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 ABSTRACT 

 The present investigation deals with study of thermoelastic damping 

and frequency shift of Kirchhoff plate resonators by using 

generalized thermoelasticity theory of dual-phase-lag model. The 

basic equations of motion and heat conduction equation are written 

with the help of Kirchhoff-Love plate theory and dual phase lag 

model. The analytical expressions for thermoelastic damping and 

frequency shift of modified couple stress dual-phase-lag 

thermoelastic plate have been obtained. A computer algorithm has 

been constructed to obtain the numerical results. Influences of 

modified couple stress dual-phase-lag thermoelastic plate; dual- 

phase-lag thermoelastic plate and Lord-Shulman (L-S, 1967) 

thermoelastic plate with few vibration modes on the thermoelastic 

damping and frequency shift are examined. The thermoelastic 

damping and frequency shift with varying values of length and 

thickness are shown graphically for clamped-clamped and simply 

supported boundary conditions. It is observed from the results that 

the  damping factor and frequency shift have noticed larger value in 

the presence of couple stress for varying values of length but 

opposite effect are shown for varying values of thickness in case of 

both vibration modes and boundary conditions. 

                                 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords : Modified couple stress theory; Kirchhoff-Love plate 

theory; Dual-phase-lag model; Thermoelastic damping; Frequency 
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1    INTRODUCTION 

 ZOU [30-31] was the first who proposed the dual phase lag (DPL) model. This model describes the 

interactions between photons and electrons on the microscopic level as retarding sources causing a delayed 

response on the macroscopic level. The dual phase lag model was the modification of classical thermoelastic model 

in which the Fourier law is replaced by an approximation to a modified Fourier law with the introduction of two 
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different time lags: one is the phase lag of the heat flux q  and is related to the thermal wave speed and other is the 

phase lag of the temperature gradient   that represents the time constant for electron-lattice equilibrium. A new 

model, known as three phase lag thermoelastic model, was introduced by Roychoudhuri [24]. The existence of 

couple-stress in materials was originally postulated by Voigt [32]. He assumed that the interaction between the two 

particles of a body through an area element is transmitted not solely the action of a force vector but also by a couple 

stress vector. This assumption leads to the description of stress field by means of two asymmetric tensors: the force 

stress tensor and the couple stress tensor. Cosserat and Cosserat [4] were the first to develop a mathematical model 

to analyze materials with couple stresses. Toupin [28] reviewed the basic concepts and foundations of classical 

theory [Cosserat and Cosserat [4]] and presented the generalization of it. He discussed some quantitative features of 

wave propagation in elastic materials with couple stresses and correct the equation in classical field theories for 

couple stresses. Mindlin and Tiersten [18] formulated a linearized theory of couple stress elasticity which contained 

two classical and two additional material constants for isotropic elastic materials. The effect of couple stresses on 

the surface concentration around a circular hole in an infinite medium under tension was studied by Mindlin [19]. 

Koiter [11] proposed classical couple stress elasticity theory which contains four material constants two classical 

and two additional for isotropic elastic materials. In these developments, the gradient of the rotation vector is used as 

a curvature tensor.  

Yang et al. [33] developed a modified couple-stress model, in which the couple stress tensor is symmetrical and 

only one material length parameter is needed to capture the size effect which is caused by micro-structure. Park and 

Gao [21] constructed a new model for the bending of a Bernoulli-Euler beam using the minimum total potential 

energy principle and a modified couple stress theory. Variational formulation of a modified couple stress theory and 

its application to a simple shear problem was studied by Ma et al. [17]. Tsiatas [29] developed a new Kirchhoff plate 

model for the static analysis of isotropic micro-plates with arbitrary shape using modified couple stress theory 

containing only one material length scale parameter which can capture the size effect. Sun and Tohmyoh [27] 

derived the governing equations of coupled thermoelastic problem in axisymmetric out-of-plane vibration of circular 

plate and obtainted the analytical results for thermoelastic damping. Rezazadeh et al. [23] derived quality factor of 

thermoelastic damping of a clamped-clamped micro- beam using modified couple stress theory. Guo et al. [6] 

derived the formula for thermoelastic damping of a micro beam resonator in the context of dual-phase-lagging heat 

conduction model. Guo et al. [7] presented the thermoelastic damping effect of a circular micro-plate resonator 

under clamped and simply supported boundary conditions which is based on generalized thermoelasticity theory of 

dual-phase-lagging model. Alashti and Abolghasemi [2] developed a size- dependent Bernoulli-Euler beam 

formulation on the basis of new model of couple stress theory and prepared the mathematical formulation for 

clamped (C-C), simply supported (S-S) and cantilever (C-F) boundary conditions.  

Sourki and Hoseini [26] studied free vibration of a cracked microbeam within the framework of Euler-Bernoulli 

beam theory using modified couple stress theory. Kakhki et al. [8] obtainted analytical solution for thermoelastic 

damping in a micro-beam based on modified couple stress theory in the context of one relaxation time. Kumar and 

Devi [10] studied thermoelastic beam in modified couple stress theory subjected to laser source and heat flux by 

employing the Euler-Bernoulli beam theory and Laplace transform technique. Uniqueness of solution of initial 

boundary value problem  in thermoelasticity of bodies with voids,  a porous thermoelastic body including voidage 

time derivative among the independent constitutive variables, effect of Thomson and initial stress in a thermo-

porous elastic solid under GN electromagnetic theory can be found in (Marin [15], Marin and Florea [16], Marin et 

al. [1]). The vibrations of thin plate in modified couple stress thermoelastic medium with the help of Kirchhoff plate 

theory, thermoelastic functionally graded beam in modified couple stress theory  subjected to a dual phase lag model 

have been discussed by Kumar and Devi [9-14].  

In the present work, we investigated the vibrations of thin plate in modified couple stress thermoelastic medium 

by applying Kirchhoff- Love plate theory along with dual-phase-lag model. The Euler-Bernoulli theory and normal 

mode analysis are used to solve the generalized equations. The analytical expressions for thermoelastic damping and 

frequency shift of modified couple stress dual-phase-lag thermoelastic plate for clamped-clamped and simply 

supported boundary conditions have been obtainted for varying values of length and thickness. Special cases of 

interest are also given in the present problem. 

2    BASIC EQUATIONS  

Following Yang et al. [33], Rao [22], the constitutive equation, the equations of motion and the equation of heat 
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conduction in a modified couple stress generalized thermoelastic dual-phase-lag model without body forces, body 

couples and heat sources are 

Constitutive relations 

 

1
2 - - ,

2
ij kk ijt e e     ij kij lk,l ij e m T  (1) 
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2 ,  ,  ,
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i i ipq q pm e u       ij ij ij j j,i

 (2) 

   

 
Equation of motion  
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..
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Equation of heat conduction 
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 (4) 

 

where ijt  are the components of stress tensor,   and   are Lame  constants, 
ij  is Kronecker’s delta, ije are the 

components of strain tensor, ijke is alternate tensor, 
ijm are the components of couple-stress,  3 2     t , t  

are the coefficients of linear thermal expansion respectively, T  is the temperature change,   is the couple stress 

parameter, 
ij  is symmetric curvature, i  

is the rotational vector, u  is displacement vector, 
 
is the density,   is 

the Laplacian operator,   is del operator. K is the coefficient of the thermal conductivity, ec  is the specific heat at 

constant strain, 0T  is the reference temperature assumed to be such that 
0

1T T/ ,    3 2      E is 

Young’s modulus,  = 2     is the Poisson ratio. Here T  and q  are the phase lags of the temperature 

gradient and the heat flux respectively. 

 

 

3    FORMULATION OF THE PROBLEM     
  

 

Let us consider a modified couple stress thermoelastic Kirchhoff plate resonators with uniform thickness h. The 

origin of the Cartesian coordinate system  , ,x y z  is taken at the centre of the plate. In equilibrium conditions, the 

plate is unstrained, unstressed and continues at uniform environmental temperature 0T  everywhere. We define the 

displacement components
 

   , , , ,  , , , ,u x y z t v x y z t  , , ,w x y z t and temperature  , , ,T x y z t . According to 

Kirchhoff’s-Love Plate theory, the displacement components are given by 

 

   , , , , , , , .w wu z v z w x y z t w x y t
x y

     
 

 (5) 

Following Rao [22], the strain and stress components are taken as: 
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(8) 
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1
yy yy xx T

E
t T   


   


 (10) 

 

.xy xyt   (11) 

 

The bending and torsion moments are defined following (Rao [22], Chen and Li [3]) as: 

 

2 2

2 2

 + ,
h h

x xx yxh h
M t zdz m dz

 
    (12) 
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    (13) 
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1
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2

h h

xy xy yy xxh h
M t zdz m m dz

 
    (14) 

with the aid of Eqs. (5)-(11) in Eqs. (12)-(14), we obtain  
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The equations for shear force resultants are 

 

+ ,  + .
xy y xyx

x y

M M MM
Q Q

x y y x

  
 
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 (18) 

The equation of motion (force equilibrium  z  in the direction) is given as: 

 
2

2
+ 0.
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QQ w

h
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
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Using Eqs. (15)-(17) in (18) and (19), then the equation of motion for micro plate with symmetry about y-axes is 

taken as: 

 

 

24 2
*

4 2 2
0,

2 1

T TEh w w
D h

dx x t




 

  
    

   

M
 (20) 

 

where  * 3 212 1D Eh    is the flexural rigidity of the plate, and the thermal moment is given by 

2

2

 

h

T

h

M d Tz dz


   (21) 

The equation of heat conduction with dual-phase-lag thermoelastic model can be written with the aid of Eq. (5) 

as: 

22 2 2 3
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2
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We define the dimensionless quantities as: 
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Using dimensionless quantities defined in Eq. (23) on Eqs. (20) and (22), we obtain 
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Following Gao et al. [7], the solution of time harmonic vibrations of the plate  are taken as: 

       , ,  , , , ,i t i tw x t W x e T x z t x z e     (26) 

 

where  t  denotes the frequency of the plate  and time respectively. Substituting the values of T  from (26) in 

Eq. (21), we obtain 
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Using Eqs. (26) in (24) and (25), yield 
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4    THERMAL FIELD ON THE THICKNESS DIRECTION  

 

The thermal gradient of the plate is very small as compared to that along its thickness direction 

 x z
 

 
, then the Eq. (29) is given as: 
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In this case, we assume that there is no heat across the upper and lower surfaces of the plate, then we get 
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Using conditions (32), the general solution of Eq. (29) is written as: 
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The thermal moment can be written with the aid of Eq. (33) in Eq. (31) as: 
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where 
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Substituting Eq. (34) on Eq. (28), we obtain 
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where
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 
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5    BOUNDARY CONDITIONS 
 

We consider a micro plate whose ends are either clamped-clamped (CC) or simply supported (SS), so we have 

following Rao [22] for the two set of boundary conditions:  

Case (i) For Clamped-Clamped (CC) 

 

0, 0,  at   0, 
dW

W x L
dx

         (38) 

 

Case (ii) For Simply supported (SS) 

 
2

2
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d W
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The solution of Eq. (36) is given by 

 

  1 2 3 4 sin cos sinh cosh .W x D x D x D x D x             (40) 

 

Substituting Eq. (40) in the boundary conditions (38) and (39), we obtain the following set of frequency 

equations 

 

Case (i)    cos cosh 1,L L         (41) 

 

Case (ii)    sin sinh 0.L L    (42) 

 

The characteristic roots of the Eqs. (41) and (42) are given by 
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Case (ii)   ,     
n

n I
L


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Substituting Eqs. (43) and (44) in (40), yield the vibration solution for thermal deflection as: 
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where 
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Case (i)   

2 2 * *
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4
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n D D
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  (46) 

 

Case (ii)   

* *2 2

2
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D Dn
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


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6    DAMPING AND FREQUENCY SHIFT  

In the presence of thermoelastic coupling and thermal relaxation time, the vibration frequency of the plate can be 

written as: 
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and following Sharma [25], we can replace  *f p

 

with  0f  and expand Eq. (49) up to first 

order, we obtain 
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The quantity 
*2p  in Eq. (31) are complex in nature, therefore by using Euler theorem we get 
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Replacing n  with 0   in Eqs. (51), we obtain 
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The frequency n  is complex in nature and hence we take 
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Following Sharma [25], the thermoelastic damping and frequency shift in a thermoelastic circular plate are taken 

as: 
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7    PARTICULAR CASES  

If couple stress parameter  0 ,   then Eqs. (55) and (56), yield the thermoelastic damping and frequency shift for 

dual-phase-lag thermoelastic plate. 

Taking  
2

00,  ,T q q       in Eqs. (55) and (56), we obtain thermoelastic damping and frequency shift for 

modified couple stress Lord-Shulman (LS) thermoelastic plate. 

8    NUMERICAL RESULTS AND DISCUSSION  

The mathematical model is prepared with magnesium material for the purpose of numerical computations. The 

material constants of the problem are taken from Daliwal and Singh [5], Kumar et al. [12]. The values of 

thermoelastic damping 
1Q 

 and frequency shift s  of first two vibration modes have been computed from Eqs. 

(57) and (58) in the absence and presence of couple stress. The numerical computations have been carried out with 

the help of MATLAB software for magnesium material. The computed simulated results have been presented 

graphically in Figs. 1-8 for clamped-clamped and simply supported plates for varying values of thickness and 

length. In all these Figs., solid line represent to modified couple stress dual phase lag thermoelastic plate (CDPL), 

small dash line represent to dual phase lag thermoelastic plate (DPL), small dotted line represent to modified couple 

stress thermoelastic plate (LS) for few vibration modes respectively. The constants were taken as: 
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Fig.1 

Damping of few vibration modes versus thickness (h) in a 

clamped-clamped (CC) plate of fixed length. 
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Fig.2 

Damping of few vibration modes versus thickness (h) in a 

simply supported-simply supported (SS) plate of fixed  
Length. 
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Fig.3 

Frequency shift of few vibration modes versus thickness (h) in 

a clamped-clamped (CC) plate of fixed length. 
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Fig.4 

Frequency shift of few vibration modes versus thickness (h) in 

a simply supported-simply supported (SS) plate of fixed length. 
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Fig.5 

Damping of few vibration modes versus length (L) in a 

clamped-clamped (CC) plate of fixed thickness. 
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Fig.6 

Damping of few vibration modes versus length (L) in a simply 

supported-simply supported (SS) plate of fixed thickness. 
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Fig.7 

Frequency shift of few vibration modes versus length (L) in a 

clamped-clamped (CC) plate of fixed thickness. 
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Fig.8 

Frequency shift of few vibration modes versus length
 
(L)  in a 

simply supported-simply supported (SS) plate of fixed 

thickness. 

 
Fig. 1 depicts the thermoelastic damping in a clamped-clamped plate of first two vibration modes for dual-phase-

lag model with varying values of thickness. It is observed that the damping factor initially increases to attain 

maxima and then decreases in the assumed range of thickness. The damping factor has smaller value in the presence 

of couple stress in comparison to absence of couple stress for dual-phase-lag model, while the damping factor 



                                                                                                                                             Sh.Devi and R.Kumar                      711                       
 

© 2020 IAU, Arak Branch 

observed larger value in case of L-S theory. It is clear from the figure that the peak value of damping factor for 

vibration mode (n = 2 )  is higher than that of v i b r a t i o n  m o d e  ( n =  1) for all cases of thermoelasticity. Fig. 2 

represents the thermoelastic damping in a simply supported plate of first two vibration modes for dual-phase-lag 

model with varying values of thickness. The behaviour and variation of thermoelastic damping are similar for all 

cases and first two vibration modes. It is observed that the peak value of damping factor for first vibration mode is 

larger in comparison to second vibration mode. Moreover, the damping factor has smaller value for CDPL than that 

of DPL and LS theories. Fig. 3 exhibits the frequency shift in a clamped-clamped plate of first two vibration modes 

for dual-phase- lag model with varying values of thickness. It is observed that trend of variation of frequency shift is  

same for vibration modes (n = 1, 2) . It is also observed that the frequency shift has larger value for first vibration 

mode than that of second vibration mode. The frequency shift has observed higher value in case of LS theory than 

that of CDPL, DPL models. Fig. 4 represents the frequency shift in a simply supported plate of first two vibration 

modes for dual-phase-lag model with varying values of thickness. Frequency shift increases initially to attain 

maximum value and then decreases in the considered range of thickness for all cases and vibration modes. It is 

observed that the frequency shift has smaller value under the effect of couple stress dual phase lag model in 

comparison to dual phase lag and L-S models. Fig. 5 depicts the thermoelastic damping for dual-phase-lag model in 

a clamped-clamped plate of first two vibration modes with varying values of length. It is observed that the behaviour 

of thermoelastic damping is same but its variation is different for first two vibration modes. The damping factor 

initially increases smoothly with peak value and then decreases in the remaining range of thickness. Moreover, the 

damping factor observed larger value in case of CDPL than that of DPL and LS models. Fig. 6 exhibits the 

thermoelastic damping for dual-phase-lag model in a simply supported plate of first two vibration modes with 

varying values of length. It is observed that damping factor has observed larger value for second vibration mode in 

comparison with first vibration mode. The peak value of damping factor is higher in the presence of couple stress 

and smaller in the absence of couple stress. Fig. 7 represents the vibrations of frequency shift in case of clamped-

clamped plate with varying values of length. The frequency shift increases rapidly with increasing values of 

thickness to attain maximum value and then decreases smoothly in the considered range of thickness. It is noticed 

that the frequency shift observed larger value in the presence of couple stress and smaller value for absence of 

couple stress. The peak value of frequency shift increases with increasing values of vibration modes. Fig. 8 depicts 

the vibrations of frequency shift in case of simply supported plate with varying values of length. The trend of 

variation is similar for all cases and both vibration modes. It is observed that frequency shift increases to attain 

maxima and then decreases in the assumed region for CDPL, DPL and LS models. The frequency shift observed 

higher value for vibration mode (n = 2) than that of vibration mode (n = 1) for all cases. 

8    CONCLUSION 

The vibrations of thin plate in modified couple stress thermoelastic medium has been discussed in the context of 

Kirchhoff-Love plate theory and dual-phase-lag thermoelastic model. The mathematical expressions for 

thermoelastic damping of vibration and frequency shift are obtained for thermoelastic plate. Damping factor and 

frequency shift with varying values of length and thickness are shown graphically to show the effect of couple stress 

and vibration modes for clamped-clamped and simply- supported boundary conditions. It is observed that the 

thermoelastic damping of simply supported plate has observed larger value than that of clamped plate in case of 

varying values of thickness for first and second modes of vibration, while thermoelastic damping observed smaller 

value for simply supported plate in comparison with clamped plate in case of varying values of length for few 

vibration modes. The frequency shift observed similar behaviour for clamped-clamped as well as simply supported 

plate for first two vibration modes of thermoelastic plate with dual-phase-lag model. It is also observed that the 

damping factor and frequency shift have noticed larger value in the presence of couple stress for varying values of 

length in case of both vibration modes and boundary conditions but opposite trend is observed for varying values of 

thickness. 
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