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 ABSTRACT 

 This paper represented a numerical technique for discovering the 

vibrational behavior of a two-directional FGM (2-FGM) Nano 

beam exposed to thermal load for the first time. Mechanical 

attributes of two-directional FGM (2-FGM) Nano beam are 

changed along the thickness and length directions of nanobeam. 

The nonlocal Eringen parameter is taken into the nonlocal elasticity 

theory (NET). Uniform temperature rise (UTR), linear temperature 

rise (LTR), non-linear temperature rise (NLTR) and sinusoidal 

temperature rise (STR) during the thickness and length directions 

of Nano beam is analyzed. Third-order shear deformation theory 

(TSDT) is used to derive the governing equations of motion and 

associated boundary conditions of the two-directional FGM (2-

FGM) Nano beam via Hamilton’s principle. The differential 

quadrature method (DQM) is employed to achieve the natural 

frequency of two-directional FGM (2-FGM) Nano beam. A 

parametric study is led to assess the efficacy of coefficients of two-

directional FGM (2-FGM), Nonlocal parameter, FG power index, 

temperature changes, thermal rises loading and temperature rises 

on the non-dimensional natural frequencies of two-directional 

FGM (2-FGM) Nano beam. 

                                 © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANOTECHNOLOGY has made us able to develop many materials and innovate new composite materials 

with conflicting properties such as ductility a hardness, high strength and lightness and etc. simultaneously. 

Composite materials made up of two or more materials with distinct characteristics. one of the most frequent 

problems of this new materials is delamination that is called technically interlaminar cracking [1]. In order get better 

efficiency and solve the problem, functionally graded material was created. FG materials are a new type of 
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nonhomogeneous composites that the volume fractions of the material components vary continuously along arbitrary 

directions as a function of position. Mainly constituent components of FG materials are metal and ceramics, because 

metals have high toughness and ceramics have great corrosive and heat resistance, the combination of metals and 

ceramics can make optimum composites. Continuous variation of volume fraction through FG materials prevents of 

discontinuous interfaces existence in composites which are where the fracture is initiated. The mechanical feature of 

FG materials provided a wide range of applications in medicine, biomechanics, aerospace, and etc.  Various usages 

of FG materials in industrial sectors, attracted the interest of researchers to study mechanical behavior [2]–[4] of the 

structural elements that are manufactured from FG materials [5]. When the structure dimensions are in order of 

micro/nano, size effect gets importance on the mechanical properties. The elasticity theory or classical continuum 

unable to predict the size dependency and the scale effect of the nanostructure material properties. There are various 

continuum theories such as strain gradient, modified couple stress and nonlocal elasticity that consider size behavior. 

Studying mechanical behaviors of micro, nano and macro structures have been focused by many researchers like 

buckling [6]–[8] and vibration [9]–[14]. Nonlocal elasticity theory which was presented by Eringen assumes that the 

stress at a desired point relies on the strain at all around points of the body [15], [16]. Paddison et al [17] developed 

the nonlocal Euler/Bernoulli beam theory by applying Eringen’s theory. Reddy [18] formulated nonlocal relations of 

Eringen’s theory for various beam theories such as Timoshenko, Euler/Bernoulli, Levinson and Reddy beam 

theories. Wang an Liew [19] employed nonlocal continuum to analysis the static behavior of Euler/Bernoulli and 

Timoshenko beam theories. Aydogdu [20] utilized Eringen’s theory for various beam theories in order to study 

buckling, bending and free vibration of nanoscale beams. J.Fernandez-Saez et al [21] formulated the problem of the 

static bending of Euler–Bernoulli beams using the Eringen integral constitutive equation. Pardhan and Padikor [22] 

presented finite element analysis for nonlocal elastic Kirchoff plate and Euler/Bernoulli beam. Pradhan and Murmu 

[23] reported flap wise vibration and bending properties of rotation nanoscale cantilevers via differential quadrature 

method. They considered that scale effects have a fundamental role in the vibration characteristics of the rotating 

nanoscale structures. Mahinzare et al [24] investigated the rotational and electrical load on the Nanoplate. Ebrahimi 

et al. [25]–[27]examined the applicability of differential transformation method in investigations on vibrational 

characteristics of FG size-dependent Nano beams. Ke and Wang [28] exploited the small-scale effects on the 

dynamic stability of FGM micro beams based upon Timoshenko beam model Thai [29] applied a nonlocal high-

order theory in order to study mechanical behaviors of the Nano beams. Eltaher et al. [30]–[32] investigated a finite 

element analysis for free vibration of the FG Nano beams using nonlocal EBT. They also presented the stability and 

static responses of the FG Nano beams based on the nonlocal continuum theory. Mahinzare et al. [33] presented the 

vibrational effect of the Nano shell with conveying viscous fluid based on nonlocal strain gradient theory. 

Malekzadeh et al. [34] studied The surface and nonlocal effects on the nonlinear flexural free vibrations of 

elastically supported non-uniform cross section Nano beams simultaneously. Free vibration characteristics of 

functionally graded (FG) Nano beams based on third-order shear deformation beam theory by Navier-type solution 

are investigated by Ebrahimi et al. [35] Huang and Li [36] studied the free vibration of axially functionally graded 

beams with nonuniform cross-section. For different end supports, including clamped, simply-supported and free 

ends, the governing equation with varying coefficient was transformed into a Fredholm integral equation. Natural 

frequencies were determined by requiring that the resulting Fredholm integral equation has a non-trivial solution. 

Simsek et al. [37] presented a numerical approach to investigate the dynamic behavior of double-functionally graded 

beam systems with different boundary conditions subjected to a moving harmonic load. Two parallel functionally 

graded beams were connected with each other continuously by elastic springs. The material properties of the beam 

were assumed to vary continuously in the thickness direction according to power-law form. Rezaiee-Pajand and 

Hozhabrossadati [38] presented free vibration of double-axially functionally graded beams with elastic restraints 

Tounsi et al [39] investigated thermo-mechanical buckling behavior of Nano beams based on higher order beam 

theory. Al-Basyouni et al. [40] analyzed the bending and dynamic behaviors of FG micro beams based on new first 

and sinusoidal beam theories together with the classical beam theory and using the modified couple stress theory. 

Mahinzare et al. [41] studied the bi-dimensional FGM effect on the spinning micro plate with elastic foundations. 

Ansari et al. [42] investigated a numerical analysis is conducted to predict size-dependent nonlinear free vibration 

characteristics of third-order shear deformable micro beams made of functionally graded materials (FGMs) . they 

implemented the modified strain gradient elasticity theory and von Karman geometric nonlinearity into the classical 

third-order shear deformation beam theory to develop a nonclassical higher-order beam model. Rahmani and 

Jandaghian [43] presented buckling analysis of functionally graded Nano beams based on a nonlocal third-order 

shear deformation theory. FG materials for their excellent properties applied in micro/nanoscale structures and many 

researchers focused on studying the characteristics of this materials. Asghari et al [44], [45] have studied the 

vibration responses of the functionally graded TBT and EBT beams by considering the modified couple stress 

theory. Alshorbagy et al [46] examined the mechanical properties of FG beams with transversally and axially power 
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law distribution. Ansari et al [47] analyzed the free vibration of FG material beam by using strain gradient TBT . 

They also presented the influence of the graduation values of material exponents in the vibration behavior of FG 

micro beams. Employing analytical method, the buckling, and bending of nonlocal EBT and TBT FG Nano beams 

were investigated by Simsek and Yurtcu [48] Huu-Tai Thai et al [49] developed various higher-order shear 

deformation beam theories for bending and free vibration of functionally graded beams. Niknam and Aghdam [50] 

investigated a semi analytical approach for large amplitude free vibration and buckling of FG Nano beams resting on 

an elastic foundation based on nonlocal elasticity theory. They showed that by increasing length of the beam, the 

effect of small scale parameter decreases. Ghiasian et al. [51], [52] studied the dynamic buckling behavior of FGM 

beams resting on elastic foundation and subjected to uniform temperature rise loading. Ebrahimi and Salari [53] 

presents the effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-

dependent FG Nano beams. They have shown that various factors such as thermal environment and nonlocal 

parameter play important roles in dynamic behavior of FG Nano beams . Alibeigloo [54] presented thermal buckling 

analysis of piezoelectric FGM beams with simply supported ends . Zhu Su et al [55] presents a unified solution for 

free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary 

conditions within the framework of Timoshenko beam theory . Li and Shi [56] studied the free vibration of 

functionally graded piezoelectric beams under different boundary conditions using the state-space based (DQM) . 

Xiang and Shi [57] presented static analysis for a functionally graded piezoelectric sandwich cantilever under a 

combined electro-thermal load, and the solution can be obtained by the Airy stress function method . Ebrahimi and 

Barati [58] investigates buckling response of higher-order shear deformable Nano beams made of functionally 

graded piezoelectric (FGP) materials embedded in an elastic foundation . Ebrahimi et al. [59] investigated thermal 

vibration behavior of (FG) Nano beams exposed to various kinds of thermomechanical loading including uniform, 

linear and nonlinear temperature rise embedded in a two-parameter elastic foundation based on third-order shear 

deformation beam theory which considers the influence of shear deformation.  

As an extension of the authors’ previous works [60]–[64], this paper will focus on, vibrational behaviors of two-

directional FGM (2-FGM) Nano beam with variable thickness in frame work of third-order shear deformation beam 

theory are investigated based on nonlocal elastic theory. The assumptions of boundary conditions are considered in 

both case of simply supported and clamp supported ends. FGM properties are supposed to variation gradually based 

on power law through the whole body. The derivation of nonlocal equations is based on Hamilton’s principle and 

the applied solution approach is the differential quadrature method (DQM). There are various numerical examples in 

order to show the resolution of results. 

2    MATHEMATICAL RELATIONS   

2.1 Kinematic equations 

Assume a Nano beam with length L, as shown in Fig. 1(a). According to the third-order shear deformation beam 

theory, the displacements in the directions x and z can be approximated as: 
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where u and w are the axial and transverse displacements and α=4/ (3h

2
). The parameter ψ is the bending rotation of 

cross section at each point of the y-axis . Nonzero strain for the Reddy beam model are written as:  
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and ß=4/h
2
 . The motion of a structure with the elastic body in the arbitrary time interval  t1 < t < t2  is the integral of 

total potential energy which by applying Hamilton’s principle is extremum: 
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which Us is strain energy, Uk is kinetic energy, Uw is work caused by the external load. The variation of strain energy 

can are expressed as: 
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By using Eqs. (3) and (4) into Eq.(8): 
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where the introduced variables are defined as: 
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The variation of the work done by the applied load can be calculated as: 
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where NT is the compressive external axial load. The variation of the kinetic energy is defined as: 
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By substituting Eqs. (8) , (11) and (12) into Eq. (7) and making the coefficients of δw, δu and δψ to zero, the 

motion equations can be written as: 
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where I0, I1, I2, I3, I4 and I6 are mass inertia and expressed as:  
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In which Î1=I1-αI3, Î2=I2-αI4, Î4=I4-αI6 and in Eqs. (14) and (15)  M̂ M P   and Q̂ Q R  . 

3    THE NONLOCAL ELASTICITY THEORY FOR FG NANOBEAM    

Based on nonlocal elasticity theory, the stress tensor at each point of the body is a function of strain tensors of all 
around points inside the body. For the elastic solids, the tensor components of the nonlocal stress ζij at each point 

can be obtained as: 
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where Cijkl is showing that the nonlocal stress at a desired point is the weighted average of the local stress of all 
around points and the term α (|xˊ-x|,η) is the nonlocal modules that accommodate the size effects into the constitutive 

equations. |xˊ-x| represents the Euclidean distance and η is constant as follow:  
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where a and l are the internal and external characteristic lengths of Nano beam, respectively and e0 is the material 

constant estimated experimentally. It is difficult to solve Eq. (17) for problems of nonlocal elasticity thus; the 

differential form of that equation is used as follow: 
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In which ζij is the nonlocal stress and εkl is the nonlocal strain. Nonlocal theory in for a material can be expressed 

as:  
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where integrating Eqs. (19) and (20) over the cross-sectional area, one can define the moment strain and the force 

strain of the FG beams as: 
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By substation the second derivative of, that can be obtained from Eq.(13), into Eq.(21) the nonlocal normal force 

can be expressed as follows: 
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Second derivative of M̂ by removing Q̂  from Eqs. (14) and (15), can be obtained as following equation:  
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In order to express the explicit equation of nonlocal bending moment we can put the second derivative of M into 

Eq.(22) and using Eq.(23) as follows:  
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In which Kxx=Bxx-αExx , Ixx=Dxx-αFxx , Jxx=Fxx-αHxx. By using Eq.(15) to obtain the second derivative of Q and 

substitution it into Eq.(24) and using Eq.(25), the explicit equation of nonlocal shear force is obtained as: 
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where Āxz=B٭xz-ßI٭xz
 
, A٭xz=Axz-ßDxz , I٭xz=Dxz-ßFxz . Now by applying M̂ and Q̂ from Eqs.(28) and (29) we 

calculate: 
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By substituting N, M and Q from Eqs.(26), (28) and (29), respectively, into Eqs.(13) , (14) and (15), the 

governing equations of nonlocal third-order shear deformation FG beam can be derived as follows: 
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(33) 

4    SOLUTION METHOD  

Solution of the governing relations for simply supported boundary condition and clamped boundary condition of FG 

Nano beam is based on differential quadrature method (DQM). DQ method is a numerical method that is effective 

for the solution of ordinary and partial differential equation. This method is determined as the derivative of a 

function at a desired point that can be approximated as a linear sum of the weighted function at all sample points. 
According to DQ method, the partial derivatives of a displacement functions, w and θ as an example, are expressed 

as: 
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m n
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 (34) 

 

where  

 

 , tu u x
k k  (35) 
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 ,w tw x
k k

 (36) 

 

 , tx 
k k

 (37) 

 

All number of nodes are expressed by n which are distributed during the r-axis and the weighting coefficients are 

defined by Cik
(m)

 that recessive formula is obtained as follows: 
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where k=1, 2, 3,…, n . In order to achieve an optimizing distribution of mesh point, we applied cosine pattern to 

generate points of DQ method as follows: 

 

1 ( 1)
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)2 1
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 (39) 

 

where i=1, 2, 3,…, n. The analysis shows that using this type of distribution makes the convergence of the solution 

faster. M(x) is presented as follows:  
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The related weighting factor for the x-th derivative of displacement functions is given as follows: 
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By applying DQM into the governing equation, Eqs. (31) - (33), lead to Eqs. (45) - (47). Now, the matrix form of 

the motion equations presented as follows: 

 

 
2

2
0e

d
M K d

t


 


 (42) 

 

In which Ke and M are the stiffness matrix and mass matrix, respectively. The dimensions of the matrixes are 

3N×3N for thin shell love theory .in last theories, the displacement vector d, are given respectively as follows: 

 

      , ,
T

i i

T T

id wu   (43) 

5    FREE VIBRATION ANALYSIS  

Applying the dynamic displacement vector, d, in the form of d
*
=d×e

iω
 , would conduct to an eigenvalue system of 

the equation as follows: 
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 2 * 0eM K d    (44) 
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6    TYPE OF THE THERMAL LOADING   

6.1 Uniform temperature rise (UTR) 

For a FG Nano beam at reference temperature T0, the temperature is uniformly raised to a final value T which the 
temperature change is ΔT=T-T0. 

6.2 Linear temperature rise (LTR) 

For a FG Nano beam for which the beam thickness is thin enough, the temperature distribution is assumed to be 

varied linearly through the thickness as follows: 

 

1

1
( )
2

z
T T T

h
    (48) 

 
where ΔT=T2 –T1 and T2 and T1 are the temperature of the top surface and the bottom surface, respectively. 

6.3 Sinusoidal temperature rise (STR) 

The temperature field when METE-FG Nano beam is exposed to sinusoidal temperature rise across the thickness 

can be defined as: 
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1
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where ΔT=T2-T1 is temperature change. 
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7    CONVERGENCE ANALYSIS  

Firstly, a convergence test is performed to determine the sufficient numbers of grid points required to obtain 

accurate and stable results for DQM. As can be seen from Fig.1, twenty grid points are sufficient to obtain 

converged results for the frequency of the Nano beam in S-S and C-C boundary conditions. 

 

 
(a) 

 
(b) 

Fig.1 

The effect of the number of grid points on evaluating convergence of the nondimensional natural frequency (a) S-S boundary 

condition (b) C-C boundary condition. 

8    VALIDATION OF THE RESULTS WITH OTHER ARTICLES   

In Table 1, the first natural frequencies of FG beam in macro size that obtained by the present study are compared 

with [30] and [65] which have been obtained based on the third order shear deformation theory (TBT) for hinged 

boundary condition. It is shown that there is an very good agreement with the present study between [30] and [65] . 

Employing the third order shear deformation theory (TBT), the first natural frequencies of a FGM nanobeam 

subjected to uniform thermal load with hinged boundary condition have excellent agreements with [66] as it has 

been observed in Table 2. (Results are closely coincident) 

 
 

Table 1 

Comparison of the first natural frequency of FG macro beam for different n. 

 Eltaher et al [30] Rahmani and Pedram [65] Present study 

n=0 9.8797              9.8296     9.829567 

n=0.5 7.8061              7.7149     7.778150 

n=1 7.0904              6.9676     7.074459 

n=5 6.0025              5.9172     5.983103 

 
 

 

Table 2 

Comparison of the first natural frequency of FG Nano beam for different ∆T, n and µ 

 

µ 

 

∆T 

                              n=1                                n=5 

Ebrahimi and Barati [66] Present study Ebrahimi and Barati [66] Present study 

0 20 7.89464 7.89659639 7.32331 7.30344017 

50 6.98874 6.83028555 6.41992 6.40063911 

1 20 7.47792 7.45481028 6.93323 6.88847202 

50 6.51432 6.47910419 5.97112 5.94238816 

2 20 7.1112 7.08269715 6.58978 6.56470677 

50 6.08985 6.05734908 5.56865 5.54084313 
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9    RESULTS AND DISCUSSION  

The Fig. 2 demonstrates the variation of the first non-dimensional natural frequency with respect to rises of 

temperature for different power index. It is observed that increasing the temperature leads to decreasing the non-

dimensional natural frequency until critical temperature. It is shown in both boundary conditions before the critical 

temperature by increasing the power index natural frequency decrease. It can be observed after the critical 

temperature, that the natural frequencies for the S-S case increase with temperature.  

 

 
(a) 

 
(b) 

Fig.2 

The variation of the first non-dimensional natural frequency with respect rises of temperature for different power index. 

 

In Fig. 3, It can be shown by rising the temperature, natural frequency tends to decrease until the critical 
temperature. It can be conclude that there is a direct relation between the η parameter and natural frequency before 

critical temperature. It is shown in the S-S case for lower η parameter the critical temperature is lower. It can observe 

in the C-C case and for the S-S case before critical temperature, by increasing η parameter the diagram slope 

decreases. This figure shows as the temperature increases, the dependence of the frequency and parameter η 

increases. 

 

 
(a) 

 
(b) 

Fig.3 

Variation of the first non-dimensional natural frequency with rises of temperature for different η parameter. 

 
The Fig. 4 shows us the changes of the first non-dimensional natural frequency for the different μ parameter 

versus rises of temperature. As is shown by increasing the temperature natural frequency tends to decrease and we 
can see in the C-C case and in the S-S case before the critical temperature in the same temperature the higher μ 

parameter has a lower frequency. In c-c case, it can be observed the diagram slope has a direct relation with μ 

parameter. 
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(a) 

 
(b) 

Fig.4 

The changes of the first non-dimensional natural frequency for different   parameter versus rises of temperature. 

 
The Fig. 5 demonstrates the relationship between temperature and natural frequency for a different ξ parameter. 

As is shown by rising the temperature, natural frequency tends to zero before the critical temperature and by 
decreasing the ξ parameter natural frequency increase .it can be observed increasing the temperature would increase 

the difference between the values of the natural frequency for the different ξ parameter.  

The Fig. 6 presents the variation of natural frequency with power index for the different functions of variation 

temperature. It can be concluded there is an inverse relationship between the variation of power index and natural 

frequency for different temperature changes and it can be observed for the all temperature distribution types with the 

same variation of the power index, variation of the frequency will be the same. The lowest frequencies value is 

related to the uniform temperature rise (UTR) and in this case, the critical condition is happened when the amount of 

the power index is about 7.8. 

 

 
(a) 

 
(b) 

Fig.5 

Effect of the variation of temperature in natural frequency for different ξ parameter. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig.6 

Variation of natural frequency with power index for different function of variation temperature rise. 

10    CONCLUSION 

This paper investigated the thermo-mechanical behavior of two-directional FGM (2-FGM) Nano beam based on 

nonlocal elasticity theory (NET). Adopting nonlocal elasticity theory to capture the nonlocal Eringen parameter of 

Nano beam, the governing equations of the motion are derived via Hamilton’s principle and solved with generalized 

differential quadrature method (DQM). Mechanical attributes of the two-directional FGM (2-FGM) Nano beam are 

dependent based on power-law along the thickness and length directions of Nano beam. Provided results display the 

effect of the coefficients of two-directional FGM (2-FGM), FG power index, differential temperature, nonlocal 
Eringen parameter, coefficients (ξ,η) of two-directional FGM on the first non-dimensional natural frequencies of 

two-directional FGM (2-FGM) Nano beam. It is seen that the one-directional FGM power index ‘n’, differential 
temperature, two-directional FGM parameter (ξ) and nonlocal Eringen parameter μ yields in a reduction in rigidity 

of the nanobeam and first non-dimensional natural frequency. While, the rigidity of the two-directional FGM (2-

FGM) Nano beam and non-dimensional the natural frequency results increase with the rise of the two-directional 
FGM parameter η. Also the value of the non-dimensional frequency of Nano beam is highest for sinusoidal 

temperature rise (STR) and it is lowest for Uniform temperature rise (UTR). 

APPENDIX 

Fig 1(a) shows a schematic of the bi-directional FGM (2-FGM) Nano beam subjected to the thermal load. L and h 

represent the length and the thickness of Nano beam respectively.  

 

 

 

 

 

 

 

 

Fig.1(a) 

The schematic of the two-directional FGM (2-FGM) Nano 

beam. 

 
Characteristics of a two-dimensional FGM Nano beam such as , mass density ρ Young’s modulus E, thermal 

expansion η and Poisson ratio ν alter through the thickness and also in radius direction with respect to the volume 

fraction of the constituent, Vi, as below [67]: 

 

( , ) (P V (z) (1P ( ( )) )V )t c b m

r
P r z

R
z    (A.1) 
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where the Vm and Vc are the volume fraction of the metal and ceramic constituent respectively, the subscripts t and b 
denote the top and bottom surfaces of the plate which are made of metal and ceramic respectively. η and ξ are the 

power and the coefficients of the changes in material character, in radial-direction. It is worth mentioning that: 

 

( ) ( ) 1c mV z V z   (A.2) 

 

Hence, Eq. (2) can be rewritten as below: 

 

( , ((P P )V ( )(1 ( )) )) t b c b

x
P r Pz z

L

     (A.3) 

 

The ceramic volume fraction, Vc, would be defined by the following power law formula by setting the center of 

the coordinate system in the center of the plate (as shown in Fig. 1(a)): 
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Consequently, it can be shown that Young’s modulus, Poisson ratio, mass density, and thermal expansion of the 

FGM are as below: 
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