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 ABSTRACT 

 In this study, a new periodic structure with special vibration band gap 

properties is introduced. This structure consists of a main beam and 

several cantilever beam elements connected to this main beam in the 

branched shape. Two models with different number of beam 

elements and geometrical parameters are considered for this periodic 

structure. The transverse vibrations of beams are solved using the 

generalized differential quadrature rule (GDQR) method to calculate 

the first four band gaps of each model. Investigating the influences of 

geometrical parameters on the band gaps shows that some bands are 

close to each other for specific ranges of geometrical parameters 

values. Furthermore, as the number of beam elements increases, the 

number of close band gaps increases. Having more than two close 

band gaps means that this periodic structure has a relatively wide 

band gap in total. Furthermore, this wide band can move to low 

frequency ranges by changing the geometrical parameters. Absorbing 

vibrations over a wide band gap at low frequency ranges makes this 

periodic structure a good vibration absorber. Verification of the 

analytical method using ANSYS software shows that the GDQR 

method can be used for vibration analysis of beam-like structures 

with high accuracy. 

                                    © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords : Periodic structure; Transverse vibration; Close band 

gaps; GDQR method; ANSYS. 

1    INTRODUCTION 

 IBRATION isolation is a known technique used for reducing destructive vibrations in structures and 

machines. Structures with periodic geometrical and material properties have a special feature that distinguishes 

them from the conventional structures. They can absorb vibration waves within some frequency ranges known as 

vibration band gaps. The band gaps also have other applications like noise control, frequency filtering and 

broadband vibration energy harvesting [1, 2]. Various types of one and two-dimensional periodic structures have 

been introduced and analyzed in recent years [3-6]. Each periodic structure has special vibration band gap properties 

______ 
*
Corresponding author. Tel.: +98 3431312409, Fax.: +98 3431312202.  

E-mail address: m.hajhosseini@vru.ac.ir (M. Hajhosseini) 

V 



M. Hajhosseini and A. Abshahi                            287 
 

© 2021 IAU, Arak Branch 

that distinguish it from other periodic structures. Hajhosseini et al. analyzed the influences of geometrical 

parameters on the widths and locations of the first two band gaps of a new periodic beam model. The results 

obtained showed that the band gaps move to low frequency ranges and their widths increase by changing the 

geometrical parameters [7]. Hajhosseini and Mahdian Parrany proposed a new periodic beam-like structure. 

Different geometrical parameters were considered for the periodic beam and their influences on the band gaps lower 

and upper edges were studied. Results showed that the bands are relatively close to each other [8]. Zhu et al. studied 

the vibration band gap properties of a periodic lattice model consisting of zigzag beams [9]. Their results indicated 

that compared with the conventional triangular configuration with straight cell walls, the emerging band gaps are 

characterized by their upper bounding modes performing rotational deformation shapes. Wu et al. used the spectral 

element method to analyze the influences of material properties on the vibration band gaps of a periodic 

piezoelectric lattice [10]. They showed that the thickness of piezoelectric layers can affect both the energy 

harvesting and vibration isolation efficiencies. Various methods such as the Adomian decomposition [11], the 

transfer matrix [12], the lumped-mass [13], the differential quadrature [14], the lattice dynamics [15] and the finite 

element methods [16] were utilized to study the vibration band gap properties of different periodic structures. 

In this research, a branched shape periodic structure is proposed. This structure consists of a main beam and 

several cantilever beams connected to this main beam by the massless and rigid links. Different number of beam 

elements and geometrical parameters in the form of two models are considered for this periodic structure. The 

generalized differential quadrature rule (GDQR) method is used to study the influences of geometrical parameters 

and number of beam elements on the first four band gaps. ANSYS simulations are performed to verify the analytical 

method and also to calculate the forced harmonic response of the periodic beam. Based on the results obtained, the 

main vibration band gap properties of this periodic structure are mentioned. 

2    ANALYTICAL MODEL   

Fig.1 shows the periodic structure introduced in this research. This figure shows that the structure consists of a main 

beam and several cantilever beams connected to this main beam by the massless and rigid links. The unit cell of this 

periodic structure is shown in Fig. 2. All beams are made of the same material. Each beam has the circular cross-

section with the radius of R. The length of each beam is larger than its radius. Therefore, the Euler-Bernoulli beam 

theory can be applied. 

 

 

 

 

 

 

 

Fig.1 

Branched shape periodic structure. 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 

Unit cell. 
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The differential equation for free transverse vibration is written as: [17] 
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The slopes and transverse displacements of the beam elements must be the same at the intersection of beams. 

These continuity conditions are written as follows: 
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At the free ends of the cantilever beams, the bending moments and axial forces are written as: 
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In order to investigate the wave propagation in a periodic structure, its unit cell is considered and Bloch–Floquet 

theory is applied [18]. The Bloch-periodic boundary conditions are implemented for each side of the unit cell as 

follows: 
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In these equations,  , E, A,  , L, I, a, bN  are the density, modulus of elasticity, cross-sectional area, angular 

frequency, beam length, second moment of inertia about Z axis, unit cell length and number of beam elements in 

each cell, respectively. Furthermore, V and r are the transverse mode shape and imaginary number, respectively. The 

wave vector in the x- direction is xk . 

3    NUMERICAL METHOD  

The differential quadrature method (DQM) is a numerical technique used for solving the differential equations with 

initial or boundary conditions [19, 20, 21]. In this method, the differential equation is replaced with an algebraic 
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equation. Solving a set of algebraic equations is much easier than solving a set of differential equations. There are 

some difficulties in applying the DQM for solving the fourth-order differential equation like the governing equation 

of beam's transverse vibration. In this case, there is one quadrature equation in each boundary but two boundary 

equations are to be implemented. In order to solve this problem, the generalized differential quadrature rule method 

was proposed by Wu and Liu [22]. In this method, multiple degrees of freedom are defined for the boundary points. 

As an example, for transverse vibration of beams, the slope at each boundary is defined as a variable in addition to 

its displacement [23]. Before using the GDQR methods, all differential equations should be non-dimensionalized 

using the following non-dimensional parameters. 
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The same grid points are used for all beams. In other words, it is assumed that
( )(1) (2) ... bN

X X X X    . 

According to the GDQR [22], the derivatives of function ( )iY  at the sample point mX  are defined as follows: 
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The weighting coefficients in the GDQR method are considered to be 
( )n
m jD  . Furthermore, the following 

function is used to determine the N grid points [24] 
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The differential quadrature approximation of Eq. (1) at the internal points of the i
th

 beam is written as: 
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Eqs. (2)-(8) can be expressed in the differential quadrature form as follows: 
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Eqs. (13)-(20) can be written in the following form 
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Eq. (22) is rewritten as an eigenvalue problem as follow: 
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Solving the Eq. (23), the angular natural frequencies are calculated in terms of the wave vector k , i.e., the 

vibration band gaps. The wave vector is considered to be within the interval
 

 1 ,  1k   . 

4    NUMERICAL EXAMPLES  

A periodic beam with the unit cell length (1) 100a L mm   is considered. The cross-sectional radius of each beam 

is considered to be 0.5R mm . All beams are made of aluminum alloy with material properties 2730 3kg m ,   

77 56E . Gpa . Then, two models are considered for this periodic structure. For the first model, the number of 

beams in each unit cell is considered to be 3bN  . In this model, the beam elements 2 and 3 have the same length 

( (2) (3)L L ). Then, the influences of (2) (1)C L L on the first four band gaps of this model are studied using the 

analytical method. Results are shown in Fig. 3. Fifteen grid points, 15N 
 
are used for all beams in the GDQR 

method. 

 

 

 

 

 

 

 

Fig.3 

Effects of C on the band gaps of the first model. 
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For the second model, the number of beams is 5bN  . In this model, it is assumed that (2) (3) (4) (5),L L L L  . 

The influences of C and (2) (4)G L L  on the first four band gaps of this model are shown in Figs. 4-6. 

 

 

 

 

 

 

 

 

Fig.4 

Effects of C on the band gaps of the second model with 

0.G   

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effects of C on the band gaps of the second model with 

10 .G mm  

  

 

 

 

 

 

 

 

 

 

 
Fig.6 

Effects of C on the band gaps of the second model with 

20 .G mm  

 

In these figures, each band’s lower and upper limits are shown by L and U, respectively. Fig. 3 shows that for 

3bN  , the second and third bands are close to each other for 0.34 0.4C  . Fig. 4 shows that for 5 , 0bN G  , 

the second and third bands are close to each other for wider range of C,
 
0.34 0.95C  . This figure also shows that 

the third and fourth bands of this model are close to each other for 0.25 0.4C  . It can be concluded that three 

band gaps of this model including the second, third and fourth bands are close to each other for 0.34 0.4C  . Figs 

4-6 show that as G increases, these band gaps space apart from each other. Figures 3-6 show that the band gaps of 

each model are moved to low frequency ranges by increasing C. 

The influences of C on the total width of the close band gaps of each model are shown in Figs. 7-10. Comparing 

Figs. 7 and 10 shows that the total width of three close bands of the second model with 0G 
 
is larger than the total 

width of two close band gaps of the first model. 
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Fig.7 

Effects of C   on the total width of the second and third bands 

for 3.bN   

  

 

 

 

 

 

 

 

 

 

Fig.8 

Effects of C   on the total width of the second and third bands 

for 5 , 0.bN G   

  

 

 

 

 

 

 

 

 

 
Fig.9 

Effects of C on the total width of the third and fourth bands 

for 5 , 0.bN G   

  

 

 
 
 
 
 
 
 
 
Fig.10 

Effects of C on the total width of the second, third and fourth 
bands for 5 , 0.bN G   

5    FINITE ELEMENT SIMULATION   

In this section, a periodic beam with (1) 100a L mm   and seven-unit cells is considered. Aluminum alloy is used 

for all beams. Then, four models with different geometrical parameters are designed and meshed in the ANSYS 

software. The beams are designed as straight lines. These lines are meshed using BEAM189 element. The 

BEAM189 element is used to analyze slender beam elements. This element is a quadratic three-node beam element 
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having six degrees of freedom at each node. The Sections command is used to define the shape of the cross-section 

and its relevant geometrical parameters. After meshing, the CE command is used to apply the constraint equations 

generated by the massless and rigid links. As an example, a model with the geometrical parameters 

5 , 0.7 , 20bN C G mm    is considered. Fig. 11 shows the finite element model. 

 

 

 
 
 
 
 
 
 
 
Fig.11 

Finite element model for 5 , 0.7 , 20 .bN C G mm    

 

As shown in Fig. 1, for each finite element model, the cantilever end of the periodic structure is subjected to a 

harmonic motion in the Y direction. This motion has the amplitude of 0 0.1mm  . Then, the forced harmonic 

responses of these four finite element models are calculated using the ANSYS. Results are shown in Figs. 12(b)-

15(b). In these figures, the forced vibration responses of the second, fifth and seventh cells are plotted in terms of 

frequency. Figs. 12(b)-15(b) show that within frequency ranges shown by gray color, the amplitudes of vibration 

decrease as the cells distance from the excitation point. In other words, the vibration waves are forbidden from 

propagation in this periodic beam. These frequency ranges are vibration band gaps. Furthermore, the analytical 

method is used to calculate the band gaps of these finite element models. Results are shown in Figs. 12(a)-15(a). 

These figures show that there is no wave vector or wave propagation for some frequency ranges. These frequency 

ranges are also vibration band gaps and shown by gray color.  

Comparing part (a) and (b) in Figs. 12-15, indicates a good matching between the analytical results and FEM 

ones. In order to show this better, the band gaps lower and upper limits calculated by these two methods are 

represented in Tables 1 and 2.  

 

 
(a) 

 
(b) 

Fig.12 

Band gaps of the first model with 0.5C   obtained from: (a) GDQR, (b) ANSYS. 
 

 
(a) 

 
(b) 

Fig.13 

Band gaps of the first model with 0.37C   obtained from: (a) GDQR, (b) ANSYS. 
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(a) 

 
(b) 

Fig.14 

Band gaps of the second model with 0.7, 20C G mm   obtained from: (a) GDQR, (b) ANSYS. 

 

 
(a) 

 
(b) 

Fig.15 

Band gaps of the second model with 0.55, 10C G mm   obtained from: (a) GDQR, (b) ANSYS. 

 
Table 1 

The first four band gaps of the first model. 

C  Method First band Second band Third band Fourth band 

0.5 
GDQR No band 192 – 338 No band 695 – 988 

FEM No band 193 – 337 No band 689 – 982 

0.37 
GDQR 131 – 156 313 – 506 510 – 677 852 – 1090 

FEM 125 – 149 313 – 505 511 – 676 850 – 1087 

 

 

Table 2 

The first four band gaps of the second model. 

C  (mm)G  Method First band Second band Third band Fourth band 

0.7 20 
GDQR 66 – 81 102 – 172 184 – 222 239 – 333 

FEM 67 – 84 103 – 173 185 – 220 240 – 334 

0.55 10 
GDQR No band 147 – 270 280 – 301 314 – 400 

FEM No band 148 – 271 281 – 300 315 – 399 

 

In order to show the wave propagation within the band gaps, as an example, the periodic beam with 

5 , 0.7 , 20bN C G mm    is considered. Then, the ANSYS software is used to calculate the forced harmonic 

response at the frequency 137f Hz . This frequency is in the second band gap. Result is shown in Fig. 16.  

 

 

 
 
 
 
 
 
 
Fig.16 

Forced harmonic response. 
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6    CONCLUSION 

A new periodic structure composed of a main beam and several cantilever beams connected to the main beam is 

proposed. Different number of beams and geometrical parameters in the form of two models are considered for this 

periodic structure. The GDQR method is used to study the influences of geometrical parameters on the locations and 

widths of the first four band gaps. Results show that some bands are attached to each other for specific ranges of 

geometrical parameters values. Furthermore, the number of close band gaps increases when the number of beams 

increases. Having more than two close band gaps means that this periodic structure has a relatively wide band gap in 

total. The location of this wide band gap can be changed by changing the geometrical parameters. Absorbing 

transverse vibrations over a wide band gap at low frequency ranges makes the proposed periodic structure a good 

vibration absorber for practical applications. The numerical method used in this study is found to be precisely 

applicable to the vibration analysis of beam-like structures. 
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