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 ABSTRACT 

 The present article express the magneto thermo electric deformation of 

composite nano fiber reinforced by graphene oxide powder (GOP). To 

reach the governing equation of the problem a higher-order 

trigonometric refined beam model is utilized according to Hamilton’s 

principle. The effect of a nonuniform magnetic and thermo piezo 

electric field is applied to the governing equations by combining the 

field relations with the displacement field equations. Then, obtained 

equations are solved by using Galerkin’s method to consider the 

influence of different boundary conditions on the vibrational responses 

of the fiber. The accuracy and efficiency of the presented model is 

verified by comparing the results with that of published researches. 

Further, the effects of different variant on the dimensionless frequency 

of GOP reinforced magneto piezo thermo elastic composite fibers are 

highlighted through tables and dispersion curves. The weight fraction 

of GOP and the magneto thermo electro effects have significant 

influence in the stiffness of the nano composites. 

                                  © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, the usage of grapheme oxide powder (GOP) in composite structures  as reinforcements in order to 

achieve the higher  efficiency of the structure has been attracting many researchers  in recent years. Graphene and 

its derivatives as reinforcement in polymer matrix possesses extraordinarily potential due to their supreme 

mechanical properties, improved reinforcing effects, considerable electrical and thermal conductivities and moderate 

cost Ni et al. [1]. Emam and Eltaher [2] studied the buckling and post buckling of composite beams in hygrothermal 

environments and they show that hygrothermal parameter has a great effect on both buckling and post buckling 
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response of composite beams. Arefi and Zenkour [3] studied the wave propagation analysis of a functionally graded 

magneto-electro-elastic Nano beam rest on Visco-Pasternak foundation, they identified from the curves that by 

increasing the non-homogeneous index and wave number tend to decrease in wave propagation phase velocities. 

Using nonlocal theory, Ke and Wang [4] reported the free vibration of size-dependent magneto–electro-elastic Nano 

beams. In this study, they found that the natural frequency of Nano beams is not sensitive to the temperature rise. 

Kheibari and Beni [5] investigated the size dependent electro-mechanical vibration of single-walled piezoelectric 

nanotubes using thin shell model. Selvamani and Ebrahimi [6] analysed the axisymmetric Vibration in a Submerged, 

Piezoelectric Rod Coated with Thin Film with the aid of Bessel function. Ke et.al [7] reported the thermo-electro-

mechanical vibration of size-dependent piezoelectric cylindrical Nano shells under various boundary conditions. 

From their model, they found that the nonlocal effect and thermoelectric loading have a significant effect on natural 

frequencies of piezoelectric Nano shells. Ebrahimi et al. [8] reported the thermal buckling analysis of magneto 

electro elastic porous FG beam in thermal environment. Thermal buckling of magneto-electro-elastic piezoelectric 

nanobeams was read by Alibeigi et al. [9] and they exposed the truth that the critical buckling temperature of the 

clamped nanobeam with uniform temperature rise is lower than that with linear temperature variation. Liu et al. [10] 

reported the three dimensional buckling and free vibration analyses of initially stressed functionally graded graphene 

reinforced composite cylindrical shell. Shen et al. [11] studied the buckling and post buckling of functionally graded 

graphene-reinforced composite laminated plates in thermal environments and they concluded with the highlights that 

the buckling loads as well as the post buckling strength of the GRC laminated plates may be enhanced through 

piece-wise functionally graded distribution of graphene. Zhang et al. [12] investigated the Mechanical analysis of 

functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory 

and they showed that GOP is superior to the single-walled carbon nanotubes and multi-walled carbon nanotubes in 

reinforcing the mechanical behaviors of polymer nanocomposite. García-Macías et al. [13] reported the Bending and 

free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. In their 

study, they revealed that functionally graded Graphite Nano Platelets can tune the overall stiffness of the composite 

plates.  

Martin-Gallego et al. [14] introduced the comparison of filler percolation and mechanical properties in graphene 

and carbon nanotubes filled epoxy nanocomposites. Im and Kim [15] developed the thermal conductivity of a 

graphene oxide–carbon nanotube hybrid/epoxy composite and they explored that  the wetting process utilizing the 

surface energy of GO and MWCNTs for preparing conductive polymer composites is appropriate for fabricating 

highly concentrated composites containing a GO/MWCNT hybrid filler with reasonably high mechanical properties. 

Ebrahimi et al. [16] analyzed the thermal vibration analysis of embedded graphene oxide powder-reinforced 

nanocomposite plates and they revealed that the frequency responses of the nanocomposite plates in a thermal 

environment dramatically depend on the distribution pattern of the GOPs. Ebrahimi et al. [17] constructed the 

modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal 

environment. In this research, they observed that the damping coefficient had a stiffness-softening effect on the 

structure in a way that during the inclusion of the damping coefficient the natural frequencies of the plate reduced as 

far as reached to zero in a critical point. Ebrahimi et al. [18] studied the vibration analysis of magnetically affected 

graphene oxide-reinforced nanocomposite beams. From their conclusion, they presented that the dimensionless 

frequency can be amplified using higher weight fraction for GOPs. Mao and Zhang [19] analyzed the linear and 

nonlinear free and forced vibrations of grapheme reinforced piezoelectric composite plate under external voltage 

excitation and they illustrated that the great potential of using GPLs in achieving smart structures with significantly 

improved structural stiffness. Mao and Zhang [20] developed the Buckling and post-buckling analyses of 

functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, they 

found that the GPLs have a significantly enhancing influence on the buckling and post-buckling strength of the FG-

GRP plates. Ebrahimi et al. [21] observed the bending analysis of magneto-electro piezoelectric Nano beams system 

under hygro-thermal loading.  Ebrahimi et al. [22] developed the dynamic characteristics of hygro-magneto-thermo-

electrical Nano beam with non-ideal boundary conditions. Ebrahimi et al. [23] reported the thermo-electro-elastic 

nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field.  Mahaveer sree jayan and 

selvamani [24] studied the chirality and small-scale effects on embedded thermo elastic carbon nanotube conveying 

fluid. Mahaveer sree jayan et al. [25] analysed the nonlocal dispersion analysis of a fluid conveying thermo elastic 

armchair single walled carbon nanotube under moving harmonic excitation, they shown that the dynamic 

displacement of fluid conveying SWCNT ratio is significantly affected by the load velocity and the excitation 

frequency. Rexy et al. [26] investigated the thermo piezoelectric sound waves in a nanofiber using Timoshenko 

beam theory incorporated with surface effect, they shown that the surface effect gives significant contribution to the 

physical variables. Selvamani et al. [27] reported the sound wave propagation in a Multiferroic thermo elastic nano 

fiber under the influence of surface effect and parametric excitation, they found that the frequency grows in the 
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presence of surface effect and decay as length increases both in Euler’s and Timoshenko beam theory. Calin et al. 

[28] investigated on the improved rigidity of composite circular plates through radial ribs. Vlase et al. [29] analysed 

the motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. 

Bhatti et al. [30] studied the swimming of motile gyro tactic microorganisms and nanoparticles in blood flow 

through anisotropically tapered arteries, they found that the shear stress at the wall is reduced due to an increment in 

the height of stenosis and the bio convection Rayleigh number. 

2    FORMULATION OF THE PROBLEM 

 

 

 

 

 
 
 

 

 

 

 

Fig.1 

Different patterns of the GOPRC fiber. 

 

In this study, three different patterns of reinforcement distribution are considered as shown in Figure 1.Through 

different patterns, the reinforcements are introduced in the matrix. These patterns can be generated by putting the 

fibers in a series of specified positions which can be calculated with (Ebrahimi et al. [18]) 
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where the total volume fraction *

GOPV   is defined as: 
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In which the subscript GOP and M represents the  GOP reinforcements and the matrix, respectively. In addition, 

 stands for mass density and GOPW
 
denotes GOP weight fraction. Now, the Young’s modulus can be written as 

(Zhang et al. [12]) 

 

0.49 0.51eff l tE E E   (3) 

 

where lE and tE  are longitudinal and transverse Young’s modulus of the composite, respectively. They can be 

calculated as: 
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(5) 

 

In which GOPE  and ME  stand for GOP’s and the matrix of Young’s modulus, respectively. Also, the explicit 

form of the geometry factors  ,l t   is calculated as: 

 

2 GOP

l t
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d
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(6) 

 

In which GOPd  and GOPh  are related to diameter and thickness of GOP’s respectively. Now, the effective 

Poisson’s ratio of the composite can be achieved by using the rule of mixture as follows: 

 

eff GOP GOP M Mv v V v V   (7) 

 

In which GOPV  and MV  correspond with the volume fractions of GOP’s and matrix. From Eq. (7), it is referred 

that the  effective mass density can be computed in the same form as Poisson’s ratio. The volume fractions are 

related to each other as: 

 

1GOP MV V   (8) 

 

The coefficient of thermal expansion (CTE) for the GOPR nano composite is reached as: 
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(9) 

 
Here K is the bulk moduli and α is the CTE. Also, the M and GOP subscripts are referred to the matrix and 

grapheme oxide powder, respectively.  

3    REFINED HIGHER-ORDER TRIGONOMETRY BEAM THEORY 

Due to the limitation in slenderness ratio , the researchers remodelled  a higher-order shear deformable beam theory 

which are able to estimate the shear stress and strain of the beam. For this purpose, a shape function is presented in 

each theory. Herein, the refined form of sinusoidal beam theory is utilized to achieve the kinematic relations of the 

beam. According to this theory, the displacement field of a beam can be written as: 
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(10) 

 

( , , ) ( , ) ( , )z b su x z t w x t w x t   (11) 

 

where u is longitudinal displacement and bw , sw  are bending and shear deflections, respectively. The 

corresponding shape function of the employed theory can be expressed as: 
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The nonzero strains   of the beam can be expressed by the following equations (Ebrahimi et al. [18]) 

 
2 2

2 2
( )b s

xx

w wu
z f z

x x x

 
   

  
 

 

(13) 

 

( ) s

xz

w
g z

x


 


 

 

(14) 

 

where
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For the purpose of satisfying Maxwell’s equation in the quasi-static approximation, the applied external electric 

potential is modelled as a function of combined linear and cosine variations as follows: 
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Now, based on Eq. (15), the electric field ( , )x zE E
 
and ( ) electric potential can be related to each other as 

follows: 
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(17) 

4    HAMILTON’S PRINCIPLE 

Now, Hamilton’s principle can be defined as: 

 

 
0
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(18) 

 

where R, S, and T account for strain energy, kinetic energy, and work done by external forces, respectively. The 

variation of strain energy is written as: 
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where xx  is the component of normal stress. ,x zD D  are the electric displacements.  Substituting Eqs. (13) – (17) 

in Eq. (19) yields 
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(20) 

 

In which the stress resultants N, bM , sM  and Q are expressed as: 
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Moreover, the variation of the kinetic energy can be formulated as (Ebrahimi et al. [18]) 
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where the mass moments of inertia used in Eq. (24) can be calculated as: 
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Besides, in this research, the nanocomposite is assumed to be subjected to an in-plane magnetic field. Thus, the 

Maxwell’s magnetic induction rules are extended to achieve the equivalent body force applied to the beam. Herein, 

the longitudinal magnetic field is considered to be 
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where xH
 
is the amplitude of the longitudinal magnetic field; Maxwell’s relation can be developed as: 
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(28) 

 

where  ,0,x zu u u  is displacement vector and   is magnetic permeability. By inserting the displacement field in 

the above equation, the resultant Lorentz force can be achieved as: 
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where 
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Now, the variation of work done by external forces can be formulated a 
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The thermal loading ( )TN  can be defined as: 
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Therefore, once substituting Eqs. (20), (24), and (30) in Eq. (18) and solving for the nontrivial response, the 

Euler–Lagrange equations of this problem are reached as: 
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(35) 

5    CONTROLLING EQUATIONS 

In this sub-section, the stress–strain relations of isotropic materials are reviewed for the purpose of deriving the 

fundamental elastic equations of solids. Here, the following constitutive equations can be expressed 

 

,ij ijkl kl ijk kc e E    ijklc  (36) 
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Corresponds with the components of the fourth order elasticity tensor. Whenever extending the aforementioned 

equation for a shear deformable beam, the following relations can be reached 

 

31 ,xx eff xx zE e E    (37) 
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In which effE and effG denote the Young’s and shear moduli of the nanocomposite, respectively. Integrating from 

Eqs. (37)-(40) over the cross-section area of the beam, the following equations
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Now, by inserting Eqs. (41)–(46) in Eqs. (32)–(35), the governing equations of GOPRC beams can be expressed 

in the following form 
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(50) 

6    SOLUTION OF THE PROBLEM 

Here, on the basis the Navier method, an analytical solution of the governing equations for free vibration of a simply 

supported magneto–electro–thermo-elastic FG Nanofiber is presented. To satisfy governing equations of motion, the 

displacement variables are adopted to be of the form 
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(54) 

 

where nU , bnW , snW  and n  are the unknown Fourier coefficients to be determined for each n value. Using Eqs. 

(47)-(50) the analytical solution can be obtained from the following equations: 
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7    NUMERICAL DISCUSSION  

In this section, some dispersion curves and tables are presented to clarify the effect of various parameters on the 

vibration responses of GOPRC fibers. Basically, the fiber is supposed to be made of epoxy and it is reinforced with 

GOP fibers. The material properties of the constituent materials are chosen as the same as those presented by Zhang 

et al [12]. Also, the fiber’s thickness is taken as 5h cm  Moreover, magnetic permeability is considered to be 
74 10    . Furthermore, the results of comparison of the present results with those of former researches reveal 

that this model is accurate enough to estimate the natural frequency of nanocomposite fibers. 

Table 1 indicates comparison of dimensionless frequency of S-S graphene oxide powder reinforced composite 

(GOPRC) beams with 0.3%GOPW   with the published works (Zhang et al. [12] and Ebrahimi et al. [18]) and 

reliable agreement can be observed. In Table 2 the first ten dimensionless frequencies of graphene oxide powder 

reinforced composite  fibers for different distribution patterns of the graphene oxide powder and various magnetic 

field intensity  with S-S edge condition is obtained.As observed, the influence of changing magnetic field intensity is 

clearly noticed from the table values and the frequency can be raised by applying high intensity of magnetic field 

strength. The first ten dimensionless frequencies of graphene oxide powder reinforced composite (GOPRC) fiber for 

different distributions of the graphene oxide powder and various critical temperature with S-S edge condition is 

shown in Table 3. Here we can understatnd the fact that the fiber can losses the magnitutde of dimensionless 

frequency for higher crtical temperature. In addition, one more fact got out from these values is that the system can 

get larger dynamical response whenever the GOP is placed in pattern X and lesser in other selections. 

Figs. 2-4 present the effect of wave number on dimensionless frequency through various GOP weight fractions 

for different patterns of GOP. From these figures it is evident that the increase in wave number raises the 

dimensionless frequency via various GOP weight fractions. In addition, it indicates that the higher dynamics in 

Pattern X followed by O and U. In Figs. 5-7 indicates effects wave number along with GOP weight fraction against 

dimensionless frequency for different patterns. It can be seen that the dimensionless frequency increases as the value 

of GOP weight fraction and wave number grows. In addition, the maximum dimensionless frequency is achieved 

once again in pattern X. Fig. 8 highlight the variation of dimensionless frequency over piezoelectric strain. Based on 

the wave pattern, it can be seen that dimensionless frequency grows as piezoelectric strain raises through different 

modes. Fig. 9 highlights the variation of dimensionless frequency over piezoelectric strain through different GOP 
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weight fraction. From Fig. 9, it is clear that the variation of piezoelectric strain results the raise in dimensionless 

frequency while the mass of weight fraction is getting low.  

 

Table 1 

Comparison of the first dimensionless frequency of S-S graphene oxide powder reinforced composite (GOPRC) beams 

( 0.3%).GOPW   

L/h Distribution type 

X-GOPRC O-GOPRC U-GOPRC 

 

10 

Zhang et al.[12] 0.3379 0.2921 0.3159 

 Ebrahimi et al.[18] 0.3576 0.3013 0.3095 

Present model 0.3518 0.3110 0.3084 

 

15 

Zhang et al. [12] 0.2271 0.1959 0.2121 

 Ebrahimi et al [18] 0.2411 0.2009 0.2079 

Present model 0.2346 0.2073 0.2290 

 

20 

Zhang et al.[12] 0.1708 0.1473 0.1595 

Ebrahimi et al.[18] 0.1815 0.1461 0.1564 

Present model 0.1759 0.1555 0.1642 

 

Table 2 

First ten dimensionless frequencies of graphene oxide powder reinforced composite (GOPRC) fibers for different distributions of 

the graphene oxide powder and various magnetic field intensity constants with S-S edge condition / 25,L h  10 ,T K 
 

( 1%).GOPW   

 
0 0.2H   0 0.5H   

n GOPR-U GOPR-O GOPR-X GOPR-U GOPR-O GOPR-X 

1 0.0214 0.0173 0.0251 0.0222 0.0175 0.0266 

2 0.0368 0.0277 0.0441 0.037 0.0278 0.0444 

3 0.0524 0.0381 0.0631 0.0525 0.0381 0.0638 

4 0.0683 0.0485 0.0835 0.0683 0.0485 0.0836 

5 0.0842 0.0590 0.1035 0.0842 0.0590 0.1035 

6 0.1002 0.0696 0.1235 0.1002 0.0696 0.1235 

7 0.1163 0.0803 0.1435 0.1163 0.0803 0.1436 

8 0.1324 0.0910 0.1636 0.1324 0.0910 0.1636 

9 0.1485 0.1018 0.1837 0.1485 0.1018 0.1838 

10 0.1647 0.1126 0.2039 0.1647 0.1126 0.2039 

 

Table 3 

First ten dimensionless frequencies of graphene oxide powder reinforced composite (GOPRC) fiber for different distributions of 

the graphene oxide powder and various critical temperature with S-S edge condition 0/ 25, 0.4, ( 1%).GOPL h H W    

 10T K   30T K   

n GOPR-U GOPR-O GOPR-X GOPR-U GOPR-O GOPR-X 

1 0.8035 0.4361 1.3951 0.6958 0.3772 1.2104 

2 1.7478 0.9497 3.0324 1.6993 0.9232 2.9490 

3 2.6758 1.4542 4.6418 2.6439 1.4369 4.5870 

4 3.5999 1.9566 6.2446 3.5792 1.9436 6.2038 

5 4.5225 2.4581 7.8448 4.5035 2.4478 7.8122 

6 5.4443 2.9592 9.4437 5.4286 2.9506 9.4166 

7 6.3657 3.4600 11.0419 6.3522 3.4527 11.0187 

8 7.2869 3.9607 12.6396 7.2750 3.9543 12.6193 

9 8.2078 4.4613 14.2370 8.1973 4.4556 14.2190 

10 9.1286 4.9619 15.8342 9.1192 4.9567 15.8180 
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Fig.2 

Effects of fiber wave number on dimensionless frequency for 

GOPR-U fiber. 

  

 

 

 

 

 

 

 
Fig.3 

Effects of fiber wave number on dimensionless frequency for 

GOPR-O fiber. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effects of fiber wave number on dimensionless frequency for 

GOPR-X fiber. 

  

 

 

 

 

 

 

 

 

 

 
Fig.5 

Effects of magnetic field intensity on dimensionless 

frequency for GOPR-U fiber. 
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Fig.6 

Effects of magnetic field intensity on dimensionless 

frequency for GOPR-O fiber. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Effects of magnetic field intensity on dimensionless 

frequency for GOPR-X fiber. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effects of piezoelectric strain on dimensionless frequency 

GOPRC fiber via different modes. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effects of piezoelectric strain on dimensionless frequency 

GOPRC fiber via different GOP weight fraction. 
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8    CONCLUSIONS 

The magneto thermo electric deformation of composite nano fiber  reinforced by graphene oxide powder (GOP) was 

investigated in this study. The controlling equation of the problem can be arrived via a higher-order trigonometric 

refined beam model. The effect of a nonuniform magnetic and  thermo  piezo electric field is applied to the 

governing equations by combining the field relations with the displacement field equations. Then, obtained 

equations are solved by using Galerkin’s method to consider the influence of different boundary conditions on the 

vibrational responses of the fiber.Some of the bolded highlights of this research is as follows. 

 The dimensionless frequency can be amplified using higher weight fraction for GOPs. 

 The maximum dynamic response can be arrived by choosing GOPRC-X pattern in the presence of 

magnetic and thermal field. 

 The system’s dimensionless frequency can be gradually amplified when the magnetic field intensity is 

increased.  

 An increase in the amount of piezoelectric strain results the reduction of GOP weight fraction. 

 The dimensionless frequency can be weaken by bigger values of critical temperature. 
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