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 ABSTRACT 

 Using Galerkin vector approach closed-form analytic expressions 

for the displacements and stresses caused by a doublet source 

buried in a homogenous, isotropic, perfectly elastic half-space have 

been obtained. Further, the viscoelastic deformation field has been 

obtained by applying the correspondence principle of linear 

viscoelasticity, assuming the medium to be elastic in dilatation and 

Kelvin, Maxwell, or SLS (Standard linear solid) type viscoelastic 

in distortion. The effect of Poisson’s ratio on the deformation field 

due to a doublet source is examined in elastic half-space. The effect 

of relaxation time on displacement and stress fields is studied due 

to a doublet source in viscoelastic half-space. The variation of the 

displacements and stresses with the epicentral distance is studied 

graphically using MATLAB software. Stresses for a doublet with 

axis parallel to x-axis attain minimum value for Poissonian half- 

space. Viscoelastic displacements and stresses attain maxima for 

the Maxwell model and minima for the Kelvin model. 

                              © 2021 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ANY researchers [1-6] have studied the problems related to seismic sources in an elastic medium. Closed 

analytical expressions for the surface displacements, strains, and tilts due to inclined shear and tensile faults in 

a half - space for both point and finite rectangular sources have been presented by Okada [7]. In viscoelastic half-

space, the displacement and stress field produced by Centre of dilatation and by a pressure source was derived by 

Bonafede et al [8]. The static and quasi-static deformation due to various seismic sources including Centre of 

dilatation was obtained by Singh and Singh [9]. For measuring small velocity and attenuation changes in solids, 

Robert et al. [10] have developed the active doublet method. Haruo Horikawa [11] have discussed the effect of the 

stress change due to the first earthquake on the occurrence of the second earthquake that occurred in the 

northwestern part of Kagoshima in 1997. Pandolfi et al. [12] determined the seismic wave velocity changes at Mt. 

Vesuvius a volcano located in the South-West of Italy using doublets, and the Coda Wave Interferometry (CWI) 

method. Wang et al. [13] were presented a two new numerical code FORTRAN programs PSGRN and PSCMP for 
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modeling co- and post-seismic response of the Earth’s crust to earthquakes. The three doublets reported by the 

Central Weather Bureau in Taiwan was studied by Lin et al. [14]. They observed that static stress field obtained by 

the first shock in the doublet shows that stress increased substantially in the second shock. Lai et al. [15] have 

studied the coseismic deformation by analyzing relevant seismic data of the 2005 Ilan earthquake doublet to identify 

its seismogenic structure and further proposing a model to explain the structure which is responsible to the 

development of the Ilan plain. Kogan et al. [16] have studied the mechanism of post seismic deformation with initial 

horizontal velocities and post seismic uplift triggered by the 2006-2007 great Kurli doublet. To obtain regional 

seismic moment tensors in Ahar earthquake doublet, Donnera et al. [17] inverted the surface waveforms of the two 

main shocks and 11 aftershocks and by grouping into pure strike-slip (including the first main shock) and oblique 

reverse mechanism (including the second main shock), the doublet earthquake can be analyzed. Nissen et al. [18] 

have given limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Verma and 

Singh [19] have studied the deformation field of two welded half-spaces caused by centre of rotation source. A 

comparative study of deformation field due to center of dilatation and center of rotation in a viscoelastic half-space 

model has been done by Verma and Singh [20]. 
 

  

 

 

 

 

 

 

Fig.1 

Doublet (double centre of compression-dilatation). 

 

A Doublet is a combination of the double centre of compression – dilatation. These are strikingly similar in 

terms of magnitude, location, and focal mechanism. By differentiation of center of dilatation, various types of 

doublets and multiples can be obtained. Application of doublet theory to geomechanics problems has been given by 

Granik and Ferrari [21] and Ferrari et al. [22]. For these applications, a granular interpretation of doublet mechanics 

has been employed, in which the material is viewed as an assembly of circular and spherical particles. A pair of such 

particles represents a doublet as shown in Fig. 2. Corresponding to the doublet (A, B), there exists a doublet 

connecting the adjacent particle centers and defining the doublet axis. Doublet theory can be used to find a solution 

to the Flament problem of a concentrated force acting on the free surface of a semi-infinite solid. It has been applied 

to asphalt concrete materials by Sadd and Dai [23]. 

 
  

 

 

 

 

 

 

Fig.2 

Basic doublet geometry. 

 

 

In this paper, elastic and viscoelastic deformation of a medium consisting of a homogeneous, isotropic, perfectly 

elastic half-space due to doublet source, are studied. Numerical results for displacements and stresses are presented 

graphically. The problem is useful because the interest is about the various phenomena taking place in the 

earthquakes and measuring of displacements, stresses due to the presence of doublet source. Doublet shocks 

mechanism may be helpful in reducing the risk for the rescue team. 

2    THE GALERKIN VECTOR 

Mindlin and Cheng [24] expressed the displacement vector u  in term of the Galerkin vector G  through the relation 
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Doublet Axis 
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   .G22 μu 2 1 σ G      (1) 

 

where µ is the shear modulus and σ is the Poisson ratio. From the Eq. (1), the displacement ui  in the xi - direction is 

given by 
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where 
i i

G G e  and 
i

e  denotes the unit vector in the xi – direction. The strain-displacement relations are 
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where ije  is the strain tensor. The stress-displacement relations are 

 

2n,nτ λδ u e μij ij ij   (4) 

 

where τ ij is the stress-tensor, δij  is the Kronecker delta and λ,μ are Lame’s constants. From Eq. (1) 

 

 nne
1 2σ 2.u div G

2μ



    (5) 

 

The expressions for the Galerkin vectors for a vertical and horizontal concentrated force in a homogeneous, 

isotropic, elastic half-space were given by Mindlin [25] and Mindlin and Cheng [24]. Let the uniform half-space be 

0z   with stress free boundary at z=0 and let the point source be located at the point (0,0, c) of the upper half space 

as shown in Fig. 3. 1R  is the distance between the observer at (x, y, z) and the source at (0, 0, c), and 2R is the 

distance between the observer at (x, y, z) and the image at (0, 0, - c), where 

 

 
22 2 2

1R x y z c     and   
22 2 2

2R x y z c     (6) 

 

                           

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Geometry of a point source in a uniform half-space. 

 

The Strength of doublet parallel to x-axis, y-axis, and z-axis is taken as oF  acts at the point  0 0, ,c  
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2.1 Galerkin vector for doublet parallel to the x-axis 
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 (7) 

2.2 Galerkin vector for doublet parallel to the y-axis 
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2.3 Galerkin vector for doublet parallel to the z-axis 
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3    ELASTIC DISPLACEMENT FIELD 

3.1 Doublet with an axis parallel to the x-axis 

From Eqs. (2) and (7), we obtain the following expressions for the displacement components of Doublet with an axis 

parallel to the x-direction 
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3.2 Doublet with an axis parallel to the y-axis 

From Eqs. (2) and (8), we obtain the following expressions for the displacement components of Doublet with an axis 

parallel to the y-direction 
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3.3 Doublet with an axis parallel to the z-axis 

From Eqs. (2) and (9), we obtain the following expressions for the displacement components of Doublet with an axis 

parallel to the z-direction 
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4    ELASTIC STRAIN AND STRESS FIELD   

The strain components ije  can be obtained by the strain displacement relations (3) whereas the stresses follow from 

Eqs. (4) and are obtained below.  

4.1 Doublet with an axis parallel to the x-axis 

From Eqs. (10)-(12), we obtain the following expressions for the stress components of Doublet with an axis parallel 

to the x-direction 
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4.2 Doublet with an axis parallel to the y-axis 

From Eqs. (13)-(15), we obtain the following expressions for the stress components of Doublet with an axis parallel 

to the y-direction 
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4.3 Doublet with an axis parallel to the z-axis 

From Eqs. (16)-(18), we obtain the following expressions for the stress components of Doublet with an axis parallel 

to the z-direction 
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5    VISCOELASTIC DEFORMATION 

The solution for a linear viscoelastic material can be obtained from the elastic one by using the correspondence 

principle. The bulk modulus  and the shear modulus   which are appearing in elastic solution are replaced by 

 s  and  s  in viscoelastic solution, which depends on particular rheology considered. The source function 

 f t  is replaced by its Laplace transform  f s . The resulting expression is the Laplace transformed viscoelastic 

solution. The solution in the time domain is obtained by inverting it. We assume that the rheology of the viscoelastic 

half-space is that of a Kelvin, Maxwell and Standard linear solid (SLS).  

In the expressions for the displacements and stresses, the elastic moduli  and   occur in the following 

combinations: 
1 1 2

1 1 2
, ,

2 3 4 3 4
J Q Q



    
  

 
. 

We define  
 

 
   

 
 
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

    
  

 

s
J s Q s Q s

s s s s s
, where s is the Laplace transform 

variable. On inverting, we find that 1J  in the static solution is replaced by  1Ĵ t  in the viscoelastic solution, where 

 
 

1
1

1ˆ
2

J t L
s s

  
   

 

. 

Similarly, 1Q and 2Q are replaced by the auxiliary functions  1Q̂ t  and  2Q̂ t . For ready reference the values of 

auxiliary functions [26] for the Kelvin model, Maxwell model, and the SLS model are given below: 

For Kelvin model  
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, where 
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 , 1t -relaxation time for 

Kelvin model. 

For Maxwell model 
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, 2t -relaxation time for 

Maxwell model. 

For SLS model  

 



N. Verma and K. Singh                             434 

 

© 2021 IAU, Arak Branch 

  12
1

0 1

1ˆ 1 1

t

tt
J t e

q t

 
      
  

 

,   30
1

1 1

21ˆ 1

t

tq
Q t e

a b

 
  
 
 
 

,   30
2

1 1

3ˆ 1

t

tq
Q t e

a b


 

  
 
 
 

, where 1 03 2a q  , 2 0 1
1

1 2

3 2t q t
b

t t

 



, 

2 0 1
3

0

3 2

3 2

t q t
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



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SLS model consists of a spring and a Kelvin element in series. If the elastic constants of the two springs are 

identical, then 0 1 2 3 2
9

, 2 ,
7

q t t t t   . 

6    VISCOELASTIC DISPLACEMENT FIELD 

By using elastic displacement field given in section 3, we obtain the viscoelastic displacement field. 

6.1 Doublet with an axis parallel to the x-axis  

From Eqs. (10)-(12), we obtain the following expressions for the viscoelastic displacement components of Doublet 

with an axis parallel to the x-direction 
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(37) 
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6.2 Doublet with an axis parallel to the y-axis  

From Eqs. (13)-(15), we obtain the following expressions for the viscoelastic displacement components of Doublet 

with an axis parallel to the y-direction 
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(41) 
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6.3 Doublet with an axis parallel to the z-axis  

From Eqs. (16)-(18), we obtain the following expressions for the viscoelastic displacement components of Doublet 

with an axis parallel to the z-direction 
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7    VISCOELASTIC STRESSES 

By using static stress field given in section 4, we obtain the viscoelastic stress field. 

7.1 Doublet with an axis parallel to the x-axis  

From Eqs. (19)-(24), we obtain the following expressions for the viscoelastic stress components of Doublet with an 

axis parallel to the x-direction 
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7.2 Doublet with an axis parallel to the y-axis  

From Eqs. (25)-(30), we obtain the following expressions for the viscoelastic stress components of Doublet with an 

axis parallel to the y-direction 
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7.3 Doublet with an axis parallel to the z-axis  

From Eqs. (31)-(36), we obtain the following expressions for the viscoelastic stress components of Doublet with an 

axis parallel to the z-direction 
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 (63) 

8    NUMERICAL RESULTS AND DISCUSSION 

We define dimensionless epicentral distance D, dimensionless horizontal displacements 1U , 2U (with axis parallel to 

x-axis), dimensionless uplifts 1W , 2W (with axis parallel to z-axis), dimensionless stresses 1x , 1y  (with axis 

parallel to x-axis) and 2x , 2y  (with axis parallel to z-axis) by the relations: 
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where
4

0

4 c
A

F


 is dimensionless constant.  
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For further calculations, the following assumptions are taken place: half-space 0z   is stress free at z =0, the 

bulk modulus   and the shear modulus  of viscoelastic half-space satisfy Poisson’s condition
5

3




 . We also 

assumed that t > 0 and the source time function is the Heaviside step function. We are using the values of various 

auxiliary functions as given above in viscoelastic deformation when the material is elastic in dilatation and Kelvin, 

Maxwell or an SLS type viscoelastic in distortion.  

8.1 Elastic displacements 

By using above conditions and Eqs. (10) - (18), we find dimensionless elastic displacements. 

8.1.1 Elastic displacements with axis parallel to x-axis 
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8.1.2 Elastic displacements with axis parallel to z-axis 
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8.2 Viscoelastic displacements 

By using above conditions and Eqs. (37) - (45), we find dimensionless viscoelastic displacements 

8.2.1 Viscoelastic displacements for Kelvin model with axis parallel to x-axis 
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8.2.2 Viscoelastic displacements for Kelvin model with axis parallel to z-axis 

 

 
1 5

2 2

3 1

1

TD e
W

D






 
(70) 

 

  

 

2

2 5
2 2

2 1

1

TD e
W

D

 




 
(71) 

 

where 
1

t
T

t
 , 1t -relaxation time for Kelvin model.  

8.2.3 Viscoelastic displacements for Maxwell model with axis parallel to x-axis 
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8.2.4 Viscoelastic displacements for Maxwell model with axis parallel to z-axis 
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where 
2

t
T

t
 , 2t -relaxation time for Maxwell model. 

8.2.5 Viscoelastic displacements for SLS model with axis parallel to x-axis 
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8.2.6 Viscoelastic displacements for SLS model with axis parallel to z-axis 
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where 
2

t
T

t
 , 2t -relaxation time for SLS model. 

8.3 Elastic stresses 

By using above conditions and equations from (19)-(36) we get dimensionless elastic stresses 

8.3.1 Elastic stresses with axis parallel to x-axis 

 
    

2

1 5 2 2
2 2

6 3 4 5 5

1 1 1 1
1

x
D D

D D
D

 

 

 
     

      

 
(80) 

 

  
 

 
1 5 2

2 2

6 5
1 2

1
1 1

y
D

D
D






 
     

 


   

 
(81) 

8.3.2 Elastic stresses with axis parallel to z-axis 
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8.4 Viscoelastic stresses 

By using above conditions and Eqs. (46) - (63), we find dimensionless viscoelastic stresses. 
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8.4.1 Viscoelastic stresses with axis parallel to x-axis 

 
  2 2

1 27
2 2

6 ˆ7 3 3 4

1

x
D

D Q t D

D

      
  



 

(84) 

 
  2

1 27
2 2

6 ˆ5 3 4

1

y
D

Q t D

D

     
  



 
(85) 

8.4.2 Viscoelastic stresses with axis parallel to z-axis 
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where for Kelvin model  
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For Maxwell model 
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For SLS model 
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Fig. 4 shows the variation of the dimensionless horizontal displacement 1U with the dimensionless epicentral 

distance. We note that it assumes maximum value 1 1U   at D = 0 after that it decreases with D and attains 

minimum value 1 0.2U   at D = 1. Further increase slightly with D and become constant as D tends to infinity. 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of the dimensionless horizontal displacement 

( 1U ) with the dimensionless epicentral distance (D). 

 

Fig. 5 shows the variation of the dimensionless horizontal displacement ( 2U ) with the dimensionless epicentral 

distance. We note that it increases with epicentral distance and attains maximum value between D=0.5 to D=1 after 

that it decreases rapidly and tends to zero as epicentral distance increases.  
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Fig.5 

Variation of the dimensionless horizontal displacement 

( 2U ) with the dimensionless epicentral distance (D). 

 

Fig. 6 shows the variation of the dimensionless uplift ( 1W ) with the dimensionless epicentral distance. We note 

that Figs. 5 and 6 both have the same pattern. 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the dimensionless uplift ( 1W ) with the 

dimensionless epicentral distance (D). 

 

Fig.7 shows the variation of the dimensionless uplift ( 2W ) with the dimensionless epicentral distance. It 

increases with D and tends to zero at D=1.5 onwards. 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of the dimensionless uplift ( 2W ) with the 

dimensionless epicentral distance (D). 

 

Fig. 8 shows the variation of the dimensionless stress 1x with the dimensionless epicentral distance for various 

values of . We note that it first decreases and then increases with D = 0 to 1 and beyond that limit, it tends to zero. 

It attains minimum value -9.5 at D = 0.4 for Poissonian half space. 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of the dimensionless stress 1x  with the 

dimensionless epicentral distance for various values 
of . 
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Fig. 9 shows the variation of the dimensionless stress 1y with the dimensionless epicentral distance for various 

values of . We note that it attains minimum value -7.5 at D =0.4 for Poissonian half space. 

 

 

 

 

 

 

 

 

 

Fig.9 

Variation of the dimensionless stress 1y  with the 

dimensionless epicentral distance for various values 
of . 

 

Fig.10 shows the variation of the dimensionless stress 2x  with the dimensionless epicentral distance for 

various values of . We note that it attains maximum value 2 18x   and minimum value -2.3 at 1/ 2  .  For 

large values of D, the curves tend to merge.  

 

 

 

 

 

 

 

 

 

Fig.10 

Variation of the dimensionless stress 2x with the 

dimensionless epicentral distance for various values 
of . 

 

Fig. 11 shows the variation of the dimensionless stress 2y with the dimensionless epicentral distance for 

various values of . We note that it attains maximum value 2 0.9y  and minimum -0.17.  For large values of D, 

the curves going to merge and tends to zero.   

 

 

 

 

 

 

 

 

 

Fig.11 

Variation of the dimensionless stress 2y with the 

dimensionless epicentral distance for various values 
of . 

 

Fig. 12 shows the variation of horizontal displacements 1U and 2U  for the three models, namely Kelvin, a 

Maxwell and a SLS with the epicentral distance for different values of T. We note that in case of all the three models 

horizontal displacement 1U  goes on decreasing with epicentral distance and decrease of T. They merge at some 

point and approaches to zero as shown in Fig. 12(a). 2U  increases and then decreases with D as shown in Fig. 12(b). 

The elastic displacement coincides with the viscoelastic displacement at T=0. 
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(a) 

 
(b) 

Fig.12 

Variation of the dimensionless horizontal displacements ( 1U and 2U ) with the dimensionless epicentral distance for the 

various values of T for Kelvin, Maxwell, and SLS model. 

 

The extremum values of the horizontal displacements 1U and 2U are given in Table 1. Horizontal displacements 

attain the maximum value in case of Maxwell and minimum in case of Kelvin for a particular value of time. 
 

Table 1 

Extremum values of horizontal displacements with axis parallel to x-axis. 

  Horizontal displacements   Extremum values of horizontal displacements 1U and 2U  

 
Kelvin Maxwell SLS 

1U  0.99 5 1.8 

2U  0.8 4.3 1.6 

 

Fig. 13 shows the variation of uplift 1W and 2W  for the three models, namely Kelvin, a Maxwell and an SLS 

with the epicentral distance for different values of T. We note that in case of all the three models uplift 1W is same as 

horizontal displacement 2U as shown in Fig. 13(a). Uplift 2W is negative and increases with D and T as shown in 

Fig. 13(b). They merge at some point and approaches to zero. The elastic displacement coincides with the 

viscoelastic displacement at T=0.  

 

 
(a) 

 
(b) 

Fig.13 

Variation of the dimensionless uplift ( 1W and 2W ) with the dimensionless epicentral distance for the various values of T 

for Kelvin, Maxwell, and SLS model. 

 

The extremum values of uplift 1W (same as 2U ) and 2W are given in Table 2. Numerically both Uplifts 1W and 

2W assumes the maximum value in case of Maxwell and minimum in case of Kelvin model for a particular value of 

time. 
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Table 2 

Extremum values of Uplift with axis parallel to z-axis. 

Uplift Extremum values of Uplift 1W and 2W  

 
Kelvin Maxwell SLS 

1W  0.8 4.3 1.6 

2W  -1.99 -10 -3.9 

 

Fig. 14 shows the variation of the dimensionless stress 1x and 1y along the x-axis for the three models, 

namely Kelvin, a Maxwell and an SLS with the epicentral distance for various values of T. We note that stresses are 

negative for all epicentral distances and it decreases first and then increases and then approaches to zero with D as 

shown in Fig. 14.  

 

 
(a) 

 
(b) 

Fig.14 

Variation of the dimensionless stress 1x and 1y with the dimensionless epicentral distance along the x-axis for the 

various values of T for Kelvin, Maxwell, and SLS model. 

The extremum values of the dimensionless stress 1x and 1y  with axis parallel to x-axis are given in Table 3.   

Numerically Maxwell gives maximum values for stresses and Kelvin gives minima. 

  
Table 3 

Extremum values of Stresses with axis parallel to x-axis 

Stresses Extremum values of Stresses 1x and 1y  

 
Kelvin Maxwell SLS 

1x  -5.99 -9 -7 

1y  -3.5 -6.9 -4.9 

 

Fig. 15 shows the variation of the dimensionless stresses 2x and 2y along the z-axis for the three models, 

namely Kelvin, a Maxwell and SLS with the epicentral distance for various values of T. We note that stresses are 

positive for all epicentral distances and it decreases and approaches to zero with D as shown in Fig. 15.  

  

 
(a) 

 
(b) 

Fig.15 

Variation of the dimensionless stress 2x and 2y with the dimensionless epicentral distance along the z-axis for the 

various values of T for Kelvin, Maxwell, and SLS model. 
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The extremum values of the dimensionless stresses 2x and 2y with axis parallel to z-axis are given in Table 4. 

2x  attains the maximum value in case of Kelvin and minimum in case of Maxwell and 2y assume the maximum 

value in case of Maxwell and minimum in case of Kelvin for a particular value of time.  

 
Table 4 

Extremum values of Stresses with axis parallel to z-axis. 

Stresses Extremum values of Stresses 2x and 2y  

 
Kelvin Maxwell SLS 

2x  50 34.8 40.05 

2y  10 17.2 12.8 

9    CONCLUSION 

The explicit expressions for the displacement and stress fields in an elastic and viscoelastic half-space due to a 

doublet source have been obtained by using Galerkin vector approach. The results are valid for arbitrary values of 

Poisson’s ratio. The effect of relaxation time on the deformation field has been examined. The variation of the 

displacement and stresses with the epicentral distance have been studied graphically. The horizontal displacement 

2U shows the same effects as uplift 1W  with the epicentral distance. In case of all the three models Kelvin, Maxwell, 

SLS models uplift 1W has the same effect as horizontal displacement 2U . Stresses for doublet with axis parallel to x-

axis attain minimum value for Poissonian half space. Viscoelastic displacements and stresses attain maxima for 

Maxwell model and minima for Kelvin model. The displacement field obtained for a doublet source is coinciding 

with the results of Okada [7] by starting with the results of concentrated point source by superposition & 

differentiation. 
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