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 ABSTRACT 

 In the present research, a unified formulation for free vibration analysis 

of the bidirectional functionally graded conical and cylindrical shells and 

annular plates on elastic foundations is developed. To cover more 

individual cases and optimally tailored material properties, the material 

properties are assumed to vary in both the meridian/radial and transverse 

directions. The shell/plate is assumed to be supported by a non-uniform 

Winkler-type elastic foundation in addition to the edge constraints. 

Therefore, the considered problem contains some complexities that have 

not been considered together in the available researches. The proposed 

unified formulation is derived based on the principle of minimum total 

potential energy and solved using a differential transform analytical 

method whose center is located at the outer edge of the shell or plate; so 

that the resulting semi-analytical solution can be employed not only for 

truncated conical shells and annular plates, but also for complete conical 

shells and circular plates. Accuracy of results of the proposed unified 

formulation is verified by comparing the results with those of the three-

dimensional theory of elasticity extracted from the ABAQUS finite 

element analysis code. A variety of the edge condition combinations are 

considered in the results section. A comprehensive parametric study 

including assessment of influences of the material properties indices, 

thickness to radius ratio, stiffness distribution of the elastic foundation, 

and various boundary conditions, is accomplished. Results reveal that 

influence of the meridian variations of the material properties on the 

natural frequencies is more remarkable than that of the transverse 

gradation.                          © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Free vibration; Bidirectional functionally graded; Conical 
and cylindrical shells; Annular plates; Non-uniform elastic foundation. 

1    INTRODUCTION 

 ANY structural components have been formed in the shape of a shell of revolution. The circular/annular and 

conical/cylindrical shells are among the common examples of this kind of structures. The main reason for 
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commonly using the motioned structures is the geometrical symmetry; so that more simpler and economic 

manufacturing processes may be used and less energy dissipation (e.g., heat transfer), coating costs, rotational 

capability, etc. may be achieved. Using functionally graded material properties enables establishment of a somewhat 

uniform resulting effective stress to strength ratio in the structure, through accurately tailoring variations of the 

material properties. Since the stresses of the axisymmetric structures vary in both meridian/radial and thickness 

directions, a bidirectional functionally graded material should be employed to accomplish the mentioned aim more 

properly.  To this end, proper shell/plate theories may be used to accurately simulate the structure.  Various form of 

the shell theories have been proposed so far. More details may be found in the comprehensive books published by 

Quta [1], Reddy [2], Shen [3], Carrera et al. [4], and Tornabene and Fantuzzi [5]. The main difference between all of 

these theories was the form the transverse interpolating function; so that apart from the polynomial, trigonometric, 

hyperbolic interpolating functions, piecewise defined (layer wise, zigzag, and global-local theories) have been 

developed. It is evident that last category of theories reduces to the previous category for the single-layer 

functionally graded shells, unless the thickness is divided to artificial layers. On the other hand, since assumptions of 

the first-order shear-deformation theories (FSDTs) holds largely in the relatively rigid functionally graded shells, 

using high-order theories may be neither economic nor more accurate. Results of the FSDT may be especially 

justified for the global responses. Using higher order approximations (that what really is) may even lead to 

erroneous results in some situations [2] due to the oscillatory nature of the interpolation functions. Efraim and 

Eisenberger [6] used exact element method to analyze the vibration of variable thickness annular FGM plates based 

on FSDT. Hosseini-Hashemi et al. [7] presented an approach for in-plane/out-of-plane free vibration of circular and 

annular moderately thick FGM plates. Based on 3D elasticity theory, dynamic analysis of multi-directional FGM 

annular plates was investigated by Nie and Zhong [8] using the state-space-based DQM. Malekzadeh et al. [9] 

studied free vibration of elastically supported FGM annular plates in thermal environments.  Jodaei et al. [10] 

performed a free vibration analysis for FGM annular plates by the state-space based DQM. Dong [11] presented 

three- dimensional free vibration analysis of FGM annular plates using Chebyshev–Ritz method. Shariyat and 

Alipour have presented analytical solutions for free vibration of circular [12-15] and annular [16] 

transverse/bidirectional elastic/viscoelastic FGM plates with uniform/variable thickness with or without elastic 

foundations. The fully coupled thermo-mechanical behavior of bi-directional functionally graded material (FGM) 

beam structures is studied by Lezgy-Nazargah [17]. Free vibration analysis of variable thickness viscoelastic circular 

plates made of heterogeneous materials was performed by M Shariyat et al. [18]. Free vibration and modal stress 

analyses of thin circular plates resting on two-parameter elastic foundations were investigated by Alipour et al. [19]. 

Analysis of functionally graded and layered neutral magneto-electro-elastic plates resting on two-parameter elastic 

foundations was performed by Lezgy-Nazargah and Cheraghi [20]. Free vibration of FGM plates rested on two-

parameter elastic foundations were investigated by Lezgy-Nazargah and Meshkani [21].  

In contrast to cylindrical shells [22-31], a few researches may be found in literature on the functionally graded 

annular plates and conical shells. A finite element formulation based on the FSDT was used by Bhangale et al. [32] 

to study the thermal buckling and vibration behavior of truncated transversely FGM conical shells in a high-

temperature environment, employing a Fourier series expansion for the displacement variable in the circumferential 

direction. Tornabene [33] and Tornabene et al. [34] presented free vibration analysis for transversely graded conical, 

cylindrical shell and annular plates, based on the FSDT and the GDQ solution procedure. Qu et al. [35] developed a 

general formulation for free, steady-state, and transient vibration analyses of transversely graded shells of revolution 

subjected to arbitrary boundary conditions, using the FSDT. Fourier series and polynomials are applied to expand 

the displacements and rotations of each shell segment. Free vibration and stability of transversely graded truncated 

and complete conical shells with free/clamped boundary conditions subjected to external pressures were investigated 

by Sofiyev [36, 37], using Donnell shell theory, Galerkin method, and the stress function concept. Malekzadeh [38] 

presented a three-dimensional free vibration analysis for the FGM truncated conical shells subjected to thermal 

environment, solving the resulting equations by the DQ method. Sofiyev [39] investigated non-linear free vibration 

of the transversely graded truncated conical shells, using Donnell shell theory and the stress function concept.  

Najafov and Sofiyev [40] extended this approach by considering a surrounding Pasternak elastic medium. Influences 

of centrifugal and Coriolis forces and the material parameters on free vibration of rotating transversely graded 

truncated conical shells subjected to different boundary conditions were investigated by Malekzadeh and 

Heydarpour [41] based on the FSDT and DQM solution procedure. Sofiyev [42] investigated dynamic buckling 

truncated conical shells with functionally graded coatings and subjected to axial load in the large deformation. 

Donnell-Mushtari shell theory, von Karman kinematic non-linearity, and the stress function concepts were used. 

Sofiyev [43] studied the nonlinear vibration of heterogeneous orthotropic truncated conical shells resting on the 

Winkler–Pasternak elastic foundations. The formulation was based on the Donnell shell theory and von Karman 

geometric nonlinearity. The basic equations were reduced to time-dependent geometrical nonlinear differential 

https://www.sciencedirect.com/topics/engineering/functionally-graded-material
https://www.sciencedirect.com/topics/engineering/beam-structure
https://www.sciencedirect.com/science/article/pii/S1270963815001534#!
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equations and solved using homotopic perturbation method. Xie et al. [44] provided a FSDT based solution based on 

Haar wavelet discretization and Fourier series in the axial and circumferential directions, respectively, for the free 

vibration analysis of the transversely graded conical shells and annular plates. A unified solution for free vibration 

analysis of transversely graded cylindrical, conical shells and annular plates with general boundary conditions was 

presented by Su et al. [45] using the FSDT and Rayleigh–Ritz procedure. Modified Fourier series expressed the 

displacement and rotation parameters. Su et al. [46] presented a three-dimensional vibration analysis for the 

mentioned structures, considering arbitrary elastic restraints. Tornabene et al. [47] present a free vibration analysis 

for free-form doubly curved shell structures using higher-order equivalent single layer theories. The resulting 

equations are solved by the GDQ method. Based on their previous works, Sofiyev and Kuruoglu [48] studied free 

vibration of FGM truncated conical shells under mixed boundary conditions. 

In the present research, a unified formulation that may be simultaneously used for free vibration analysis of the 

bidirectional functionally graded conical and cylindrical shells and annular plates on non-uniform Winkler-type 

elastic foundations is proposed. Gradation of the material properties is assumed to be in both the meridian/radial and 

transverse directions. The proposed unified formulation is derived based on the principle of minimum total potential 

energy and solved using a differential transform analytical method whose center is located at the outer edge of the 

shell/plate. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of 

the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the 

edge condition combinations are considered and a comprehensive parametric study including assessment of 

influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation, 

and various boundary conditions, is accomplished. 

2    THE UNIFIED FORMULATION  

2.1 Description of variations of the material properties and the elastic foundation 

Consider a two directional functionally graded conical shell with the length L, constant thickness h, inner and outer 

radius Ri and Ro, resting on a non-uniform elastic foundation, as shown in Fig. 1. It is assume that the material 

properties are graded in the meridian and transverse directions. 

 

   

   

2

0 1 2

2

0 1 2

( , )

( , )

m c m c

m c m c

E x z E E V E x x

x z V x x

  

      

      

      

 (1) 

 

where cE , c  and mE , m  represent Young’s modulus and mass density of the ceramic and metal constituent 

materials, respectively. Vm is the volume fraction of the ceramic. αi and βi (i=1,2,3) are the coefficients of the 

meridian variations of Young’s modulus and mass density, respectively. The ceramic volume fraction is assumed to 
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Fig.1 

Geometric parameters of the bi-directional FGM conical shell. 
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2.2 Derivation of the governing equations 

Based on the First-order Shear Deformation Theory, the displacement field of axisymmetric shell can be defined as: 
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where u0 and w denote the mid-plane displacements in the x and z directions, respectively. x  is the transverse 

normal rotation of the normal to the reference surface and t represents the time. For small deflections of conical 

shells, the strain-displacement relations may be written as: 
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where x  and   are the normal strain components and xz
 
indicate the transverse shear strain. R0 is the radius of the 

cone in any plane perpendicular to cone axis. 

On the other hand, if the transverse normal strain can be neglected, Hooke's generalized stress-strain law may be 

expressed as:    
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The governing equations of motion may be derived by using the minimum total potential energy principle. 

Employing this principle leads to the following three equations of motion for the plate under consideration in the 
cylindrical coordinate system (r, θ, z):  
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Details of derivation of Eq. (9) are not included in the present paper to save space. Based on Eq. (5), The stress 

resultants M, N, Q are defined as: 
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The governing Eqs (9) may be simplified and rewritten based on Eqs. (10-12) as: 
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2.3 The mathematical forms of the boundary conditions 

We consider some most common edge conditions of the solid circular plates to develop the semi-analytical solution: 

Roller-supported edge: 
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3    THE ANALYTICAL DIFFERENTIAL TRANSFORM SOLUTION  
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In practical applications, the functions must be expressed by means of finite series. By substituting Eq. (15) into 

the governing Eq. (13) and performing some manipulations, the transformed form of Eq. (13) may be obtained as:  
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By substituting Eq. (15) into the boundary condition Eq. (14), the transformed form of Eq. (14) may be written 

as:  
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(17) 

 

Obtaining Taylor’s series expansion of the dimensionless displacements based on Eq. (16) and substituting the 

resulted expression into the boundary conditions (17), the resulted equations can be expressed in the following 

matrix form: 

 
( ) ( ) ( ) ( ) ( ) ( )

11 12 13 14 15 16

( ) ( ) ( ) ( ) ( ) ( )

21 22 23 24 25 26

( ) ( ) ( ) ( ) ( ) ( )

31 32 33 34 35 36

( ) ( ) ( ) ( ) ( ) ( )

41 42 43 44 45 46

( ) ( ) ( ) ( ) ( ) ( )

51 52 53 54 55 56

( ) ( ) ( )

61 62 63 6

N N N N N N

N N N N N N

N N N N N N

N N N N N N

N N N N N N

N N N

     

     

     

     

     

   

0

1

0

1

0

( ) ( ) ( )
1

4 65 66

0

0

0

0

0

0N N N

U

U

W

W 

     
     
     
                   

    
            

  
 (18) 

 

where ij are polynomials in terms of Ω corresponding to nth term. 

Existence condition of the non-trivial solutions yields the following characteristic determinant: 

 
( ) ( ) ( ) ( ) ( ) ( )

11 12 13 14 15 16

( ) ( ) ( ) ( ) ( ) ( )

21 22 23 24 25 26

( ) ( ) ( ) ( ) ( ) ( )

31 32 33 34 35 36

( ) ( ) ( ) ( ) ( ) ( )

41 42 43 44 45 46

( ) ( ) ( ) ( ) ( ) ( )

51 52 53 54 55 56

( ) ( ) ( )

61 62 63 6

N N N N N N

N N N N N N

N N N N N N

N N N N N N

N N N N N N

N N N

     

     

     

     

     

    ( ) ( ) ( )

4 65 66

0

N N N 

   
 (19) 

4    RESULTS AND DISCUSSIONS  

The numerical results are tabulated in Tables 1–9 and illustrated in Figs. 2-3 for bidirectional functionally graded 

conical/cylindrical shells and annular plates resting on elastic foundation under different boundary conditions. In 

order to validate the present analysis, finite element (FE) simulations via commercially available FE code ABAQUS 

are undertaken in all tables for annular, cylindrical and conical shells and compared with obtained results. A 20-node 

brick element with parabolic basis function C3D20R, which yields more accurate stresses than shell elements in the 
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thickness direction, is used. Comparison shows excellent agreement between the results from these tables and 

maximum error is less than 3%. The dependence of natural frequencies on the geometrical parameters, e.g. Ri/Ro and 
h for annular plates, R and h for cylindrical shells, R, h and φ for conical shells is presented in Tables 1-3. The 

Young’s modulus varies linearly with thickness coordinate. From Table 1, it is observed that the increase of the 
Ri/Ro ratio yields an increase in the ωi (i=1, 2, 3) but the fundamental frequency, ω1 affected more significantly. 

Similar results also can be concluded for cylindrical and conical shells in Table 2 and 3 by increasing radius or φ. In 

addition, the effect of thickness is more notable compared to radius. Similar results can be observed for 

conical/cylindrical shells and annular plates with linear variation of density and Young’s modulus in x-direction in 
Tables 4-6. It is obvious from these tables that when the thickness increases, ωi increases. Moreover, the restriction 

of edge increased due to change of boundary conditions from free-end to simply-supported or from simply-

supported to clamped edge; hence it leads to highest natural frequencies. 

 
Table 1  

First three natural frequencies of foundationless bidirectional annular FGM plates with different boundary conditions and inner to 
outer radius ratios (g = 1, γi = 0, α0 = β0 = 1, α1,2 = β1,2 = 0). 

 
 

Table 2  

First three natural frequencies of foundationless bidirectional cylindrical FGM plates with different boundary conditions and 
inner to outer radius ratios (h=0.1, g = 1, γi = 0, α0 = β0 = 1, α1,2 = β1,2 = 0). 

 

Boundary 

Condition 

Frequency  

(Hz) 

h=0.1     Ri/Ro=0.1 h=0.2      Ri/Ro =0.1 h=0.2     Ri/Ro =0.2 

Present 
3D 

(ABAQUS) 
Difference 

(%) Present 
3D 

(ABAQUS) 
Difference 

(%) Present 
3D 

(ABAQUS) 
Difference 

(%) 

Annular           

C-C 

1  922.47 925.62 0.34 1518.9 1540.2 1.39 1868.2 1898 1.55 

2  2346.5 2363.5 0.72 3467.1 3541.4 2.1 4146.8 4248 2.37 

 3  4223.8 4272.2 1.13 5461.8 5436.5 0.47 5868 5850 0.32 

C-S 

1  618.92 618.13 0.13 1068.7 1076.5 0.73 1345.2 1357 0.86 

2  1954.9 1961.5 0.34 2918 2873.6 1.55 3079.6 3038 1.38 

 3  2921.9 2877.2 1.55 3065.4 3113.3 1.54 3730.8 3799 1.79 

S-C 

1  786.04 790.72 0.59 1401.4 1382 1.4 1601.8 1619 1.08 

2  2128.7 2144 0.71 3356.4 3383.6 0.8 3930.8 4007 1.89 

 3  3976.2 4017 1.02 5759.6 5840 1.38 4568.9 4585 0.34 

C-F 

1  154.23 153.26 0.63 293.34 292.55 0.27 359.69 359 0.2 

2  863.94 862.71 0.14 1443.6 1453.7 0.7 1799.5 1815 0.84 

 3  2353.6 2361.6 0.34 2924.6 2878.2 1.61 3091.8 3047 1.48 

F-C 

1  364.82 366.2 0.38 686.23 691.49 0.76 704.97 709.9 0.7 

2  1347.1 1355.5 0.62 2279.7 2310.6 1.34 2429.2 2460 1.25 

 3  2871.9 2897.3 0.88 4405.6 4491.3 1.91 4568.6 4574 0.11 

Boundary 
Condition 

Frequency 
(Hz) 

R=L=1 R=1,L=2 R=L=2 

Present 
3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 

Cylindrical           

C-C 
1  1571.4 1584.4 0.82 1378.5 1392.5 1.01 712.97 716.21 0.45 

2  2392.8 2408.5 0.65 1415 1424 0.63 860.6 863.29 0.31 

 3  3858.4 3893.6 0.9 1694.3 1705 0.62 1243.7 1248.4 0.38 

C-S 
1  1414.9 1424 0.64 1013 1010.5 0.24 668.56 671.1 0.38 

2  2091.1 2095.7 0.22 1368 1378.8 0.78 799.03 801.03 0.25 

 3  2250.8 2254.9 0.18 1443.7 1455.7 0.82 1090.2 1090.5 0.03 

S-S 
1  1370.2 1380.4 0.74 1298 1309.9 0.91 663.37 670 0.99 

2  1909.1 1915 0.31 1377.1 1380.4 0.24 753.22 757.75 0.6 

 3  3187.1 3201 0.44 1525.7 1551.6 1.67 1029.6 1037.2 0.73 

C-F 
1  1317.2 1329.5 0.93 1012.6 1010.2 0.24 657.35 660.47 0.47 

2  1514.6 1524.3 0.63 1322.7 1336.1 1 686.26 688.95 0.39 

 3  2171.8 2170.8 0.05 1384.8 1396.6 0.84 857.11 859.31 0.26 
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Table 3  

First three natural frequencies of foundationless bidirectional conical FGM plates with different boundary conditions and inner to 
outer radius ratios (h=0.1, g = 1, γi = 0, α0 = β0 = 1, α1,2 = β1,2 = 0). 

 

Table 4  

First three frequencies of annular plate for difference thickness values (g = 0, γi = 0,  m c m

x
E E E E

L
   ,  m c m

x

L
      ). 

 

 

Boundary 

Condition 
 

Frequency 

(Hz) 

R=L=1 R=1,L=2 R=L=2 

Present 
3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 

Conical            

C-C 

6
 

 

1  909.009 913.73 0.52 412.11 413.19 0.26 312.51 313.17 0.21 

2  2047.621 2063.3 0.76 662.97 665.01 0.31 597.03 598.97 0.32 

3  3643.951 3681.6 1.02 1115.2 1119.8 0.41 1073.3 1078 0.43 

4
 

 

1  1052.829 1058.3 0.52 585.02 587.16 0.36 409.16 410.15 0.24 

2  2114.614 2129.9 0.72 792.61 795.17 0.32 652.44 654.36 0.29 

3  3684.975 3722 0.99 1202.3 1206.9 0.38 1106.7 1111.2 0.4 

3
 

 

1  1222.592 1222.1 0.27 788.29 792.25 0.5 513.06 514.62 0.3 

2  2199.743 2210.7 0.28 958.98 962.78 0.39 719.48 721.53 0.28 

3  3737.157 3771 0.54 1322.4 1327.4 0.38 1148.8 1153.2 0.38 

F-C 

6
 

 

1  579.6134 581.19 0.04 398.95 399.97 0.25 275.51 276 0.18 

2  961.9995 964.67 0.5 512.29 513.33 0.2 337.75 338.19 0.13 

3  2126.474 2138 0.9 719.73 720.99 0.17 614.84 616.14 0.21 

4
 

 

1  827.609 825.04 0.31 580.96 583.01 0.35 392.13 393.1 0.25 

2  1103.661 1102.2 0.13 703.72 705.91 0.31 445.84 446.78 0.21 

3  2181.32 2189.8 0.39 879.65 881.91 0.26 670.7 672.03 0.2 

3
 

 

1  1052.594 1048.3 0.41 786.8 790.75 0.5 501.18 502.72 0.31 

2  1257.304 1253.4 0.31 889.57 892.8 0.36 548.82 550.56 0.32 

3  2230.887 2234.5 0.16 1055.01 1059 0.38 735.05 736.61 0.21 

Boundary 

Condition 
 

Frequency 

(Hz) 

Ri/Ro=0.1 Ri/Ro=0.2 Ri/Ro=0.5 

Present 
3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 

Annular            

C-C 

h=0.1 
1  931.95 939.65 0.82 1165.6 1176.9 0.96 2626.5 2667 1.52 

2  2350.2 2374.5 1.02 2887.7 2922.3 1.18 5978.1 6092 1.87 

3  4199.8 4253.2 1.26 5078 5151.7 1.43 8395.2 8480.3 1 

h=0.2 
1  1486.2 1508.3 1.46 1823.6 1853.3 1.6 3596.7 3681.5 2.3 

2  3406.8 3471.6 1.87 4047 4132 2.06 7335.4 7558.3 2.95 

3  5355.7 5385.6 0.56 5673.4 5722.7 0.86 8395.2 8502 1.26 

S-C 

h=0.1 
1  821.79 822.42 0.08 989.47 990.1 0.06 2224.8 2235.9 0.49 

2  2195.5 2204.2 0.39 2664.3 2678.9 0.54 5502.7 5490.6 0.22 

3  4050.3 4080.8 0.75 4485 4483.1 0.04 5667 5736.4 1.21 

h=0.2 
1  1394.7 1402.9 0.59 1670.7 1681.7 0.65 3352.2 3399.4 1.39 

2  3353.2 3397.7 1.31 3971.4 4032 1.5 5502.7 5493.9 0.16 

3  4841.2 4866 0.51 4485 4482 0.07 7324.2 7496.5 2.3 

F-C 

h=0.1 
1  428.28 429.15 0.2 446.88 446.72 0.04 810.21 808.73 0.18 

2  1437.9 1442.3 0.3 1586.7 1588.3 0.1 3240.2 3257.3 0.52 

3  2979.1 2995.9 0.56 3427.3 3445.2 0.52 5502.7 5489.4 0.24 

h=0.2 
1  800.89 805.02 0.51 834.86 837.09 0.27 1449 1452 0.2 

2  2405.3 2428.3 0.95 2613.8 2634.5 0.78 4697.7 4766.7 1.45 

3  4500 4563.7 1.4 4485 4478.4 0.15 5502.7 5492.2 0.19 
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Table 5 

 First three frequencies of Cylindrical shell for difference thickness and radius values (L=1, g = 0, γi = 0,  m c m

x
E E E E

L
   ,

 

 m c m

x

L
      ). 

 

 

Table 6  

First three frequencies of Conical shell for difference thickness and radius values (L=1, g = 0, γi = 0,  m c m

x
E E E E

L
   , 

 m c m

x

L
      ). 

 

The effect of non-homogeneity material and density parameters in the x-direction are tabulated in Table 7 for 
different values of αi and βi. The nonlinearity of elastic modulus and density increased by considering more 

coefficients. It is evident from this table that natural frequencies take larger values, provided that either Young’s 
modulus coefficients, αi or density coefficients, βi, increase.  

 

Boundary 

Condition 

Frequency 

(Hz) 

h=0.1      R=1 h=0.2      R=1 h=0.2      R=2 

Present 
3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 

Cylindrical           

C-C 

1  1525.8 1528.1 0.15 1849.2 1858.2 0.48 1465.8 1479.8 0.95 

2  2350.8 2359.9 0.38 3206.3 3241.4 1.08 3042.2 3089.2 1.52 

3  3794.2 3825.6 0.82 4102.5 4137.2 0.84 4079.3 4113.8 0.84 

C-S 

1  1354.1 1351.6 0.18 1612.6 1608.2 0.28 1238.8 1239.9 0.09 

2  2127.1 2128.1 0.05 2499.3 2495 0.17 2481.6 2475.1 0.26 

3  2533 2519.4 0.54 3081.6 3091 0.31 2875.5 2901.5 0.89 

S-S 

1  1323.7 1322.1 0.12 1452.4 1445.1 0.5 952.75 949.19 0.38 

2  1902 1895.3 0.35 2701.4 2695 0.24 2482 2491.2 0.37 

3  3196.8 3196.3 0.01 4250.7 4236.7 0.33 4234.9 4219.3 0.37 

C-F 

1  1017 1021.4 0.43 1076.3 1085 0.81 619.88 621.23 0.22 

2  1493 1490.7 0.15 1913.3 1912.1 0.06 1641.1 1645.6 0.27 

3  2414.8 2418 0.13 2524.6 2515.7 0.35 2487.7 2479.6 0.33 

Boundary 

Condition 
 

Frequency 

(Hz) 

h=0.1      R=1 h=0.2       R=1 h=0.2       R=2 

Present 
3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 
Present 

3D 

(ABAQUS) 

Difference 

(%) 

Conical            

C-C 

6
 

 

1  912.75 916.72 0.43 1394.6 1409.4 1.05 1342.6 1359.5 1.24 

2  2043.7 2061.9 0.88 3019.6 3068.5 1.59 2998.8 3049.7 1.67 

3  3615.2 3656.7 1.14 4181.7 4221.8 0.95 4119.6 4157.7 0.92 

4
 

 

1  1051.2 1053.5 0.21 1488.3 1499.9 0.77 1373.4 1389.3 1.14 

2  2101.6 2117.9 0.77 3055.9 3101.1 1.46 3009.8 3059.8 1.63 

3  3647.9 3687.4 1.07 4162.7 4202.2 0.94 4110.5 4148.2 0.91 

3
 

 

1  1213.2 1214.2 0.08 1605.4 1614.4 0.56 1409 1423.8 1.04 

2  2176.6 2190.6 0.64 3102.8 3144.5 1.33 3022.6 3071.1 1.58 

3  3691.1 3728.1 0.99 4138.8 4177.7 0.93 4099.5 4136.4 0.89 

F-C 

6
 

 

1  495.23 494.72 0.1 598.47 595.67 0.47 440.11 438.75 0.31 

2  1022.8 1021.4 0.14 1667.3 1672.1 0.28 1593.9 1600.9 0.44 

3  2245 2251.6 0.29 2710.9 2703.9 0.26 2582.9 2575.7 0.28 

4
 

 

1  684.46 684.55 0.01 758.16 755.41 0.36 502.12 500.92 0.24 

2  1128.1 1125.6 0.22 1722.1 1724.1 0.12 1608.7 1614.8 0.38 

3  2288.1 2293.4 0.23 2663.4 2656.4 0.27 2561.9 2554.7 0.28 

3
 

 

1  848.59 849.78 0.14 907.91 907.12 0.09 560.45 559.77 0.12 

2  1254.5 1251.1 0.27 1790.6 1790.1 0.03 1624.6 1629.8 0.32 

3  2342.1 2346.6 0.19 2605.2 2598.1 0.27 2536.5 2529 0.3 
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Table 7  
Effect of non-homogeneity of material in the x-direction on the natural frequencies (R = L = 1, g = 0 (Al), γi = 0, h = 0.1). 
  

Freq. 

 0 1 2

0 1 2

1, 0

1, 0

  

  

  

  
 0 1 2

0 1 2

1

1, 0

  

  

  

  
 

0 1 2

0 1 2

1, 5

1

  

  

  

  
 

   C-C S-C F-C C-C S-C F-C C-C S-C F-C 

A
n

n
u

la
r 

P
la

te
 

 

 

1  
Present 510.79 393.36 128.98 560.39 434.87 148.27 650.73 520.02 199.75 

3D (ABAQUS) 517.46 395.89 129.51 567.54 437.43 148.78 658.82 522.74 200.28 
Difference (%)

 1.2896 0.6394 0.4059 1.2602 0.5862 0.3442 1.2275 0.5202 0.2623 

 

2  
Present 1304.6 1135.7 582.59 1424.7 1244.3 644.59 1633.8 1442 775.64 

3D (ABAQUS) 1325 1146.1 586.24 1446.6 1255 648.23 1658.5 1453.6 779.38 

Difference (%)
 

1.5386 0.9095 0.6229 1.5162 0.8522 0.5618 1.492 0.7954 0.4792 

 

3  
Present 2347.2 1728 1409.4 2558 1933.7 1544.1 2915.9 2425.1 1792.6 

3D (ABAQUS) 2389.9 1732.7 1421.9 2604 1937.9 1556.9 2967.7 2428.1 1806.2 

Difference (%)
 

1.7851 0.2737 0.8821 1.7651 0.2168 0.8221 1.7449 0.1256 0.7515 

C
o
n

ic
al

 S
h

el
l 

  
π

/4
 

 

1  
Present 674.73 596.2 518.16 736.8 647.5 539.74 851.84 750.63 584.99 

3D (ABAQUS) 678.75 596.83 517.95 741.06 647.92 539.4 856.63 750.76 584.63 

Difference (%)
 

0.5922 0.1048 0.0404 0.5748 0.0655 0.0639 0.5595 0.0171 0.0623 

 

2  
Present 1371.3 1207.6 732.32 1495.9 1321.2 796.39 1714 1528.8 932.93 

3D (ABAQUS) 1388.8 1215.1 733.31 1514.7 1328.9 797.29 1735.2 1536.8 933.79 

Difference (%)
 

1.2583 0.6211 0.135 1.2385 0.5764 0.1131 1.2197 0.5226 0.0924 

 

3  
Present 2386.3 1667 1465.6 2599.7 1871.2 1602.9 2962 2361.3 1856.6 

3D (ABAQUS) 2426.1 1671.6 1475.4 2642.5 1875.2 1612.7 3010.4 2364.2 1866.8 

Difference (%)
 1.6406 0.2758 0.662 1.6205 0.2115 0.6102 1.6075 0.1215 0.5484 

C
y
li

n
d

ri
ca

l 
S

h
el

l 

 

1  
Present 983.011 878.68 810.19 1064.2 943.76 830.37 1214.8 1075.8 874.19 

3D (ABAQUS) 984.39 877.41 811.35 1065.9 942.22 831.99 1217.5 1074.3 876.67 

Difference (%)
 

0.1401 0.1444 0.1431 0.161 0.1633 0.1947 0.2187 0.1439 0.2829 

 

2  

Present 1524 1362.9 960.44 1660.1 1488.1 1038.7 1900.2 1721.5 1203.9 
3D (ABAQUS) 1535.5 1364.8 959.99 1672.6 1489.9 1037.7 1914.5 1723.3 1202.4 

Difference (%)
 

0.7481 0.1416 0.0466 0.745 0.1181 0.0952 0.7477 0.1018 0.1252 

 

3  
Present 2479.6 1576.8 1526.6 2699.8 1779 1692.6 3073.5 2259.4 1991.4 

3D (ABAQUS) 2513 1581.3 1530.8 2735.7 1783 1696.4 3114.2 2262.5 1995.3 

Difference (%)
 

1.3287 0.2847 0.2762 1.3126 0.2245 0.2251 1.3058 0.1362 0.1941 

 

In Table 8, the variation of E and ρ in thickness direction is studied, by considering different values of g. it is 

seen that the natural frequencies increases with the increase of power variation, g. It can be also inferred that the 
effect of parameter g is less pronounced compared to parameters αi and βi. As it is expected, the natural frequencies 

increases as higher degrees of restraints are applied to the plate edges (from simply- supported to clamped edge).  

The effect of the foundation stiffness, kw on the first two natural frequencies are plotted in Figs. 2 and 3 for 

clamped-clamped and clamped-free boundary conditions, respectively. The results obtained for annular, conical and 
cylindrical shells. Generally, the annular plate has the smallest ωi and cylindrical shell has the greater one and 

natural frequencies of conical shells lays between them. From these figures, one can see that increase in the stiffness 
of foundation lead to less changes in the vibration behavior than the smooth ones, and the frequency parameters ωi 

increase. For conical shell, one can obtain that by increasing the angle φ, the ωi will be increase. In fact, the lower 

and upper limit of φ is 0 and π/2 which coincide with annular and cylindrical shell. As expected, the frequencies for 

clamped-clamped boundary condition are larger than those for clamped-free boundary condition. 
 

 
(a) 

 
(b) 

Fig.2 

First two natural frequencies for bidirectional functionally graded shell with clamped-clamped boundary condition (L=R=1, 
h=0.1, g=1, γ1= γ2=0, γ0=1). 
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(a) 

 
(b) 

Fig.3 

First two natural frequencies for bidirectional functionally graded shell with free-clamped boundary condition (L=R=1, h=0.1, 
g=1, γ1= γ2=0, γ0=1). 

 

 

Table 8  
Effect of non-homogeneity of material in two direction on the natural frequencies for different boundary conditions (R = L = 1, γi 

= 0, h = 0.1), Inner edge-outer edge: C-C, S-C. 

 

  

 
0 1 2

0 1 2

1, 0

1, 0

  

  

  

  
 0 1 2

0 1 2

1

1, 0

  

  

  

  
 0 1 2

0 1 2

1, 5

1

  

  

  

  
 

 

  g = 1 g = 2 g = 5 g = 1 g = 2 g = 5 g = 1 g = 2 g = 5 

A
n

n
u

la
r 

P
la

te
 

(φ
=

0
) 

 

 

C-C 
1  767.16 816.78 878.43 841.88 896.38 964.06 978.37 1041.9 1120.6 

2

 

1980.7 2113.7 2271.9 2163.1 2308.4 2481.2 2482 2648.9 2847.2 

3

 

3598.4 3848.4 4134.4 3921.4 4193.9 4505.6 4471.9 4783 5138.5 

 
S-C 

1  588.35 626.1 674 650.38 692.11 745.07 777.82 827.77 891.13 

2  1712.3 1825.4 1963.6 1875.5 1999.3 2150.7 2173.5 2317 2492.6 

3  2812.7 3033.2 3218.6 3146.8 3393.6 3601 3943 4252.1 4511.9 

C
o
n

ic
al

 S
h

el
l 

(φ
=

π
/6

) 

 

 

C-C 
1  906.84 967.89 1035 991.96 1058.7 1132.2 1149.3 1226.8 1312.2 

2

 

2042.4 2179.7 2338.3 2228.9 2378.8 2552 2555.6 2727.7 2926.6 

3

 

3637.9 3889.9 4174.7 3963.5 4238.1 4548.6 4518.5 4832 5186 

 

S-C 
1  769.44 822.03 877.06 840.04 897.38 957.83 982.99 1050 1121.6 

2  1780.7 1898.8 2037.1 1948.2 2077.3 2229 2254.3 2403.8 2579.8 

3  2762.2 2978.4 3160.4 3095 3337.1 3540.9 3889.9 4193.9 4449.6 

C
o
n

ic
al

 S
h

el
l 

(φ
=

π
/4

) 

 

C-C 
1  1051.8 1124.7 1199.1 1148 1227.6 1308.9 1326.9 1419.1 1513.4 

2  2109.5 2252.3 2413.3 2300.5 2456.3 2632 2636 2814.8 3016.4 

3  3678.7 3933.6 4219.1 4007 4284.7 4595.8 4566.7 4883.6 5238.3 

 

S-C 
1  940.73 1007.4 1071.6 1020.6 1092.9 1162.9 1180.5 1264 1346.1 

2  1854.1 1978.5 2119.2 2026.4 2162.2 2316.4 2341.7 2498.5 2677.5 

3  2704 2914.8 3092.2 3035.2 3271.6 3470.5 3828.4 4126.3 4376.7 

C
o
n

ic
al

 S
h

el
l 

(φ
=
π

/3
) 

 
C-C 

1  1221.9 1308.6 1392.3 1330.8 1425.2 1516.5 1533.8 1642.8 1748.5 

2  2194.5 2344.5 2509 2391.4 2554.9 2734.4 2738.5 2925.9 3131.7 

3  3730.4 3989.2 4276.1 4062.3 4344.1 4656.8 4628.2 4949.7 5306.1 

 

S-C 
1  1126.9 1209 1284.2 1216.6 1305.2 1386.8 1394.9 1496.4 1591 

2  1945.9 2078.2 2222.5 2124.2 2268.5 2426.6 2451.5 2617.9 2801.3 

3  2631.2 2834.7 3006.1 2960.7 3189.5 3382.1 3751.6 4041.4 4285 

C
y
li

n
d

ri
ca

l  S
h

el
l 

(φ
=

π
/2

) 

 

 

C-C 
1  1567 1681.5 1785.3 1695.5 1819.3 1932 1934.9 2076.4 2205.9 

2  2385.4 2551.7 2725.2 2597.8 2778.9 2968.1 2973.8 3181.6 3398.4 

3  3849.2 4117.4 4408.5 4190.6 4482.7 4799.8 4772.6 5106 5467.3 

 
S-C 

1  1428.7 1537.9 1633.4 1532 1648.7 1751.3 1739.5 1871.2 1988.7 

2  2143.2 2293.1 2446.3 2336.4 2499.7 2667.4 2695.9 2884.1 3078.8 

3  2515.7 2703.7 2862.9 2840.7 3053.3 3233.1 3616.7 3888.5 4117.5 

 

The effect of nonlinearity of elastic foundation on the natural frequencies are investigated in Table 9 by means of 
considering foundation coefficients, γi. It is interesting to note that the presence of elastic foundation cause the ωi to 
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be increased because the structure will be stiffer.  Moreover, when the stiffness of foundation changes from constant 

variation to linear and parabolic variation, the effect of elastic foundation is much pronounce. 
 

Table 9  

Effect of nonlinear elastic foundation on first three natural frequencies of the FGM annular, conical and cylindrical shells (g = 1). 
  910wk    910 1w

xk
L

    29
210 1 2 5w

x xk
L L

    

  C-C F-C F-C C-C C-C F-C 

 
Present 

3D 
(ABAQUS) 

Difference 
(%) Present 

3D 
(ABAQUS) 

Difference 
(%) 

Present Present 

A
n
n
u
la

r 

P
la

te
 

(φ
=

0
) 

  

1  819.67 824.06 0.53 321.86 322.06 0.06 842.84 345.84 923.07 397.71 

2  2005.2 2020.7 0.77 864.71 867.56 0.33 2014.6 882.73 2052.6 949.63 

3  3614.7 3652.2 1.03 2090.3 2101.9 0.55 3619.8 2098.8 3641.5 2134.4 

C
o
n
ic

al
 

S
h
el

l 

(φ
=

π
/6

)  1  950.56 954.8 0.44 643.02 644.04 0.16 970.74 656.75 1041.9 689.81 

2  2066.1 2081.3 0.73 1000.7 1002.9 0.22 2075.2 1015.6 2112 1072.3 

3  
3654.1 3691.5 1.01 2143.6 2154.7 0.52 3659.2 2151.7 3680.6 2185.7 

C
o
n
ic

al
 

S
h
el

l 

(φ
=

π
/4

)  

1  1088.9 1093.9 0.46 873.15 876.61 0.39 1106.7 884.38 1170.1 912.57 

2  2132.5 2147.3 0.69 1137.6 1140.3 0.24 2141.3 1149.9 2176.9 1198.2 

3  3695.1 3731.8 0.98 2197.5 2207.7 0.46 3700.1 2205.1 3721.2 2236.5 

C
o

n
ic

al
 

S
h

el
l 

(φ
=
π

/3
)  

1  1253.8 1260.4 0.52 1088.8 1095.5 0.61 1269.3 1098.3 1325.4 1122.5 

2  2216.9 2231.4 0.65 1287.1 1291.6 0.35 2225.4 1297.6 2259.5 1339.5 

3  3747.1 3783.1 0.95 2242.6 2248.9 0.28 3752 2247.6 3772.9 2266.1 

C
y
li

n
d
ri

ca
l 

S
h
el

l 

(φ
=

π
/2

)  

1  1595.8 1588.7 0.45 1344.6 1356.9 0.91 1607.9 1350 1651.5 1362.6 

2  2408.6 2405.1 0.14 1538.8 1547.6 0.57 2416.4 1548.5 2448.1 1585.5 

3  
3868 3879.1 0.29 2174.3 2173.2 0.05 3872.8 2175.2 3893.1 2177.9 

5    CONCLUSION 

In this paper, free vibration analysis of bidirectional FG conical and cylindrical shells and annular plates resting on 

non-constant elastic foundation were investigated based on the FSDT. The mechanical properties were assumed to 

vary exponentially along the transverse direction and parabolic in the meridian/radial direction. The elastic 

foundation was considered as a Winkler model with parabolic variation. Six complex equations of motion under 

proposed unified formulation considerations were analytically solved by using differential transform method. In all 

numerical assessment, comparison studies were conducted with FEM results to prove high accuracy of the current 

analytical approach. Fundamental frequencies of conical and cylindrical shells and annular plates under different 

combinations of free-end, simply-supported and clamped edge conditions were comprehensively studied by 

considering the effects of thickness, radius, non-homogeneity material parameters and foundation stiffness 

parameters. 
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