3, , ,0, ,p x R R  . The comparison between ensuring stress components for 

1    0R   and the results presented by Faal et al. [23] exhibits an excellent agreement. It is to be noted that the screw 

dislocation path in the aforementioned reference was a straight line but in the present study a circular arc is used to 

make the dislocation cut and despite the differences, the final result was the same. In the next step, the singularity of 

stress components at the dislocation point is investigated. So we use a local coordinate system as shown in Fig. 1(a). 

We can write the following relationships between the global and local coordinates as follows: 
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Upon substituting Eq. (19) into the factions  1 2 3/ , , , , ,
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some mathematical operations we have 
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Due to the Eq. (20) we have
1

 (  , ) ~z rz 


 as 0  . Weertman [25] has reported this kind of singularity for 

the stress components of isotropic domains involving a Voltra type screw dislocation. Faal et al. [15, 24] has 

reported Cauchy type singularity in orthotropic layers and four-sided domains weakened by a Voltra type screw 

dislocation. 

3 THE ISOTROPIC WEDGE WITH AN ORTHOTROPIC COATING UNDER OUT OF PLANE 

DEFORMATION   

In the current section, the analysis of the isotropic wedge with an orthotropic coating subjected to point traction 0  

is studied (Fig. 1(b)). The Eq. (5) remain correct except that the first pair equations must be changed by 
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In which     refers to the Dirac delta function. By making use of the boundary conditions (22) and applying 

Fourier transform to Eq. (3) gives 
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(22) 

 

The solution of ordinary differential Eq. (22) can be written as: 
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The continuity of the stress components along the two sub-domains and the displacement components along the 

arcs 0   r r  and 2   r R  are stated as: 

 

   0 0, ,W r n W r n          

    2 2, ,W R n W R n   

   2 2, ,G W R n W R n
r r

  


 
 

(24) 

 

By using the last pair Eq. (5) and by applying the continuity conditions of (24) to (23), we have 
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Eq. (22) is integrated along the arc 0   r r  as: 
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Since the displacement components are continuous along the circular arcs 0   r r , Eq. (26) is simplified with the 

aid of the integration by-parts as: 
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Using the Eqs. (28) and (24) gives 
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The unknown coefficients 1C , 1D , 2C  and 2D  are found by solving Eqs. (25) and (28). Upon substitution of 

the coefficients into Eq. (23),  the displacement components can be obtained as: 
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In which 
sin

n
n

n


  . With the aid of Eq. (2) stress filed in the entire domain can be obtained as: 
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(30) 

  

Similar to the dislocation solution, for sub-domain 0 3r r R  ,  ,z r   will be obtained by changing 0/r r  

with 0 /r r  in the equation of  ,z r   for 2 0R r r  . Similarly, for  ,rz r   similar replacements must be 
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applied for each sub-domain. Furthermore, a minus sign is multiplied in the changed items. In addition, n  Γn  must be 

replaced by / sinnn n . The stress filed can be summed up with the aid of the equation available in the reference 

[23]. 
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(31) 

 

It is to be noted that the stress and displacement components satisfy all of the continuity and boundary conditions 

of the problem. For 1 0R  , Eq. (31) is simplified to available data in the reference [14], which shows the validity of 

the presented solution. We situate the local coordinate system  ,r   , at the point load as 

 1sin / , 0r sin r          and 
2 2

0 02r r r r r cos     , as shown in Fig. 1(b). By making use of these 

formulas,  , ~ 1/rz z r    is deduced near the point load 0  that is, 0r   . This type of load singularity is 

available in elasticity books (see the reference [26]). By selecting a local coordinate in the wedge corners, we find 

that the stress filed does not show any singularity.  

4    THE DISSIMILAR WEDGE UNDER TRACTION  

In the current section, we use the dislocation solution presented in the previous section to analyze an isotropic wedge 

with an orthotropic coating weekend by multiple cracks and cavities with an arbitrary pattern. The elliptical cavities 

are assumed as non-singular closed-curve cracks [14, 15, 23, 24]. An isotropic coating wedge with an orthotropic 

coating containing M  cavities, 1N  embedded cracks, and 2N  edge cracks which have been located at the isotropic 

wedge ( 2 3R r R  ). Henceforth, we present the defects via the subscripts as: 
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 1,2, ,i M   

 11, 2, ,j M M M N      

 1 1 1 21, 2, ,k M N M N M N N         

(32) 

 

In which 1 2 N M N N    is the overall number of cracks and cavities. The out of plane stress component on 

the border of the i-th crack,   1,2, , ,i N   in a cylindrical coordinate system can be written as: 

 

     , , sin , cosnz i i rz i i i z i i ir r r           

     , , cos , sintz i i rz i i i z i i ir r r          
(33) 
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Fig.2 

An isotropic wedge with an orthotropic coating containing a 

smooth crack. 

 

In which i  refers to the angle between the tangential direction to the border of the i-th crack and the radial 

direction ir . The dislocation solution or solution to Eq. (6) leads to the displacement component, which is also a 

solution to the governing equation of the problem, that is, Eq. (5). Also this solution with associated stress field (17) 

satisfies the equilibrium equation of the plane and the boundary condition of the domain. The governing equation 

and the boundary condition of the domain weakened by several defects are still Eqs. (4) and (13), respectively. 

Therefore, the dislocation solution is a solution for the crack problem satisfying the governing equation and the 

boundary conditions of a domain. There is a controlling parameter ( )zb S  which satisfies the boundary condition of 

the crack, that is, the crack surfaces must be traction free. It should be mentioned each crack has a specific  zb  and 

this point causes to be considered interaction between the cracks. The screw dislocations with the density  zj jB r  

must be distributed along the segment at the border of the j-th crack. By making use of (32) and (17) the stress 

component on the border of the i-th crack corresponding to the dislocations is found as: 
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(34) 
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The borders of cracks are covered by the screw dislocations and then stress component on the crack borders is 

achieved by making use of the theory of superposition. So, we integrate from Eq. (33) along the crack borders to be 

superimposed the ensuring tractions. Eq. (33) is integrated by describing the defects in parametric forms. For 

instance, an elliptical cavity with the minor and major semi-axes ib  and ia  (see the reference [14] for more 

details), can be described as follows: 
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(35) 

 

In which ( , )i id   is the center of the elliptical cavity. In addition, si  denotes the angle of the initial point and 

si  refers to the angle of the major axis of the elliptical cavity. The prime sign describes a differentiation operation 

in Eq. (34). The stress component on the border of the i-th cack in the isotropic wedge reinforced by the orthotropic 

coating with N  defects is written as: 
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



       (36) 

 

In which  zjb t  denotes the dislocation function on the normalized length of the j-th crack border. The kernel 

 ,ijk s t  can be found in Appendix A. The newly defined functions       0
00 / , /i j j ip r s r t      and 

      0
00  / , /  i j j iq r s r t      show singularity when we have t s . The external loading on the isotropic 

wedge with an orthotropic coating containing multiple cracks and cavities is Eq. (32). After multiplying a minus 

sign in the Eq. (31) and making use of Bueckner’s attitude the left-side of Eq. (35) is the traction by the external 
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load on the intact isotropic wedge with an orthotropic coating wedge on the presumed defect border [27]. By making 

use of Eqs. (31) and (32), the resultant traction on the border of the i-th defect is achieved (Appendix B). By making 

use of the screw dislocation, the requirement equation for the crack opening along the j-th crack is written as: 

 

             
2 2

' '

1
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j j j j j zjw s w s r t r t t b t dt s j N 


         (37) 

 

Note that the integral Eq. (36) must be solved under the following single-validness condition 
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' '
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1
0,   1,2, ,j j j zjr t r t t b t dt j M N
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      (38) 

 

The unknown dislocation densities on the borders of defects are calculated by evaluation of the integral Eqs. (36) 

and the single-validness condition (38) simultaneously. The solution of the integral Eqs. (36) is possible with a 

numerical method established by [14], Faal, Fariborz and Daghyani [15]. They proposed a numerical solution to 

reduce this kind of singular integral equations to a set of algebraic equations. The dislocation density function is 

written as a function of the weight function  zjg t  with the special feature that stresses at the crack tips must 

possess the traditional square-root singularity.  
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(39) 

 

Since cavities are introduced as closed curved cracks without traditional singularities, the form of the dislocation 

density function in terms of the weight function is taken as: 

 

    21 , 1 1zj zjb t g t t t       (40) 

 

Stress intensity factors of the edge and embedded cracks are obtained as: [15] 
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(41) 

 

As the strain on the defects is corresponding to the magnitude of dislocation density, the hoop stress on the 

border of the cavity is calculated as below 

 

      0, ,  1 1tz i i zir s s b s s       (42) 

5    RESULTS AND DISCUSSION 

In the current section, several numerical examples are presented to demonstrate the capability of the distributed 

dislocation technique in handling the problem involving different cases of cracks and cavities with arbitrary patterns. 
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Also we have used discrete points m = 60 in all examples. Since no publication has devoted to the out of plane 

deformation of a cracked wedge coated by an orthotropic layer, yet; the paper is validated with an isotropic infinite 

wedge without coating ( 1 2 31,  0, R R R     and 3R  ) containing two radial embedded cracks with equal 

lengths bisecting the apex angle is considered (see Fig.3). The distances between the center of each embedded crack 

and wedge apex are 1 /10d l  and 2  3 /10d l , in which the external loading is patch load on the two wedge 

borders with 0.1l m . The graph of the normalized stress intensity factors 0/IIIk k  , in which 0 0k l  , versus 

the length of the crack has been illustrated in Fig. 3. The normalized stress intensity factors obtained by the current 

method were in excellent agreement with the data illustrated in Fig. 4 of the work by Faal [23]. 

 

o
α

τ0

τ0

d 1

d 2

L1

R1

L2

R2

 

 

 

 

 

 

 

 

Fig.3 

An infinite wedge weakened by two radial cracks. 
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Fig.4 

Normalized stress intensity factors for two embedded cracks 

against the normalized crack length. 

 

In the following examples the dimensionless stress intensity factors are normalized to 0 0k l  . Also, l 

refers to the half-length of embedded cracks. The dimensionless hoop stresses are obtained by defining the 

dimensionless parameter 0/tz  . In the following, the effect of the orthotropic coating layer is studied. We consider 

an isotropic wedge with 3 12R R  and the wedge angle is fixed at 2 /3   for all examples. The external traction 

is a patch load with the magnitude of 0  distributed on the straight borders of the isotropic substrate. In the 

examples to follow, we calculate the dimensionless stress intensity factors , 0/IIIk k  in which 0 0k l  . In 

addition, l is the half crack length. The effect of the orthotropic coating is studied by assuming 2 1 10.1R R R  . 
 

 

Example 1 
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Fig.5 

One radial embedded crack in an isotropic wedge with an 

orthotropic coating layer. 
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The first example of the problem is allocated to an isotropic wedge with an orthotropic coating weakened by one 

radial crack bisecting the apex angle, as shown in Fig.5. We set the center of the crack at the distance 0 11.6r R  

from the origin of the domain under consideration. Variation of the normalized stress intensity factors versus the 

crack length, for two different orthotropic ratios is found in Fig.6. We can observe that the normalized stress 

intensity factors increases by the growth the crack length, but the crack tip i shows a little decrease with crack 

growth due to approaching the crack tip to the stress-free edge of the isotropic substrate. Also, Fig.6 displays 

changes of the orthotropic ratio from 0.5G   to 1.5G   and it can be observed the normalized stress intensity 

factors at the crack tips reduce with growth of the orthotropic ratio. In fact, a reduction in the normalized stress 

intensity factors occurs by making use of a suitable choice of the orthotropic ratio.  
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Fig.6 

Variation of the normalized stress intensity factors against the 

normalized crack length. 

 

In the following, the variation of normalized stress intensity factors against normalized orthotropic thickness, 

1/t R ,  has been illustrated in Fig.7. The half-length of the crack is 10.1l R . It is obvious that the increase of the 

orthotropic layer thickness reduces the normalized stress intensity factors. 
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Fig.7 

Variation of the normalized stress intensity factors against the 

normalized coating thickness. 

 

Example 2 
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Fig.8 

The domain weakened by two radial embedded cracks. 
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As the second example, two radial cracks with equal lengths bisecting the apex angle in an isotropic wedge with 

an orthotropic coating are considered (see Fig.8). The center of each crack is set at the distance 11.35R  and 11.75R  

from the origin of the domain under consideration. Variation of the normalized stress intensity factors against the 

crack length has been illustrated in Fig.9. The normalized stress intensity factors for the crack tip 1i  and 2o  increase 

by the growth of the crack length because of the interaction between the crack tips. In general, we expected an 

increase of normalized stress intensity factors at the tip 1o  and 2i  by crack growth but a drop in the dimensionless 

stress intensity factors occurs due to receding from the crack tips 1i  and 2o . In the next graph of this example, the 

effect of the orthotropic layer thickness on the normalized stress intensity factors is studied. Therefore, the variation 

of the normalized stress intensity factors against the normalized orthotropic layer thickness for each crack tip can be 

realized in Fig.10, and the same trend of the previous example is obvious. 
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Fig.9 

Variation of the normalized stress intensity factors against the 

normalized crack length for two embedded cracks ( 0.5G  ). 
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Fig.10 

Variation of the normalized stress intensity factors against the 

normalized coating thickness for two embedded cracks 

( 0.5G  ). 
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Fig.11 

The domain under consideration containing one cavity and two 

circular edge cracks. 
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The interaction between two circular edge cracks and one cavity is studied for the next example. An isotropic 

substrate with an orthotropic layer weakened by one cavity with major and minor semi-axes 1  0.4a R  and 

10.2b R  bisecting the apex angle and two symmetric circular edge cracks are considered (see Fig.11). The start 

point of each crack and the center of the cavity is placed at radius 0 11.6r R . Variation of the hoop stress around the 

elliptical cavity has been plotted in Fig.12, and it is obvious that the most value of the hoop stress occurs at the 

sharpest locations of the elliptical cavity. It is worth noting that these points are the closest points to the tips of the 

cracks. Next, the behavior of the normalized stress intensity factors against the normalized crack length is available 

for two orthotropic ratios in Fig.13. There is a minimum point in the profile of the stress intensity faction Fig.13. 

The normalized stress intensity factors go up as the lengths of the edge cracks become higher, but a decrease is 

observed because the crack tip is approaching to the elliptical cavity border with stress-free surface. Fig.14 shows 

the effect of the thickness ratio on the dimensionless stress intensity factors. It is to be noted that whatever the 

thickness of the coating increases, dimensionless stress intensity factors decrease more. Furthermore, the increase of 

the orthotropy ratio reduces the normalized stress intensity factors at the crack tips and the hoop stress around the 

cavity. 
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Fig.12 

Variation of dimensionless hoop stresses around the elliptical 

cavity. 
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Fig.13 

The graph of the normalized stress intensity factors against the 
normalized edge crack length. 
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Fig.14 

Variation of normalized stress intensity factors against the 

normalized orthotropic coating thickness. 
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Example 4 

 

The last example to be investigated involves an isotropic wedge coated by an orthotropic layer weakened by two 

equal-sized cavities with major and minor semi-axes 1  0.1a R  and 10.05b R , respectively (see Fig.15). The 

centers of each cavity are considered to be at the distance 11.3R  and 11.8R  from the origin of the domain under 

consideration, respectively. Variations of the dimensionless hoop stresses on the surface of the cavities as a function 

of   are depicted in Fig.16. It is obvious that the peaks of the dimensionless hoop stress on the surface of the 

cavities are found at the sharpest points of the defect. 
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Fig.15 

The domain under consideration weakened by two coaxial 

cavities. 
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Fig.16 

Variation of the normalized hoop stresses for the domain 

containing two cavities (G = 0.5). 

6    CONCLUSION 

In the present investigation, based on the LEFM theorem, an analytical solution was presented to calculate the stress 

intensity factors of the crack tips and the hoop stresses on the surface of the cavities in an isotropic wedge coated by 

an orthotropic layer subjected to out of plane deformation. At the first step, the stress components of an isotropic 

wedge coated by an orthotropic layer weakened by a screw dislocation were found in terms of the dislocation 

density function. To analyze the problem with several smooth cracks and cavities with an arbitrary pattern, the 

solution of the problem corresponding to the screw dislocation was simplified into a group of Cauchy integral 

equations by making use of the distributed dislocation approach. This kind of singular integral equation was solved 

numerically by reducing them to a set of algebraic equations. After evaluation of the integral equations, the stress 

intensity factors at the crack tips and hoop stresses around on the surface of the cavities was obtained. Briefly, 

Dimensionless stress intensity factor of crack tip is increased with crack grows but for an embedded some particular 

cracks there is a critical length which for crack length bigger than it, the dimensionless stress intensity factor is 

reduced. In other words, we see the crack growth is limited. 

Future work will have to include different geometry of cross section and material, e.g., considering elliptical 

cross section and domains made of different material types such as FGMs. 
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