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 ABSTRACT 

 Based on the third-order shear deformation theory (TSDT), this 

paper numerically investigates the natural frequencies and time 

response of three-layered annular plate with functionally 

graded materials (FGMs) sheet core and piezoelectric face 

sheets, under initial external electric voltage. The impressive 

material specifications of FGM core are assumed to vary 

continuously across the plate thickness utilizing a power law 

distribution. The equilibrium equations are obtained employing 

Hamilton’s method and then solved applying differential 

quadrature method (DQM) in conjunction with Newmark-β. 

Numerical studies are carried out to express the influences of 

the external electric voltage, aspect ratio, and material gradient 

on the variations of the natural frequencies and time response 

curves of FGM piezoelectric sandwich annular plate. It is 

precisely shown that these parameters have considerable effects 

on the free vibration and transient response. 

                          © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

MART materials such as piezoelectric and magneto-electro-elastic can significantly change their mechanical 

and physical properties under various external excitations such as electric or magnetic fields. Piezoelectric 

materials are a significant category of the intelligent materials which, by exposing them under mechanical 

deformations, the electrical charge can be produced (direct effect). In addition, when an electric field is applied to 

the piezoelectric materials, the mechanical stresses can be produced (reverse effect). Liu et al. [1] analyzed free 

vibration of thick circular plate integrated with piezoelectric layers via first shear deformation theory (FSDT) under 

different boundary conditions. Based upon the higher-order shear deformation theory conjunction with finite 
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element method, Dash and Singh [2] studied nonlinear natural frequencies of geometrically nonlinear shear 
deformable piezoelectric laminated plate. Phung-Van et al. [3] presented a simple and effective technique based 

upon the combination of isogeometric analysis and TSDT to study static, free vibration and dynamic behaviors 

composite plates integrated with piezoelectric sensors and actuators. Kuang et al. [4] implemented the theoretical 

processor to obtain piezoelectric material parameters and the characteristic functions of the natural frequency of 

piezoelectric circular plate. Based on the flexural wave equation of thin circular plate and the transfer matrix 

method, Shu et al. [5] investigated theoretically and numerically the behavior of flexural waves propagating. 

Khorshidvand et al. [6] derived buckling loads for solid circular plates subjected to the uniform radial compressive 

loading under the clamped edge condition. In addition, several works on the static, dynamic behaviors of 

piezoelectric plates have been performed, see for example [7-13]. During 1984-1985, in Japan, to omit the singular 

stresses and improve the thermal and mechanical stability, a group of material researches proposed a specific class 

of advanced heterogeneous materials called FGMs. FGMs encompass the heterogeneous feature and persistent 

variation of material characteristics from one surface to the other [14]. Until today, many investigation projects have 

been conducted to investigate the application of FGMs in engineering smart structures. Bhangale and Ganesan [15] 

used power law model to study the effect of FGMs on the changes of the natural frequencies of magneto-electro-

elastic finite cylindrical shells. The authors supposed that the material characteristics of the cylindrical shell vary in 

the thickness. According to the power law distribution and FSDT, the effect of environment temperature and 

material gradient on the sound radiation of FGM plate subjected to point load is demonstrated by Yang et al. [16]. 

Su et al. [17] performed free vibration and transient response of FG piezoelectric plate with various boundary 

conditions using FSDT. They showed that an increase in the value of gradient index leads to the increase of response 

magnitude. Kiani [18] analyzed free vibration characteristics of carbon nanotube reinforced composite (CNTRC) 

plates integrated with piezoelectric layers at the bottom and top surfaces. Barati and Zenkour [19] employed a 

refined four-variable plate theory for modeling of the electro-thermo-mechanical vibrational properties of FG 

piezoelectric plates with porosities and different boundary conditions. Smart composite sandwich plates are finding 

an increasing role in car manufacturing, vibration suppression, vibro-acoustic, because of their good specific 

stiffness and damping properties. The use of these structures allows decreasing structures’ weight without 

compromising stiffness, this helps developing engineering structures with improved performances. Despite the 

thickness of the core layer, sandwich plates are light and have a relatively high flexural strength. In addition, by 

using piezoelectric layers as sensor and actuator, the vibration behavior of many engineering structures can be 

controlled. Because of the superior mechanical characteristics and excellent vibration insulation performance of 

sandwich structures over single-wall structures in aviation, marine and civil industries, numerous researchers 

experimentally and analytically have focused on the sandwich structures behaviors [20-23]. For example, based on 

the hyperbolic shear deformation theory, El Meiche et al. [24] investigated the buckling and free vibration of FG 

sandwich rectangular plate. Hadji et al. [25] analyzed vibration response of FGM sandwich plate via the four-

variable refined plate approach. The authors reported that four-variable refined plate theory is accurate and simple in 

solving the free vibration behavior. Dinh Duc and Hong Cong [26] studied the nonlinear dynamic response of 

imperfect FG sandwich plates with integrated piezoelectric layers resting on elastic substrate in thermal environment 

employing higher-order shear deformation plate theory. According to Lord–Shulman theory and utilizing Fourier 

series state space technique, Alibeigloo [27] carried out the three dimensional transient coupled thermo-elastic 

problem of simply supported sandwich rectangular plate under thermal shock. Fatahi-Vajari and Imam [28] studied  

the lateral vibration of single-layered graphene sheets based on a new  theory  called  doublet  mechanics. Fazzolari 

[29] examined buckling behavior of FGM sandwich plate by virtue of the hierarchical trigonometric Ritz 

formulation. Arefi et al. [30] applied two-variable sinusoidal shear deformation theory in conjunction with nonlocal 

piezo elasticity relations for free vibration analysis of a sandwich Nanoplate.  

The past review of the literatures evidently demonstrates that free vibration and transient response of 

piezoelectric FG annular sandwich plate using TSDT excited with a uniform mechanical load on the top surface has 

not been studied. The main purpose of present work is to fill this gap in the literature. The impressive material 

characteristics of FG core annular plate are supposed to be continuously variable across the plate thickness using a 

power law model. Hamilton’s method is applied to earn the equilibrium equations of the system and then are solved 

with differential quadrature method (DQM) in conjunction with Newmark-β. Finally, numerical studies are carried 

out to show the effects of some factors such as electric voltage, FG core plate thickness, inner radius, and material 

gradient on the time response of FG piezoelectric sandwich annular plate.  
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2    THEORY AND FORMULATION 

2.1 Problem configuration 

Fig. 1 schematically illustrates the proposed problem configuration along with the cylindrical coordinate system 

(r, , z). Suppose an annular sandwich plate (inner radius 
1R  ; outer radius 

2R  ) composed of FGM core (uniform 

thickness 
eh  ) and the two piezoelectric face-sheets (uniform thickness 

ph ).  

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The Schematic and coordinate system of a FGM 

piezoelectric sandwich plate. 

2.2 Basic formulations 
2.2.1 FGM relations 

In the present study, the impressive material characteristics of FGM core annular plate are presented based 

according to the power law model as follows [31] 
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where subscripts m and c are, respectively, metal and ceramic terms. The material gradient index is expressed with 

0k  . Furthermore, E and   indicate, respectively, Young’s modulus and mass density.  

2.2.2 Deflection field 

Based upon TSDT of Reddy [32], the deflection field  , ,r zu u u  based on the cylindrical coordinate at an arbitrary 

spot for FGM core annular plate along the axes (r, , z) can be presented as: 
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where 
0u and 

0w  show mid-plane displacements of sandwich plate and 
r  refers to the rotation displacements of 

middle surface of sandwich plate about r-z plane.  
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2.2.3 Strains 

Utilizing Eq. (2), the linear strain components are denoted as [33] 
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In which 
rr  and   denote the normal strains components, and 

rz  is shear strain term. By taking into account 

the plane stress assumption and assuming the linear behavior of FGM, the constitutive stress-strain relations for 

inhomogeneous core plate can be expressed as below [34] 
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where 
rr and   demonstrate the normal stress components. Also, 

rz  refers to the shear stress, and v is 

Poisson’s ratio. Furthermore, the constitutive stress-strain relations for piezoelectric face sheets can be written as: 
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where  
T

r zD D D
is the electric displacement tensor for piezoelectric layers,  

T

r zE E E
demonstrates 

the electric field tensor. Also,
ijc , 

ije  and ijk  are the reduced material constants, and defining, respectively, as 

elastic, piezoelectric constants, and dielectric which can be denoted as follows: 
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The relevant boundary conditions of the electric fields at top and bottom planes of each piezoelectric face sheet 

are as: 
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where V refers to the external electric voltage. As well as, with respect to the electric boundary condition (Eq. (7)), 

the distribution of electric potential through the thickness of each piezoelectric face sheet is supposed as a function 

of cosine and linear variation as [35] 
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where ( , )r t  is the electric potential variations of the mid-plane along r direction for each piezoelectric annular 

layer. Furthermore, to satisfy Maxwell relationships, the electric field should be function of the negative gradient of 

electric potential ( , , )r z t as follows: 
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2.3 Governing partial equations 

To obtain the equation of motion, Hamilton’s principle is used in the form 
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In which U , 
extW and T are, respectively, the total virtual strain energy variation, the external work 

variation and the kinetic energy variation, which applying TSDT (Eq. (2)) can be expressed in Appendix A.  

Finally, by inserting expressions (A.3), (A.5) and (A.7) in Hamilton’s equation, after integrating 

by parts, the equations of motion for the FG piezoelectric sandwich plate are obtained as: 
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where ABC A B C   . By employing Eq.(A.6) into Eq. (11), the coupled governing equations are rewritten as: 
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   (12) 

 

where the coefficients ijA , ijB , ijD , ijE , ijG , ijH , ijK , ijM , ijL and iAA  are provided in Appendix B.  

3    SOLUTION METHOD OF FG PIEZOELECTRIC SANDWICH ANNULAR PLATE  

It should be noted that in the present work, the related boundary conditions at the inner and outer edges of the FGM 

piezoelectric sandwich annular plate supposed to be clamped or simply-suppoerted, which can be expressed as: 

 

0

0 0 1 20, 0, 0, 0, 0 ,r

w
u w at r R R

r
 


     



     

      (13) 
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For clamped boundary condition 

 

0 0 1 20, 0, 0, 0, 0 ,rr rru w M P at r R R     

     

      (14) 

 

For simply supported boundary condition. 

In this section, to solve equilibrium equations, DQM is exerted for discretizing the governing equations and 

related boundary conditions. DQM is an efficient numerical method for solving the partial and ordinary differential 

equations. This technique states that a partial derivative of a function at a given discrete point can be estimated by a 

weighted linear combination of the functional values at all grid points. On the basis of the concept of DQM, 

derivative of any arbitrary function in arbitrary point can be rewritten in all intervals, and according to Chebyshev 

points, the grid points are computed as follows [36] 
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      (15) 

  

where n expresses the total number of nodes along the radial direction. Furthermore, k-th order differential operator 

is denoted as a finite series as: 
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      (16) 

 

In which ( )k

imC  refers to the weighting coefficients for the k-th derivative [37]. By using DQM, the discretized 

form of the governing equations can be rewritten as: 

 

   M x K x F 

     

      (17) 

  

where  
n n

M


 and  
n n

K


 are, respectively, the mass and stiffness matrices. Also,  
1n

x


 expresses modal 

displacements vector, which for obtaining time response, matrix form (17) is solved using Newmark-β technique.  

4    NUMERICAL RESULTS AND DISCUSSION  

4.1 Convergence checking 

In this section, the convergence checking of computations is systematically is ensured in a standard trial & error 

manner, i.e., by accumulating the number of nodes distributed along the radial direction of FGM piezoelectric  

sandwich clamped annular plate, n, while looking for stability in the predicted natural frequency and time response. 

Hence, by dropping the external forces, the results depicted in Fig. 2 indicate the convergence of the calculated four 

first natural frequencies. As shown, at least 15 nodes (n=15) are required for proper convergence of numerical 

solutions. Here, initial external electric potential (V) is assumed to be zero, and 1 20.3 , 1 , 1,R m R m K  
 

0.001 , 0.005e ph m h m  . In addition, material and physical parameters used for FGM and piezoelectric material 

in this section and the following sections (except for verification of results section) are listed in Table 1 and Table 2.  

 
Table 1 

Material properties of FGM core plate. 

 

 

 

Properties Al Si 

Young’s modulus E (GPa) 70 210 

Mass density
3

kg

m

 
 
 

 2700 2331 



322                               P. Roodgar Saffari et.al.   
 

© 2020 IAU, Arak Branch 

Table 2 

Material properties of PZT-4 piezoelectric. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

The four first natural frequency (KHz) of FGM 

piezoelectric sandwich plate with varying total number of 

nodes. 

4.2 Comparison study 

To show the correctness and validity of the achieved formulation, firstly, by ignoring piezoelectric layers, the two 

first dimensionless frequencies (
 

3
2

2
,

12 1
o

h Eh
R D

D


 


 


) are calculated and listed in Table 3., along with 

numerical measurements were presented previously by Ref. [38] for clamped boundary conditions. It is essential to 

reminder that in Ref. [38] FSDT is assumed for deflection field and equilibrium equations are solved by the p-

version Ritz method. Based upon Table 3, it can be showed that the calculated results are in good agreement with 

the results of Ref.[38].  

 

Properties PZT4 

11C (GPa) 139 

12C (GPa) 77.8 

13C (GPa) 74    

22C (GPa) 77.8 

23C (GPa) 74    

33C (GPa) 115  

44C (GPa) 25.6 

55C (GPa) 25.6 

66C (GPa) 30.6 

 2

15 /e C m  12.7 

 2

24 /e C m  12.7 

 2

31 /e C m  -5.2 

 2

32 /e C m  -5.2 

 2

33 /e C m  15.1 

 9

11 10 /k F m     6.46 

 9

22 10 /k F m    6.46 

 9

33 10 /k F m    5.62 

 3/kg m    7500 
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Table 3 

Comparison study of the two first non-dimensional natural frequencies of FGM annular plate. 

 

In another verification investigation, a comparison between three first natural frequencies obtained for FGM 

piezoelectric sandwich annular plate against different material gradient parameters with those obtained by [39] is 

indicated in Table 4. By briefly reviewing the computed results in this table, the accuracy of present formulations 

will be determined.  
 

Table 4 

Comparison study of the natural frequencies (Hz) of FGM piezoelectric sandwich annular plate 2 60
R

h
 . 

Material gradient index Mode number Ebrahimi and Rastgoo [39] Present 

0 

First  448.39   449.11 

Second 1238.35 1240.46 

Third 2433.48 2436.38 

1 

First  435.37   436.42 

Second 1205.80 1208.03 

Third 2371.07 2376.75 

4.3 Benchmark results 

In this section, natural frequencies and time response of FGM piezoelectric sandwich annular plate with are 

numerically for both boundary conditions computed and discussed in detail.  

4.4 Free vibration 

In order to obtain the natural frequencies of the system, modal displacements vector must be equal to 

   
1 1

i t

n n
x X e 

 
 and external force must be equal to zero. Here,  expresses the natural frequency and 

1n
X


is 

modal coefficient vector.  

Depicted in Fig. 3 is the effect of inner-to-outer radius ratio on the variations of the four first natural frequencies 

plots of FG piezoelectric sandwich plate under clamped (for inner and outer boundaries) and simply supported 

boundary conditions (for inner and outer boundaries). Here, initial external electric potential (V) is assumed to be 

zero, and 1, 0.001 , 0.005e pK h m h m   . As figure illustrates, Because of the stiffness-hardening effect of inner-

to-outer radius ratio on the plate mode, natural frequency increases by increasing inner-to-outer radius ratio. 

Furthermore, because of the high stiffness of clamped boundary condition, the clamped boundary condition has 

higher frequency than that of simply supported boundary condition.  

Fig. 4 reveals the effect of the material gradient index on the variations of the four first natural frequencies plots 

of FG piezoelectric sandwich plate. Here, external electric voltage (V) is supposed to be zero, 

and 1 20.3 , 1 , 0.001 , 0.005e pR m R m h m h m    . It should be pointed out by increasing power law model index 

(K), the material characteristics of FG core annular plate shift continuously and smoothly from a fully metal part at 

the top plane to a fully ceramic part at the bottom plane. It is generally concluded from this figure that by increasing 

material gradient, the total stiffness of the system raises and consequently the natural frequency increases. 

 

i

o

R

R
   Method 0.1 0.3 0.5 

1  
Present (DQM) 19.65261 30.79739    52.51617 

Liew et al.[38](Ritz) 19.84        30.04          48.31       

2  
Present (DQM) 46.88275 69.89355 113.9494 

Liew et al.[38](Ritz) 44.91       64.23       97.39   
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(a) 

 
(b) 

Fig.3 

a) The effect of inner-to-outer radius ratio on the variations of the natural frequency for clamped boundary condition. b) The 

effect of inner-to-outer radius ratio on the variations of the natural frequency for simply supported boundary condition. 

  

 
(a) 

 
(b) 

Fig.4 

a) The effect of material gradient parameter on the changes of the natural frequency for clamped boundary condition. 

 b)The effect of material gradient parameter on the changes of the natural frequency for simply supported boundary condition. 

 

The influence of the external electric voltage on the variations of the four first natural frequencies of FGM 

piezoelectric sandwich annular plate is represented in Fig. 5. Here, 
1 20.3 , 1 , 1, 0.001 ,eR m R m K h m     

0.005ph m .  

The most interesting result is the fact that increasing the value of external electric voltage from 100 V to 200 V , 

the natural frequency reduces. 

 

 
(a) 

 
(b) 

Fig.5 

a) The effect of initial external electric voltage on the changes of the natural frequency for clamped boundary condition. b) 

The effect of initial external electric voltage on the changes of the natural frequency for simply supported boundary condition. 
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4.5 Time response 

In this section the time response of FGM piezoelectric sandwich annular plate under a simple harmonic excitation 
2

0 sin 2q q r t  is performed. Here, 
0q  refers to the constant load. 

Fig. 6 displays the influence of the inner-to-outer radius ratio on the changes of the time response at a chosen 

location 
 1 2

2av

R R
r

 
 

 
 over the time range of 0-10 s. Here, initial external electric potential (V) is assumed to 

be zero, and 1, 0.001 , 0.005e pK h m h m   . It is obvious that by increasing inner-to-outer radius ratio, the 

stiffness-hardening effect of the system reduces the peak deflection.  

 

 
(a) 

 
(b) 

Fig.6 

a) The effect of inner-to-outer radius ratio on the dynamic behavior of FGM piezoelectric sandwich annular plate under 

sinusoidal loading for clamped boundary condition.  

b) The effect of inner-to-outer radius ratio on the dynamic behavior of FGM piezoelectric sandwich annular plate under 

sinusoidal loading for clamped boundary condition. 

 

In order to investigate the effect of the material gradient index on the behavior of dynamic deflection of FGM 

piezoelectric sandwich annular plate, Fig. 7 is presented. Here, initial external electric potential (V) is assumed to be 

zero, and
1 20.3 , 1 , 0.001 , 0.005e pR m R m h m h m    . It can be seen that the by increasing material gradient 

index, the vibration amplitude will be decreased. 

 

 
(a) 

 
(b) 

Fig.7 

a) The effect of the material gradient index on the dynamic behavior of FGM piezoelectric sandwich annular plate under 

sinusoidal loading for clamped boundary condition. b) The effect of the material gradient index on the dynamic behavior of 

FGM piezoelectric sandwich annular plate under sinusoidal loading for simply supported boundary condition.  

  

Fig. 8 shows the effect of FGM core thickness on the variations of the time response of FGM piezoelectric 

sandwich annular plate over the time range of 0 10 s . Here, initial external electric potential (V) is assumed to be 
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zero, and
1 20.3 , 1 , 1, 0.005pR m R m K h m    . As it may be readily seen, by increasing FGM core thickness, 

the amplitude increases.  

 

 
(a) 

 
(b) 

Fig.8 

a) The effect of FGM core thickness on the dynamic behavior of FGM piezoelectric sandwich annular plate under sinusoidal 

loading for clamped boundary condition. b) The effect of FGM core thickness on the dynamic behavior of FGM piezoelectric 

sandwich annular plate under sinusoidal loading for simply supported boundary condition. 

 

Finally, Fig. 9 demonstrates the effect of initial external electric voltage on the changes of the dynamic response 

of FGM piezoelectric sandwich plate under sinusoidal loading. Here, 
1 20.3 , 1 , 1, 0.001 ,eR m R m K h m     

0.005ph m . The most interesting result is the fact that an increase in the value of the electric voltage reduces the 

vibration amplitude and controls the dynamic response.  

 

 
(a) 

 
(b) 

Fig.9 

a) The effect of initial electric voltage on the dynamic behavior of FGM piezoelectric sandwich annular plate under sinusoidal 

loading for clamped boundary condition. b) The effect of initial electric voltage on the dynamic behavior of FGM 

piezoelectric sandwich annular plate under sinusoidal loading for simply supported boundary condition. 

5    CONCLUSIONS 

A numerical model was exhibited to analyze the behavior of free vibration and transient response of FGM 

piezoelectric sandwich annular plate with piezoelectric layers and FGM core. By using the power law distribution 

model, the impressive material properties of FGM core plate shift smoothly in the plate thickness. Governing partial 

formulations obtained by employing Hamilton’s method, then differential quadrature method (DQM) in conjunction 
with Newmark-β was implemented to solve equilibrium equations. Finally, numerical results were exhibited to show 

how to change the natural frequency and dynamic response by varying the external electric voltage, material 

gradient, FGM core thickness, and inner-to-outer radius ratio. The major results are sum up as follows: 

 The natural frequency increases by increasing inner-to-outer radius ratio.  

 By increasing power law index, the total stiffness of the system increases and accordingly the natural 

frequency rises. 
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 An increase in the value of external electric voltage reduces the natural frequency. 

 The electric voltage reduces the vibration amplitude and controls the dynamic response.  

 By increasing inner-to-outer radius ratio, the stiffness-hardening effect of the system reduces the peak 

deflection. 
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where term  PN expresses the normal force caused by initial external electric, and can be denoted as: 
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In order to achieve the governing equation of motion using Hamilton’s principle, virtual strain energy variation 

(Eq. (A.1)) could be rewritten as: 
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On the other hand, the kinetic energy variation (Eq. (A.2)) can be rewritten as follows: 
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In which the terms
0I ,

1I ,
2I , 

3I , 
4I  and 

6I  represent the inertia coefficients for FG piezoelectric sandwich 

annular plate, and are defined as: 
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