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 ABSTRACT 

 The present study analyzes the free vibration of multi-layered 

composite cylindrical shells and perforated composite cylindrical 

shells via a modified version of Reddy’s third-order shear 

deformation theory (TSDT) under simple support conditions. An 

advantage of the proposed theory over other high-order theories 

is the inclusion of the shell section trapezoidal form coefficient 

term in the displacement field and strain equations to improve the 

accuracy of results. The non-uniform stiffness and mass 

distributions across reinforcement ribs and the empty or filled 

bays between the ribs in perforated shells were addressed via a 

proper distribution function. For integrated perforated cylindrical 

shells, the results were validated by comparison to other studies 

and the numerical results obtained via ABAQUS. The proposed 

theory was in good consistency with numerical results and the 

results of previous studies. It should be noted that the proposed 

theory was more accurate than TSDT.  

                            © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 T is of great importance to analyze perforated structures in mechanical engineering. Designing an analytical 

model with almost no defects for perforated shells helps obtain appropriate static and dynamic solutions. It is 

worth noting that the main difference between perforated shells and integrated shells is the grids of the shells, which 

is essential in analytical modeling. It is crucial to study the static and dynamic behavior of composite structures 

under different loads in light of their wide range of applications. It seems to be necessary to analyze the vibration of 

such structures to prevent resonance phenomenon-caused destruction and identify the natural frequencies and 

different mode shapes. Hence, many researchers studied the free vibration of shells via various analytical, numerical, 

and experimental methods. Among analytical methods, high-order theories have been adopted in order to analyze 

thick shells, including composite ones, since high-order theories provide more accurate results. Advanced composite 
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perforated shells are more complicated to analyze than typical composite shells due to the geometric nature of 

perforated shells.  

The present study’s objective is to employ an extended model for perforated cylindrical structures via an 

equivalent single-layer theory. The entire physical states of a perforated shell are accurately described by a 

distribution function in the theoretical analysis. Then, the main equations of a perforated shell are obtained by 

incorporating the main assumptions of the classical plane theory and shell equations. 

2    LITRATURE REVIEW   

Takabatake (1990) statically and dynamically analyzed cavity shells. The cavity-induced discontinuity changes were 

described using Hamilton’s principle and extended Dirac delta function [1, 2]. It should be noted that they applied a 

general analysis method to cavity circular shells based on Law’s assumptions and incorporating the bending stiffness 

distribution of a cavity plan by a specific function. Lee et al. (2011) used a new computational method for the 

vibration of isotropic cavity rectangular planes. They employed the static functions of a beam under a point load. 

Also, the Rayleigh-Ritz method was used to analyze the variation of the plane’s discontinuities [3]. Huybrechts 

(1996) employed computer codes by proposing a deformation model of a perforated structure in the fracture space. 

Various perforated structures with different shapes were parametrically investigated using the codes [4, 5] . Han et 

al. (2003) introduced a method to manufacture advanced stiffened perforated plane panels. A square grid was 

produced with fractured joints, glued connections, and pultruded grooves. These technologies led to progress in 

manufacturing the first large-scale perforated models, dramatically changing the manufacturing of such engineering 

structures [6]. Jiang (1992) utilized a numerical technique to analyze the free vibration of perpendicularly-reinforced 

cylindrical shells. The technique was developed in the form of a specific finite element method (FEM). They were 

able to reduce the response convergence time [7]. Hemmatnejad et al. (2013) studied the vibration behavior of 

perforated- and wave rib-reinforced cylindrical composite shells. They used impregnation to add the reinforcement 

stiffening effect to the total stiffness of the shell and calculate the equivalent stiffness [8]. Levan et al. (2011) 

introduced a new impregnation method to model the vibration of thin shells with intersecting reinforcement. They 

observed high accuracy by comparing the results to the FEM results [9]. Edalat et al. (2013) studied the dynamic 

responses of a shell reinforced with parabolic curves. They employed the energy method to determine the equivalent 

orthotropic parameters [10]. Eskandari Jam et al. (2010) investigated the dynamic behavior of a perforated shell via 

the shear deformation theory. They compared their results to FEM results. Finally, the variation of the natural 

frequency by other parameters was provided [11, 12]. Sayyad (2010) analyzed the inter-layer grid shear effect on the 

local buckling of a perforated polymer composite shell under uniform compressive loading [13]. Li  et al. (2019) 

investigated A Unified Approach of Free Vibration Analysis for Stiffened Cylindrical Shell with General Boundary 

Conditions [33]. The present study addresses the non-uniform distributions of stiffness and mass among 

reinforcement rips and their empty or filled bays via a proper distribution function. For integrated and perforated 

shells, the results were validated by comparing them to the numerical results obtained from ABAQUS and the 

results provided by previous studies.  

3    PROBLEM- SOLVING  
3.1 Assumptions 

The following assumptions were made in analyzing cylindrical shells and deriving equilibrium equations: 

- The thin-wall shell assumptions and Law’s first approximation were used, 

- The shell’s length and diameter were considered as limited, 

- The damping effect was ignored,  

- The material was assumed to be in the linear-elastic region, and 

- Nonlinear terms were excluded. 

3.2 Determining displacement components 

Fig. 1 illustrates a composite cylindrical shell with the mean radius, thickness, and length of R, h, and L, respectively  
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along with the reference coordinate system. The middle surface was considered as the reference surface on which 

the cylindrical coordinate system was fixed [14, 15]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The composite cylindrical shell with the reference coordinate 

system [16]. 
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where u, v, and w are the displacement components of point (x,,z) in the multi-layer space and t is time. Also, u0 

and v0 are the in-plane displacement components, while w0 is the off-plane displacement component on the middle 

surface. Functions 
x  and    denote the rotations of the line perpendicular to the middle surface around axes  and 

x, respectively. In addition,  
0u  , 

0v  , 
x
 , and 

x
  are high-order Taylor series parameters and represent the 

transverse deformation modes of the shell cross-section, which are defined as: 
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In the proposed theory, the effect of transverse normal strains (along the thickness) on the cylindrical shell 

surface is assumed to be zero. This assumption simplifies the calculations of the theory and allows for comparing the 

results to those of other theories.  

Replacing the lateral strain Eqs. (1) and making them equal to zero provides a simpler definition of displacement 
components as: 

 

01

xz

z

u w

z x

vw v

R R z







 
 
 

  
   

  

 (3) 

 

0 0 0u v    

0

2

0 0

2

4

3

4 1

3

x x

w

xh

w v

R Rh
 

 

 






  
  

 

 
   

 

 
(4) 

 
Finally, the displacement components are simplified to [17]: 
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(5) 

 

The presence of the trapezoidal coefficient must be ensured in the main displacement equations. This was 

considered in the final programming. The proposed theory was compared to the HOST theory introduced in [17], 

which did not include the trapezoidal coefficient in the analytical calculations.  

3.3 Defining strain-displacement relation 

By defining strains from the linear elasticity theory for cylindrical shells, general strain-displacement relations in the 

cylindrical coordinate system, including the trapezoidal effect, are [18,19]: 
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(6) 

 

Replacing the displacements of any point in the multi-layer space in (6) provides the middle surface 

displacement-based linear strains for any displacement model as: 
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In which 
0  is the trapezoidal shape effect coefficient of the shell section. It should be noted that the proposed 

theory considers this coefficient as 1, unlike Reddy’s theory [17]. Moreover, the expressions inside parentheses in 

(7) can be calculated as [20]: 
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(8) 

3.4 Defining stress-strain relations in composites and resultant stresses 

Assuming the main axes to be defined in the material coordinate system (1, 2, 3) and multi-layer axes (x,,z), the 3D 
stress-strain relations of orthotropic layer k are defined as: 
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  where the entries of the stiffness matrix are defined as [15]: 
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In which ijG  is the shear modulus, ijE  is the Young modulus, and ijv is Poisson’s ratio. They are not 

independent of each other but are related as: 
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The main material axes of a single layer may not match the main coordinate axes (x,,z). Thus, it is required to 

move the basic relations from single-layer axes (1, 2, 3) to the reference multi-layer axes. The final relations are thus 

obtained as [15]: 
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or and a summarized form as: 
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where the matrix coefficients are the elastic coefficients of the orthotropic material of layer k, which, considering the 

arrangement of layers from the inside (k=1) to the outside (k=NL), are [15]: 
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In which s=sin(θ), c=cos(θ), and θ is fiber’s orientation. The clockwise orientation of with respect to the fiber 

angle direction, i.e., the positive x-axis direction, is considered as the positive orientation. Replacing (7) and (12) 

and integrating it in the thickness direction reduces (13) to: 
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In which mD , mcD , bcD , bD , and sD  are the material property matrixes. The components of resultant stress 

vector   and the components of middle surface strain vector   are defined as: 
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As can be seen in (17) and (18), resultant stress vector   and middle surface strain vector   contain 30 

components. As 
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S  are zero, being excluded from the equations. In (15), resultant vector   is 

calculated for NL layers as: 
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(19) 

 

where 
iz  and 1iz   are the bays of the inner and outer surfaces from the middle surface, respectively.  

3.5 The governing equations 

The equations governing a cylindrical shell are derived using Hamilton’s principle for dynamic analysis.  

3.5.1 Hamilton’s principle 

The analytical form of Hamilton’s principle can be represented as [19]: 
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where U is the total energy resulting from deformation, which is defined as: 
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(21) 

 

In which a shell surface element is defined as [19]: 

 
dA Rdxd  (22) 

 

Moreover, W in (20) is the potential energy resulting from external forces, which is calculated as: 
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where xW  is the work of edge forces on boundaries and 0W  is the work of surface forces. Also, K denotes the 

kinetic energy in (20), which is derived as: 
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To solve the problem, (20) can be written as: 
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In which kinetic energy variation is calculated as: 
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and external force-induced potential energy variation is calculated as: 
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where the integration values in the first integral in the thickness direction (i.e., z) are represented as: 
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Strain energy variation is defined as: 
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Replacing the strain components from (7) in (29) gives: 

The strain energy variation corresponding to x  is: 
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The strain energy variation corresponding to   is: 
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(31) 

 

       The strain energy variation corresponding to x  is: 

 

2

2

h

x x

hA

dAdz  


 

2

0 0
4 4

) )
2 23 3

1 1 1 1
( (

x x x x

x x

A
h h

N M M M
u w dA

R R R R x

   
   

   

 
 

    
     

      
  (32) 

 

The strain energy variation corresponding to x  is: 
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The strain energy variation corresponding to xz  is: 
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The strain energy variation corresponding to z  is: 
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In addition to (29)-(34), it is required to add strain energy variations such as the initial stress
iU to the shell 

strain energy variation in (21) to incorporate initial stresses in the governing equations. Thus, the energy variations, 

such as initial stresses, are written as [20, 21]: 
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where i
x , i

 , and i
x  are the initial axial, circumferential, and torsional stresses, respectively. The shell is 

assumed to be in equilibrium under this initial stress field. The potential energy of the shell under the initial stresses 

is treated as the reference energy level in dynamic shell analysis. As the shell may be subject to high initial stresses, 

it is required to include not only the linear strain terms but also the nonlinear second-order strain terms imposing 

large deformations in (36). This gives integral terms good convergence in terms of the order in comparison to 

integral terms in (21) [20, 21]. The strains with nonlinear terms are written as [20, 22] 
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Replacing strains from (37) in (36) and defining forces resulting from initial axial, circumferential, and torsional 

stresses ,i i
xN N  , and i

xN   gives: 
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,i i
xN N  , and i

xN   are assumed to remain unchanged across the shell [20]. Thus,  
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(39) 

 

The initial stresses are typically assumed to carry a membrane nature – i.e., initial stress is treated as uniform and 

constant in the thickness direction. Thus, for integral terms in (39), only linear terms linking curve variations to 

displacement components are required to remain in the equations [20, 21]. 
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3.5.2 Deriving equilibrium equations for an integrated composite shell and equations of boundary conditions 

Once the work and energy expressions in Hamilton’s principle are calculated, shell equilibrium equations can be 

derived. Based on the fundamental theorem of the calculus of variations, the total values of 0u , 0v , 0w , x , 

and    in double integrals in (26), (27), (30)-(35), and (39) must be equal to zero. Then, the boundary condition 

equations at x=0 and x=L become: 
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where ˆ
xN , ˆ

xM  , ˆ
xQ , and ˆ

xM  are loads on the shell’s edges. However, axial and circumferential preloads were 

employed due to the analysis conditions.  

3.5.3 Deriving differential operators 

To solve the equilibrium equations, strain values must be placed in (15) by the strain-displacement relations in (7). 

Then, the resultant relations are placed in the equilibrium equations.  

3.5.4 Analyzing the free vibration of composite shells 

The boundary conditions must be applied to the displacement components via functions. The simple boundary 

conditions are defined as [15]: 
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To meet conditions in (45), the displacement components are considered in extended coordinate ( )mnT t  as [23, 

24] 
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where m
L

  , ( ) mni t
mnT t e


 , 0mnu , 0mnv , 0mnw , 

xmn , and 
mn  are the natural mode shapes. Then, the 

differential operators are written as: 
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1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5

L L L L L

L L L L L

L L L L L

L L L L L

L L L L L

 
 
 
 
 
 
 
 

 (47) 

 

Replacing natural mode shape vector   in the differential operators gives: 

 

( ) 0ijL    (48) 

 

The Galerkin method was employed to solve the equation system as [25,26]: 

 

0 0

( ) ( ) 0

b a

ij mnL T t dxdy    (49) 

 

where ijL  is a differential operator in which the displacement components are replaced. Also,   is the weight 

function vector represented as: 
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 
 
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 
 
 
 

 (50) 

 

Solving (48) gives an eigenvalue equation as: 

 
2 0mnK M d  

 
 (51) 

 

In which 

 

0 0 0

T

mn mn mn xmn mnd u v w     
 (52) 

  

Solving (52) yields the eigenvalues of the natural frequencies and their corresponding mode shapes – the 

smallest natural frequency is the square root of the smallest eigenvalue. To obtain the eigenvalues, matrixes M and K 

are placed in (51), and the natural frequencies are calculated in MATLAB.  

3.5.5 Defining stiffness distribution and mass distribution via the Heaviside step function to analyze perforated 

cylindrical shells 

Due to the different materials of rips and fillers in perforated shells, no uniform stiffness distribution can be 

employed. Thus, such a distribution is performed using the Heaviside step function as [27]: 

 

( , ) [1 ( , y)] Q ( , )
bayrib

ij ij ijQ x y Q HP x HP x y    (53) 

 

( , ) [1 ( , y)] ( , )
bayribx y HP x HP x y      (54) 
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where y R  and ( , )ijQ x y  is the general stiffness, 
rib
ijQ  is the rib stiffness, Q

bay
ij  is the filler stiffness, ( , )HP x y  

is the distribution function, ( , )x y  is the general density, rib  is the rib density, and bay  is the filler density. The 

distribution function is 0 on ribs and 1 on fillers. Thus,  

 

1
( , )

0

between ribs
HP x y

on ribs


 


 (55) 

 

Fig. 2 illustrates the Heaviside step function along a cylinder with two cavities. 

 

 

 

 

 

 

 

 

Fig.2 

The Heaviside step function along a cylinder with two 

cavities. 

 

For an orthogrid-reinforced structure, the Heaviside distribution is written as [27]: 

 

1 1

( , y) [ ( ) ( )] [ (y ) (y )]
2 2 2 2

yx
nm

byjbxi bxi bxi
i i j j

i j

hh h h
HP x H x x H x x H y H y

 

             (56) 

 

If the perforated structure contains orthotropic ribs, vertical, horizontal, and diagonal ribs with fillers are 

analyzed as: 
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0 0 90 90 0 90(1 ) (1 ) ( )

bay
HP HP HP HP          (58) 

 

0

1 1

90

1 1

1 1

(y ) (y )
2 2

( ) ( )
2 2

( ) ( ) (y ) (y )
2 2 2 2

( ) (
2

yx

yx

yx

mm
byjbxi

j j

i j

mm

bxi bxi
i i

i j

mm
y yx x

i i j j

i j

x

i

hh
HP H y H y

h h
HP H x x H x x

h hh h
HP H x x H x x H y H y

h
HP H x x H x

  



 

 

 



 
      

 

 
      

 

  
             

   

   







1 1

) (y ) (y )
2 2 2

yx
mm

y yx

i j j

i j

h hh
x H y H y

   

 

  
         

   
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 (59) 

 

where ix  and jy  denote the coordinates of each cell’s center, h is the rib thickness, and x ym n  represents the 

number of cells. Also, 

 

, 1,..., , 1,...,i x i yx i m y j n   (60) 
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3.5.6 Deriving differential operators for perforated shells 

The equations governing perforated cylindrical shells are derived in the same way as those of non-perforated 

composite shells. In replacing the resultant stresses in Euler equations and deriving differential operators, it should 

be noted that the entries of matrix D vary with respect to x and y and are included in differentiation due to the 

Heaviside step function, unlike non-perforated shells. Thus, the differentials are included in the calculations from 

(56) and (59).  Once the entire differential operators are obtained as described, the remaining steps of obtaining 

natural frequencies will be the same as those of typical composite shells. The first differential operator in composite 

shells is defined as: 

 
2 2 2 2

0 0 0 0
11 (1,1) (1,3) (3,1) (3,3)2 2

2
(1,1) (1,3) (3,1) (3,3)0 0 0 0 0

0 2

1 1 1 1

1 1 1 1

m m m m

m m m m

u u u u
L D D D D

R x y R x y R Rx y

D D D Du u u u u
I

x x x R y y R x R y R y t

   
   

    

       
   

        

 (61) 

 

In which underlined terms are added to the operators of an integrated shell due to the presence of differentials in 

the entries of matrix D of a perforated shell.  

3.5.7 Normalizing mode shapes 

An important property of vibration modes in cylindrical shells is their orthogonality to mass and stiffness matrixes. 

The orthogonality of mode shapes to the mass matrix in a shell is defined as [28]: 

 


2

0
0

0 0

L

if m i or n jT
mn ij if m i or n jM dxd



   
       (62) 

 

In which mn  is the natural mode shape vector defined in (50). Then, the normalized mode shapes with respect 

to the mass matrix as calculated as: 

 
2

0 0

1

L

T
mn mnM dxd



     (63) 

 

As a result, the normalized natural mode shape vector is obtained.  

4    RESULTS AND DISCUSSION   

The properties of the material are assigned as a composite layup. In modeling by Abacus software, the element 

SC8R has been used Which is a cubic element with 8 nodes and 6 degrees of freedom. Armenakas et al. (1969) 

studied the natural frequencies of cylindrical shells by a 3D elasticity theory-based exact solution [29]. Their 

frequency parameter was defined as: 

 

/ /Gh     (64) 

 

where   is the natural frequency, h is the shell thickness,   is the density, and G is the shear modulus. Table 1 

compares the frequencies of a hollow cylinder between the proposed higher-order theory and those of other studies 

at different h/L and h/R ratios and different circumferential mode numbers. As can be seen, the proposed theory was 

satisfactorily accurate, as compared to other works. Accurate investigation indicates that a rise in the h/L ratio raises 

the frequency parameter. Also, an increase in mode number n from 1 to 2 enhanced the frequency parameter. It 
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should be noted that the results of the MRTSDT and RTSDT were consistent, and the differences between the two 

theories arise from the use of the trapezoidal coefficient and a higher order in the strain-displacement definition in 

MRTSDT. Figs. 3 and 4 show the variations of the lowest natural frequency at different h/R ratios.  

Fig. 3 indicates the variations at the L/R ratios of 5 and 10, and Fig. 4 demonstrates the variations at the L/R 

ratios of 15 and 20 for MRTSDT and RTSDT. As can be seen, the difference between the two theories increases as 

the h/R and L/R ratios rise. At h/R=0 and L/R=20, the difference is 2.7%. This can be attributed to the higher 

number of calculated terms in MRTSDT than in the RTSDT theory.  
 

Table 1 

Comparing the lowest frequencies of different theories for an isotropic cylinder. 

h/R=0.01 h/L MRTSDT RTSDT Hasheminejad [30] Loy and Lam [31] 

 

n=1 

0.1 0.0428 0.0429 0.0314 0.0315 

0.2 0.1154 0.1159 0.1102 0.1102 

0.4 0.3145 0.3159 0.3250 0.3250 

0.6 0.5392 0.5411 0.5591 0.5492 

0.8 0.7717 0.7739 0.7944 0.7944 

1.0 1.0070 1.0092 1.0272 1.0273 

 

n=2 

0.1 0.6091 0.6140 0.7175 0.7181 

0.2 0.6091 0.6222 0.7149 0.7156 

0.4 0.6700 0.6726 0.7463 0.7469 

0.8 0.9359 0.9364 0.9936 0.9941 

1.0 1.1236 1.1239 1.1735 1.1741 
*difference percentage=((MRTSDT-[20])/[20])*100 

 

Fig. 5 indicates the lowest frequency parameter versus the L/R  ratio. As mentioned, a rise in the L/R ratio 

reduces the frequency parameter. Moreover, this reduction trend declines as the L/R  ratio diminishes. It should be 

noted that the proposed MRTSDT and the RTSDT exhibited close results for isotropic shells.  
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Fig.3 

The lowest frequency parameter versus the h/R ratio at 

different L/R ratios. 
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Fig.4 

The lowest frequency parameter versus the h/R ratio at 

different L/R ratios. 
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Table 2 compares frequency parameter results for a hollow cylinder with asymmetric orthogonal layer 

arrangement (0/90/0) at the first six frequency modes, the L/R ratio of 2, h/R ratio of 0.0025, and different 

orthotropic ratios to the results of Xie et al. [32].  As can be seen, a rise in the orthotropic ratio increases the 

frequency parameter. However, the increase rate diminishes as the orthotropic ratio continues to rise. MRTSDT and 

RTSDT are in good agreement. However, the MRTSDT results are closer to [32] in the entire cases. 

Table 3 compares the frequency parameter results of a hollow cylinder with symmetric orthogonal layer 

arrangement (0/90/0) at the first six frequency modes, the h/R ratio of 0.0025, and different L/R ratios to those of Xie 

et al. [32]. According to Table 3, an increase in the L/R ratio diminishes the frequency parameter. The maximum 

difference can be indicated to be 4.45% at a high L/R ratio and the 6
th

 mode. It should be noted that MRTSDT 

suggests that an increase in the number of strain-stress terms at a high mode number reports closer results to the 

reference, as mentioned in the equations.  
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Fig.5 

The lowest frequency parameter versus the L/R ratio at 

different h/R ratios. 

 

Fig. 6 illustrates the frequency parameter versus the h/R ratio at different L/R ratios. According to Fig. 6, an 

enhancement in the h/R ratio enhances the frequency parameter. As can be seen, a rise in the L/R ratio from 1 to 5 

diminishes the incremental slope of the frequency parameter. The parameter frequency became 3.15, 2.83, 2.11, 

2.01, and 1.77 times larger as the h/R ratio enhanced by three times at the L/R ratios of 1, 2, 3, 4, and 5, respectively.  

Fig. 7 demonstrates the effect of a rise in the mode number on the lowest frequency parameter at different L/R ratios. 

According to Fig. 7, at low mode numbers, the lowest frequency parameter rises as the L/R ratio declines. However, 

the frequency parameter becomes almost the same at different L/R ratios as the mode number increases to 10. 

According to the values obtained at the L/R ratios of 1, 2, 5, and 10, the frequency parameter reduces and then 

begins to increase as the mode number increases from 1 to 10. It should be noted that the base mode number 

diminishes as the L/R ratio rises. This is an essential criterion of designing mechanical, particularly composite, 

structures.  
 

 

Table 2 

Comparing the frequency parameter for symmetric orthogonal layer arrangement (0/90/0) in a multi-layered cylinder at different 

E1/E2 ratios and the first six bending vibration modes; h/R=0.01 and *
( ) 2ER   . 

E1/E2 =2.5 

n 1 2 3 4 5 6 

MRTSDT 0.0852 0.0305 0.0155 0.0125 0.0158 0.0221 

RTSDT 0.0852 0.0305 0.0155 0.0126 0.0159 0.0222 

Xie et al. [32] 0.0839 0.0300 0.0151 0.0121 0.0152 0.0211 

E1/E2 =5 

n 1 2 3 4 5 6 

MRTSDT 0.1036 0.0285 0.0101 0.0148 0.0169 0.0229 

RTSDT 0.0103 0.0396 0.0201 0.0148 0.0170 0.0230 

Xie et al. [32] 0.1028 0.0392 0.0198 0.0145 0.0164 0.0221 

E1/E2 =15 

n 1 2 3 4 5 6 

MRTSDT 0.1318 0.0587 0.0310 0.0211 0.0210 0.0266 

RTSDT 0.1318 0.0587 0.0310 0.0212 0.0211 0.0268 

Xie et al. [32] 0.1316 0.0585 0.0309 0.0209 0.0206 0.0260 
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Table 3 

Comparing the frequency parameter for symmetric orthogonal layer arrangement (0/90/0) in a multi-layered cylinder at different 

L/R ratios and first six bending vibration modes; *
( ) 2ER   . 

12 13 2 23 2 12 13 23 2 3 1 21, / 0.002, 0.26 , 0.5 , 1, / 1, / 2.5m h R G G E G E v v v E E E E           
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1 1.0832 1.0932 1.0612 2.0708 0.8184 0.8184 0.8040 1.7914 0.6084 0.6084 0.5973 1.6920 

5 0.2518 0.2518 0.2486 1.2876 0.1090 0.1090 0.1072 1.7126 0.0561 0.0561 0.0550 1.8334 

10 0.0852 0.0852 0.0839 1.592 0.0305 0.0305 0.0300 1.8349 0.0155 0.0155 0.0151 2.0948 

20 0.0240 0.240 0.235 1.7898 0.0080 0.0080 0.0079 1.9487 0.0060 0.0061 0.0085 3.4235 

 n=4 n=5 n=6 

1 0.4577 0.4576 0.4501 1.6752 0.3510 0.3510 0.3452 1.6961 0.2754 0.2754 0.2707 1.7399 

5 0.344 0.0345 0.0337 2.0322 0.0264 0.0265 0.0257 2.6732 0.0268 0.0269 0.0258 3.8512 

10 0.0125 0.0126 0.0121 3.2211 0.0158 0.0159 0.0152 4.1299 0.0221 0.0222 0.0211 4.3785 

20 0.0094 0.0095 0.0090 4.3199 0.0148 0.0150 0.0142 4.4395 0.0217 0.0218 0.0208 4.4579 
*difference ratio: ((MRTSDT-[32])/32)*100 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

The lowest frequency parameter versus the h/R ratio at 

different L/R ratios. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

The lowest frequency parameter versus the circumferential 

mode number at different L/R ratios and 1 2 40E /E  . 

 
 

Table 4 provides the results of the proposed theory along with FEM results for different perforated shell 

thicknesses and mode shapes. As can be seen, an increase in the grid structure thickness increases the natural 

frequencies. This can be attributed to the increased stiffness due to the increased thickness. The difference between 

the proposed theory and the FEM results seems to be acceptable, considering that the theory is a new idea. The 
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maximum difference of 12.00% occurred in the first mode at an h/R ratio of 0.3. Also, very close results to the FEM 

results were obtained in the second mode. The differences were 4.30% and 2.79% at an h/R ratio of 0.1 in the second 

and third modes, respectively. Higher shell thickness and the thick wall analysis could be an explanation for the 

higher difference between the proposed theory and the FEM results.  
 

Table 4 

Comparing the base natural frequency in Hz to the FEM results at different h/R ratios and in different bending vibration mode 

numbers. 

Mode Theory h/R=0.1 *Difference 

(%) 

h/R=0.2 Difference 

(%) 

h/R=0.3 Difference 

(%) 

(1, 1) MRTSDT 28.68 6.94 28.80 9.80 29.09 12.0 

FEM 30.82 31.93 33.06 

Mode Shape 

   
(1, 2) MRTSDT 52.72 4.30 53.80 6.12 55.72 7.13 

FEM 55.09 57.31 60.00 

Mode Shape 

 
 

 
(3, 1) MRTSDT 80.70 2.79 84.60 6.10 90.65 7.51 

FEM 83.02 91.10 98.02 

Mode Shape 

 
 

 
*Difference percentage: ((MRTSDT-FEM)/FEM)/100, L/R=2, E1/E2=40.  

 

Fig. 8 represents the effect of a compressive axial load along with a tensile circumferential load on the natural 

frequency. The present analysis suggests that an enhancement in the initial stresses has an essential effect on the 

natural frequency, in that it reduces the natural frequency. According to the results, the difference between the 

MRTSDT and RTSDT results becomes very small under different axial and circumferential loads. The difference is 

more clearly seen at S=-1. This can be attributed to the effect of the trapezoidal form factor on circumferential 

results. Finally, the natural frequency is minimized at critical and buckling loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

The lowest natural frequency in Hz under an initial axial and 

circumferential load with 10 circumferential grids and 5 

longitudinal grids. 
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5    CONCLUSIONS 

1. The proposed MRTSDT was satisfactorily accurate in comparison to RTSDT in which the trapezoidal 

effect and higher-order 
z  terms were not included. This can specifically be seen in the comparison of the 

proposed theory and FEM results for cylindrical shells.  

2. The more accurate results of the proposed theory than those of different high-order theories implied the 

positive contribution of the trapezoidal effect and high-order 
z  terms.  

3. For isotropic cylindrical shells, an enhancement in the h/L ratio increases the frequency parameter. Also, 

MRTSDT exhibited higher accuracy at lower h/L ratios. 

4. For composite cylindrical shells, I was observed that an increase in the L/R ratio diminished the frequency 

parameter. It was found that the frequency parameter reduction rate increased but then began to diminish as 

the L/R ratio increased in different layer arrangements.  

5. The lowest frequency parameter increased as the E1/E2 ratio increased in different composite layer 

arrangements. The variation of the frequency parameter diminished at higher E1/E2 rations. Also, the 

proposed theory exhibited higher accuracy.  

6. The lowest frequency reduced as the h/R ratio enhanced. Also, according to the results, the proposed theory 

was closer to RTSDT at lower h/R ratios and approximated the frequencies slightly lower than their real 

values at higher h/R ratios.  

7. As the circumferential mode number of a composite cylindrical shell increased, the frequency parameter 

reduced and then began to increase. 

8. A rise in the initial axial and circumferential stresses with different rations diminished the natural 

frequency. In this case, the results of the two theories were in good agreement.  
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