
 

© 2020 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 12, No. 3 (2020) pp. 663-680 

DOI: 10.22034/jsm.2020.1885944.1530 

Three Dimensional Thermal Shock Problem in 
Magneto-Thermoelastic Orthotropic Medium 

S. Biswas
 1,*

, S.M. Abo-Dahab
 2,3

 
 

1
Department of Mathematics, University of North Bengal, Darjeeling, India 

2
Department of Mathematics, Faculty of Science, Taif University, Saudi Arabia 

3
Department of Mathematics, Faculty of Science, South Valley University, Egypt 

Received 28 June 2020; accepted 25 August 2020 

 ABSTRACT 

 The paper is concerned with the study of magneto-

thermoelastic interactions in three dimensional thermoelastic 

medium under the purview of three-phase-lag model of 

generalized thermoelasticity. The medium under consideration 

is assumed to be homogeneous orthotropic medium. The 

fundamental equations of the three-dimensional problem of 

generalized thermoelasticity are obtained as a vector-matrix 

differential equation form by employing normal mode analysis 

which is then solved by eigenvalue approach. Stresses and 

displacements are presented graphically for different 

thermoelastic models. 

 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Eigenvalue approach; Orthotropic medium; Three-

phase-lag model; Magnetic effect.  

1    INTRODUCTION 

 ENERALIZED thermoelasticity theory is developed to overcome the paradox of infinite speed of thermal 

wave inherent in the classical coupled thermoelasticity theory. Lord and Shulman [1] formulated the 

generalized thermoelasticity theory by introducing one relaxation time which is known as LS model. Green and 

Lindsay [2] introduced GL theory by incorporating two relaxation times. Later Green and Naghdi [3, 4, 5] 

developed three models for generalized thermoelasticity of homogeneous isotropic materials, which are labeled as 

G-N models I, II, III. Detailed information regarding these theories is available in [6, 7, 8]. Tzou [9] introduced two-

phase lags to both the heat flux vector and the temperature gradient and considered as constitutive equation to 

describe the lagging behavior in the heat conduction in solids. Roy Choudhuri [10] has established a generalized 

mathematical model of a coupled thermoelasticity theory that includes three-phase-lags in the heat flux vector, the 

temperature gradient and in the thermal displacement gradient. The interplay of the Maxwell electromagnetic filed 

with the motion of deformable solids is largely being undertaken by many investigators [11-14] owing to the 

possibility of its application to geophysical problems and certain topics in optics and acoustics. El-Karamany and 

Ezzat [15] considered thermal shock problem in generalized thermoelasticity under four theories. Sherief et al. [16] 

discussed stochastic thermal shock in generalized thermoelasticity and Ezzat and Youssef [17] investigated three 
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dimensional thermal shock problem of generalized thermoelastic half-space. Kalkal and Deswal [18] considered the 

effects of phase lags on three dimensional wave propagation with temperature dependent properties. El-Karamany 

and Ezzat [19] discussed three-phase-lag linear micro polar thermoelasticity theory. Ezzat et al. [20] proposed 

fractional order theory in thermoelastic solid with three-phase-lag heat transfer. Said and Othman [21] discussed the 

Effects of gravitational and hydrostatic initial stress on a two-temperature fiber-reinforced thermoelastic medium for 

three-phase-lag model. Lofty [22] studied two temperature generalized magneto-thermoelastic interactions in an 

elastic medium under three theories. Sarkar and Lahiri [23] considered electro magneto-thermoelastic interactions in 

an orthotropic slab with two thermal relaxation times. Das and Bhakta [24] proposed eigen function expansion 

method to the solution of simultaneous equations and its application in mechanics. Ezzat [25] considered the 

relaxation effects of the volume properties of electrically conducting viscoelastic material. Ezzat [26] discussed 

fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor 

cylindrical region. Ezzat et al. [27] studied electro-thermoelasticity theory with memory-dependent heat transfer. 

The present article deals with a three dimensional electro-magneto-thermoelastic coupled problem for 

homogeneous orthotropic thermally and electrically conducting solid whose surface is subjected to time dependent 

thermal shock. The normal mode analysis and eigenvalue approach is used to solve the problem. Numerical results 

for the displacements and thermal stress distribution are presented graphically for dual-phase lag (DPL) model, 

Green-Naghdi type-III model (GN-III) and three-phase-lag model (TPL). 

2    FORMULATION OF THE PROBLEM  

The homogeneous orthotropic medium is supposed to be initially unstrained and unstressed.  The basic equations of 

linear magneto-thermoelasticity with three-phase-lag model are as follows: 

The equations of motion 
 

 ij j i
i

J B u   ,
 (1) 

 

Maxwell’s equations (in absence of the displacement current and charge density)  

 

curl H J ,  curl

 

B
E

t


 


, div B  0,

 eB H  (2) 

 

The modified Ohm’s law is 

 

u
J E B

t

   

    
  

 (3) 

 

where H  the total magnetic field vector  x y zH H H , , , B  magnetic inductance vector
 

 x y zB B B , , , 

E  electric field vector  x y zE E E , , , e   magnetic permeability of the medium,   electric conductivity of 

the medium,   constant mass density, 
ij  component of stress tensor, i j x y z, , , , u  displacement vector 

 u v w , , . If we take  x yH H H , ,0 , we get from Eqs. (2) and (3), after neglecting second order differentiation 

of xH and
 yH , 
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Eqs. (4) and (5) can be linearized by setting 
x xH H h 0

and 
y yH H h 0

where 
xh and 

yh denote change in 

the basic magnetic field H 0
(called the perturbed field) and then neglecting product terms with 

xh and
yh . 

After linearization, Eqs. (4) and (5) with the help of (2) become 

 

x

v u w
h H

y y z

   
    

   
0  (6) 

 

y

u v w
h H

x x z

   
    

   
0

 (7) 

 

The thermal stresses in an orthotropic infinite elastic solid subject to plane strain in three dimensions are 
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(8) 

 

where 
ijc are elastic constants of the orthotropic material and   1 2 3, , are thermal moduli along x y, and z axis 

respectively. 

From Eqs. (1), (6), (7) and (8), after neglecting higher order of small quantities, we get 
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(11) 

 

where T is the temperature above reference temperature. 

Equation of three-phase-lag model in orthotropic medium is 

 

 



666                                  S. Biswas  and S.M. Abo-Dahab 
 

© 2020 IAU, Arak Branch 

T T T

q

q e

T T T T T
K K K K K

t t t t tx y z x y

T u v w
K C T T

t t x y zz t

 



    


     

                  
                 

                 

         
                   

2 2 2 2 2
* *

1 2 3 1 22 2 2 2 2

22 2
*

3 0 1 2 32 2

1 1 1 1 1

1 1
2

 
  

 

 
(12) 

 

where T 0
 is the reference temperature,  iK i 1,2,3 is the thermal conductivity tensor,  iK i * 1,2,3 are the 

material constant characteristic of the theory, 
q T , and  are the phase lags for heat flux vector, temperature 

gradient and thermal displacement gradient respectively. 

Maxwell’s electromagnetic stress tensor 
ij is given by 

 

 ij i j j i ijH h H h H h    
 

.   

3    BOUNDARY CONDITIONS  

We consider the case where the surface of the three dimensional orthotropic medium is subjected to a time 

dependent thermal shock and the surface is traction free. Then we consider the case where the surface of medium is 

rigidly fixed and a thermal shock is applied on it.                                                                                                            

In order to determine the parameters, we need to consider the following boundary conditions at z  0 :  

3.1 Case 1 

Thermal boundary condition that the surface of the medium is subjected to a time dependent thermal shock 

 

     T x y t F t H a x H b y  ( , ,0, )   

  

where H denotes Heaviside function.
 

Mechanical boundary condition that the surface to the medium is traction free 

 

           zz zz yz yz xz xzx y t x y t x y t x y t x y t x y t          , ,0, , ,0, , ,0, , ,0, , ,0, , ,0, 0   

3.2 Case 2 

Thermal boundary condition that the surface of the medium subjected to a time dependent thermal shock 

 

     T x y t F t H a x H b y  ( , ,0, )   

                            
 

Mechanical boundary condition that the surface of the medium is rigidly fixed 

 

     u x y t v x y t w x y t  , ,0, , ,0, , ,0, 0   

4    SOLUTION OF THE PROBLEM   

We take the solutions of the Eqs. (9)-(12) in the following form: 

 

       u v w T x y z t u v w T z i kx ly t    , , , , , , , , , exp  (13) 
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where k  and l are wave number along x and y axis respectively and   is angular frequency. 
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T u v, , and w  must be bounded at infinity so as to satisfy the regularity condition at infinity. So we assume that 

T u v, , and w  as well as their derivatives vanish at infinity. 

Eqs. (14)-(17) can now be written in the form of a vector matrix differential equation as follows: 
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5    SOLUTION OF THE VECTOR MATRIX DIFFERENTIAL EQUATION  

As for the solution of the Eq. (18), we follow the method of eigenvalue approach as in Das and Bhakta [24],The 

characteristic equation of the matrix A takes the form 

 

B B B B       8 6 4 2

1 2 3 4 0  (19) 

 

where 
 

 

1 78 87 67 76 57 75 81 62 73 84 ,B A A A A A A A A A A        

2 81 54 81 57 78 82 64 82 67 78 51 78 87 62 78 87 75 54 87 87 64 76 62 73
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The roots of the characteristic Eq. (19) which are also the eigenvalues of the matrix A  are of the form 

 

1,   2 ,    
3 ,    4    (20) 

 

The right and left eigenvectors X and Y of the matrix A corresponding to the eigenvalue   can be taken as 

follows: 

 

 1 2 3 4 5 6 7 8, , , , , , ,
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Assuming the regularity condition at infinity, the solution of the Eq. (18) can be written as: 
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The stress components are obtained as: 
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The constants  1 2 3 4nA n , , ,  can be obtained by using boundary conditions.  

For case 1 we obtain the constants as follows: 
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1

1

D
A ,

D
  2

2

D
A ,

D
  3

3

D
A ,

D
  4

4

D
A

D
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1 2 3 4 4 3 3 2 4 4 2 4 2 3 3 2

2 1 3 4 4 3 3 1 4 4 1 4 1 3 3 1

3 1 2 4 4 2 2 1 4 4 1 4 1 2 2 1

4 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1

D M N P Q P Q N P Q P Q N P Q P Q

M N P Q P Q N PQ P Q N PQ P Q

M N P Q P Q N PQ P Q N PQ P Q

M N P Q P Q N PQ P Q N PQ P Q

       

       

       

       

 

1D       1 2 3 4 4 3 3 2 4 4 2 4 2 3 3 2F N PQ P Q N P Q P Q N P Q PQ        

2D       1 1 3 4 4 3 3 1 4 4 1 4 1 3 3 1F N PQ P Q N PQ P Q N PQ PQ         

3D       1 1 2 4 4 2 2 1 4 4 1 4 1 2 2 1F N P Q P Q N PQ P Q N PQ P Q        

4D       1 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1F N P Q PQ N PQ PQ N PQ P Q         

 6 4 2

51 62 73 57 75 67 76 51 62 51 73 52 61 62 73
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For case 2 we obtain the constants as follows: 
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n n n nS A A A A A A A A A ( A A A A A A A A A A A A

A A A A A A )

           

 
 

6    SPECIAL CASES  

We discuss some special cases for different values of the parameters considered in the problem. 

The above discussion converts for orthotropic medium without magnetic effect when we put  
 

0 0H .   

 

This problem reduces for isotropic medium with three-phase-lag model, if we take 

 

11 22 33 13 23 12 44 1 2 3 1 2 3 1 2 32 * * * *c c c ,c c c ,c , ,K K K K ,K K K K                          

 

The study reduces to the case of orthotropic elasticity if we neglect the thermal parameters i.e.  

 
* * *,K K K ,K K K          1 2 3 1 2 3 1 2 30 0 0   

7    PARTICULAR CASES  

From the general Eqs. (9)-(12), we now classify the problem into three classes for our further reference and for our 

comparison of numerical computations of the results: 

i. If q , 2 0
q ,  0 T ,  0 * * *K K K  1 2 3 0 , then the problem reduces to the problem of Lord-Shulman 

(LS) model. 

ii. If 
q T      0 then the problem reduces to the problem of Green-Naghdi theory type-III (GN-III). 

iii. If * * *K K K  1 2 3 0 then the problem reduces to the problem of dual-phase-lag model (DPL). 

8    NUMERICAL RESULTS AND DISCUSSION  

For numerical computations, we take the following values of the relevant parameters for cobalt material as follows: 

 
2c . Nm ,  11

11 3 071 10  2c . Nm ,  11

12 1 650 10  2c . Nm ,  11

13 1 027 10  2c . Nm ,  11

23 1 027 10  

2c . Nm ,  11

22 3 071 10  2c . Nm ,  11

33 3 581 10  2c . Nm ,  11

44 1 510 10  2 1. Nm deg ,    6

1 7 04 10  

2 1. Nm deg ,    6

2 7 04 10  2 1. Nm deg ,    6

3 6 90 10  1 1K Wm deg , 1 69  1 1K Wm deg , 2 69  

1 1K Wm deg , 3 69  * 1 1 1`K . Wm deg s ,  1 13 1  * 1 1 1`K . Wm deg s ,  2 15 4  * 1 1 1`K . Wm deg s ,  3 15 4  

3. Kgm ,   37 14 10  1 1

eC . JKg deg ,  381 4  T K,0 296  q s,   72 10  
T . s ,   71 5 10  

v s.   81 10  

 

 

We consider  F t exp( dt ) 0
 where 0 is a constant. Further for numerical purpose we take 

 



                         Three Dimensional Thermal Shock Problem ….                              673 
 

© 2020 IAU, Arak Branch 

1 1 1

e,d . ,a b m ,k . , . Hm , . Fm ,H Am .            5

0 0 010 0 1 1 1 2 1 2 1 2 10   

 

In Figs. 1-12, displacements and stresses for traction free surface are presented. In Fig. 1, variation of u with 

respect to z for three-phase-lag model is presented. It is observed that u decreases with the increase of magnetic 

field. u is showing oscillatory behavior and converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Variation of u with respect to z. 

  

In Fig. 2 and 3, variation of v and w with respect to z  for three-phase-lag model is presented. It is noticed that v 

and w decrease with the increase of magnetic field.  Displacements are showing oscillatory behavior and converging 

towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of v with respect to z.  

  

 

 

 

 

 

 

 

 

 
Fig.3 

Variation of w with respect to z. 

 

In Fig. 4, variation of 
xz with respect to z for three-phase-lag model is presented. It is noticed that 

xz decrease 

with the increase of magnetic field.  Stress is showing oscillatory behavior and converging towards zero with the 

increase of z.  
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Fig.4 

Variation of 
xz with respect to z.  

 

In Fig. 5, variation of 
yz with respect to z  for three-phase-lag model is presented. It is noticed that 

yz increase 

with the increase of magnetic field.  Stress is showing oscillatory behavior and converging towards zero with the 

increase of z.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of 
yz with respect to z.  

 

In Fig. 6, variation of zz with respect to z  for three-phase-lag model is presented. It is noticed that zz decrease 

with the increase of magnetic field.  Stress is showing oscillatory behavior and converging towards zero with the 

increase of z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of zz with respect to z. 

 

In Figs. 7 and 8, variation of u  and v with respect to z for GN-III and DPL model is presented. It is noticed that u 

and v  increase with the increase of magnetic field.  Displacements for DPL model are greater than displacements for 

GN-III model. Displacements are showing oscillatory behavior and converging towards zero with the increase of z.   
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Fig.7 

Comparison of u with respect to z  for GN and DPL. 

  

 

 

 

 

 

 

 

 
Fig.8 

Comparison of v with respect to z for GN and DPL. 

 

In Fig. 9, variation of w with respect to z for GN-III and DPL model is presented. It is noticed that w  increase 

with the increase of magnetic field.  Displacement for DPL model is greater than displacement for GN-III model. 

Displacement is converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Comparison of w with respect to z for GN and DPL. 

 

In Fig.10, comparison of zz  with respect to z for GN-III and DPL model is presented. It is noticed that zz  

increase with the increase of magnetic field.  Stress for DPL model is greater than stress for GN-III model.  Stress is 

oscillating and converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Comparison of zz with respect to z for GN and DPL. 
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In Fig. 11, comparison of 
xz  with respect to z for GN-III and DPL model is presented. It is noticed that 

xz  

increase with the increase of magnetic field.  Stress for DPL model is greater than stress for GN-III model.  Stress is 

oscillating and converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Comparison of 
xz with respect to z for GN and DPL. 

 

In Fig. 12, comparison of 
yz  with respect to z for GN-III and DPL model is presented. It is noticed that 

yz  

decrease with the increase of magnetic field.  Stress for DPL model is greater than stress for GN-III model.  Stress is 

oscillating and converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Comparison of 
yz with respect to z for GN and DPL. 

 

In Figs. 13-21, displacements and stresses for rigidly fixed surface are presented. In Fig. 13, variation of u with 

respect to z for three-phase-lag model is presented. It is observed that u increases with the increase of magnetic field. 

u  is showing oscillatory behavior and converging towards zero with the increase of z.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Comparison of u with respect to z.  

 

In Fig.14 and 15, variation of v  and w with respect to z  for three-phase-lag model is presented. It is noticed that 

v and w increase with the increase of magnetic field.  Displacements are showing oscillatory behavior and 

converging towards zero with the increase of z. 
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Fig.14 

Comparison of v with respect to z.  

  

 

 

 

 

 

 

 

 
Fig.15 

Comparison of w with respect to z.  

 

In Fig. 16, variation of 
xz  with respect to z for TPL model is presented. It is noticed that 

xz  increase with the 

increase of magnetic field.  Stress is oscillating and converging towards zero with the increase of z.  

 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Comparison of 
xz with respect to z.  

 

In Figs. 17 and 18, variation of u  and v with respect to z for GN-III and DPL model is presented. It is noticed 

that u and v increase with the increase of magnetic field.  Displacements for DPL model are greater than 

displacements for GN-III model. Displacements are showing oscillatory behavior and converging towards zero with 

the increase of z.  

 

 

 

 

 

 

 

 

 

 

 

Fig.17 

Comparison of u with respect to z for GN and DPL. 
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Fig.18 

Comparison of v with respect to z  for GN and DPL. 

 

In Fig. 19, variation of w with respect to z  for GN-III and DPL model is presented. It is noticed that w  increase 

with the increase of magnetic field.  Displacement for DPL model is greater than displacement for GN-III model. 

Displacement is converging towards zero with the increase of z.  

 

 

 

 

 

 

 

 

 

 

Fig.19 

Comparison of w with respect to z  for GN and DPL. 

 

In Fig. 20, comparison of 
xz  with respect to z for GN-III and DPL model is presented. It is noticed that 

xz  

increase with the increase of magnetic field.  Stress for DPL model is greater than stress for GN-III model.  Stress is 

oscillating and converging towards zero with the increase of z.  

 

 

 

 

 

 

 

 

 

 

Fig.20 

Comparison of 
xz with respect to z for GN and DPL. 

 

In Fig. 21, comparison of yz  with respect to z for GN-III and DPL model is presented. It is noticed that yz  

decrease with the increase of magnetic field.  Stress for DPL model is greater than stress for GN-III model.  Stress is 

oscillating and converging towards zero with the increase of z. 

 

 

 

 

 

 

 

 

 

 

Fig.21 

Comparison of 
yz with respect to z for GN and DPL. 
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9    CONCLUSIONS 

The present article provides a detail analysis of propagation of thermoelastic disturbances in an orthotropic medium 

in the presence of a time dependent thermal shock. With the view of theoretical analysis and numerical computation, 

we can conclude the following phenomena:   

(i) This problem with three-phase-lag model is more general as other problem with different thermoelastic 

models can be derived as a special case from this. 

(ii) Displacements decrease with the increase of magnetic field for TPL model but displacements increase with 

the increase of magnetic field for GN-III and DPL model.  

(iii) Displacements and stresses are showing oscillatory behavior and converging towards zero with the increase 

of distance. 

(iv) Displacements and stresses are showing similar nature for both traction free and rigidly fixed surface. 

(v) Displacements and stresses for DPL model are greater than displacements and stresses for GN-III model. 

The results presented in this article may be useful for researchers who are working on material science, 

mathematical physics and thermodynamics with low temperatures as well as on the development of the hyperbolic 

thermoelasticity theory.  
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