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 ABSTRACT 

 The study of surface waves in a layered media has their viable 

application in geophysical prospecting. This paper presents an 

analytical study on the dispersion of torsional surface wave in a 

pre-stressed heterogeneous layer sandwiched between a pre-

stressed anisotropic porous semi-infinite medium and gravitating 

anisotropic porous half-space. The non-homogeneity within the 

intermediate layer and upper semi-infinite medium is assumed to 

rise up, because of quadratic variation and exponential variation in 

directional rigidity, pre-stress, and density respectively. The 

displacement dispersion equation for the torsional wave velocity 

has been expressed in the term of Whitaker function and their 

derivatives. Dispersion relation and the closed-form solutions have 

been obtained analytically for the displacement in the layer and the 

half-spaces. It is determined that the existing geometry allows 

torsional surface waves to propagate and the observe exhibits that 

the layer width, layer inhomogeneity, frequency of heterogeneity in 

the heterogeneous medium has a great impact on the propagation of 

the torsional surface wave. The influence of inhomogeneities on 

torsional wave velocity is also mentioned graphically by means 

plotting the dimensionless phase velocity against non-dimensional 

wave number for distinct values of inhomogeneity parameters. 
                                 © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Torsional surface wave; Anisotropic; Pre-stress; 

Porosity; Inhomogeneity; Gravity.  

1    INTRODUCTION 

 HE Earth crust and mantle are not homogeneous and initial stress-free throughout and it contains some hard 

and soft rock or mantle and non-homogeneity, initially stressed property are the trivial characteristic of the 

Earth. In recent years, dispersion of torsional wave in the heterogeneous medium has considerable application in 

applied mathematics and geophysics engineering because of Earth's inhomogeneity properties. Due to significant 
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applications, the variation in rigidity, density, and initial stress has approximated linearly (Meissner [1]). 

Additionally, quadratic variation in rigidity, density, and pre-stress for the Earth crust is found in many places. As a 

consequence, the present paper aims to study the propagation of the torsional surface wave in a heterogeneous layer 

sandwiched between two anisotropic porous half-spaces under the influence of the gravity field. The study of the 

seismic wave gives significant information about the layered earth structure and has been used to appropriately 

determine the earthquake epicenter correctly.  

The work has been carried out on propagation of torsional waves in an inhomogeneous layer over an 

inhomogeneous half-space by Chattopadhyay et al. [2]. Additionally, propagation of love waves in non-

homogeneous substratum over initially stressed heterogeneous half-space was analyzed by Gupta et al. [3] and 

Gupta et al. [4] pointed out propagation of S-waves in a non-homogeneous anisotropic and initially stressed 

medium. A torsional surface wave is a seismic wave which requires only circumferential displacement that needs to 

be independent of the azimuthal angle. These are the waves where the particles of the medium twist or spiral 

clockwise and anticlockwise in regards to the motion of the waves. These forms of earthquake waves are torsional. 

Among the different surface wave, the torsional wave plays an important role in its own torsional field.. Propagation 

of torsional surface waves in a heterogeneous half-space underneath a rigid layer was analyzed by Dey et al. [5]. 

Kumari and Sharma [6] gave a thought regarding propagation of torsional waves in a viscoelastic layer over an 

inhomogeneous half space. An analysis of the effect of inhomogeneity on the propagation of surface waves giving 

an intriguing field to the utilization of mathematical technique and moreover, is of reasonable significance to 

seismologists due to the fact in any sensible model of the earth there may be a continuous change in the elastic 

properties of the material in the vertical path giving upward thrust to inhomogeneity.  

Likewise, Earth’s interior and surface geographical structures might  be assumed to be along with may be 

assumed to be along with liquid-filled porous layer at which density and elastic moduli change intermittently. The 

layers of the Earth are fluid-saturated poroelastic and absolutely anisotropic in nature. The interaction between fluid 

motion deformation in the porous medium is depicted by using poroelastic models. Inside the Earth crust liquid 

soaked permeable rocks are available as limestone and others pervaded by groundwater or oil or gasoline. Most of 

these hydrocarbons are actual abundant like a harder sponge, abounding holes however not compressible. The holes 

or pores can incorporate water or oil or fuel and rock will probably be saturated with any such three. The holes are 

abundant tinier than spong holes but they are still holes and they are alleged porosity and the layer are referred to as 

the porous layer. The phenomenal of wave propagation in fluid-saturated porous media having one-of-a-kind sort of 

fabric houses have been a subject of a couple of investigators as a result of its fundamental application in geophysics 

and seismology.  

In view that Biot established the poroelasticity concept of the fluid-saturated porous media [7, 8]. Additionally, 

Wang and Tian [9] pointed out the acoustoelastic principle for fluid-saturated porous media. Free vibration analysis 

of sandwich nano-plate with functionally graded porous core and piezoelectric face sheets was analyzed by Arani 

and Zamani [10]. Dynamic analysis of a rectangular plate made of porous materials lying over an elastic foundation 

was done by Arani et al. [11]. Chattaraj and Samal [12] introduced an idea about dispersion of Love type surface 

wave in an anisotropic porous layer with periodic non-uniform boundary surface. The propagation of Love waves in 

a fluid-saturated porous anisotropic layer was examined by Konczak [13]. Saroj and Sahu [14] discussed reflection 

of plane wave at traction-free surface of a pre-stressed functionally graded piezoelectric material half-space. Love 

waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties was 

distinctived by Ke et al. [15] . Prasad and Kundu [16] investigated the propagation of the torsional surface wave in a 

pre-stressed dry sandy layer over a gravitating anisotropic porous half-space. Ghorai et al. [17] contemplated Love 

waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity. 

Possibility of Love wave propagation in a porous layer under the effect of linearly varying directional rigidities was 

detailed by Gupta et al [18]. Free vibration of a rectangular plate made of porous materials having Y-foam, G-foam, 

and coustone and it was compared with each other by Arani et al. [19].  

This present paper endeavors to study the dispersion of torsional surface wave in an anisotropic pre-stressed 

heterogeneous layer sandwiched between an anisotropic porous semi-infinite layer and gravitating anisotropic 

porous half-space. The rigidities, initial stress, and density of the porous layer are assumed to vary exponentially 

whereas rigidities, initial stress, and density of the heterogeneous layer are supposed to vary quadratically. The z-

axis is vertical positive downward co-ordinate whose origin at the interface of anisotropic porous half-space 

underneath gravity. The mathematical statements of the velocity of the torsional wave are obtained which coincides 

with the classical result. 
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2    BASIC PRELIMINARIES AND PROBLEM FORMULATION  

We consider a pre-stress heterogeneous layer 2( )M  of finite thickness H lying over a gravitating anisotropic porous 

semi-infinite medium 3( )M  and underlying a pre-stress anisotropic porous layer 1( )M . To examine torsional surface 

waves, a cylindrical co-ordinate system  , ,r z  is introduced with z-axis directed to downward positive. Where r 

and   be the radial and circumferential co-ordinate respectively. The wave is assumed to be propagated along radial 

( )r  direction and particle displacement along an azimuthal ( )  direction. The geometry of the problem is depicted in 

Fig.1. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of problem. 

 

The dynamical mathematical statement for porous layer under compressive initial stress 'p  in the absence of the 

viscosity of liquid and body force are given by Biot [20] 
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where  , , ,ijs i j r z 
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  The strain components are given by  
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The stress vector s   due to liquid is related to the fluid pressure fp  by the relation 
' = .fs p  

where   is the porosity of layer. The mass coefficients ,rr r    and   are related to the densities , s    and 

l  of the layer, solid and liquid respectively by Biot [8]  
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These mass coefficients also obey the following inequalities, 
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3    DYNAMICS OF POROUS LAYER UNDER INITIAL STRESS  
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The strain-stress relations are  

 

' '
' ' ' '

'
' ' ' '

= 2 =

= 2 = ,

r r

z r

v v
s N e N

r r

v
s Le L

z

 
 


 

 
 

   



 

 (6) 

 

where N   and L   are the rigidity of the porous medium along r  and z-direction respectively. Using the relation (5) 

in Eqs. (1) and (2), the equation of motion can be written as: 
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Using stress-strain relation (6) and strain displacement (4), Eq. (7) may be written as: 
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Eliminating V  from Eqs. (9) and (8), one gets  
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The solution of Eq. (10), when wave propagating along radial direction with amplitude of displacement as 

function of dept may be written as: 

 
'

1= ( ) ( ) ,i tv v z J kr e 
  (11) 

 

  is circular frequency of the wave, 1J  is the Bessel’s function of first kind of order one and ( )v z  is solution 

of 

 

 
2 ' 2 ' ' 2

'

2 ' ' '

( ) 1 ( )
1 ( ) = 0,

d v z dL dv z k N d c
v z

dz dzdz L L N




 
    

 
 

 (12) 

 

where, =c
k


 is the velocity of propagation of torsional wave, 

'
'

'
=

2

p

N
  is the dimensionless parameter due to 

initial stress ,p 
'

11 '
= ,rr




 
'

12 '
  = ,r



 

'

22  =
'





 are the dimensioless parameter for the material of porous medium, 

' 2 2'
' 12

11' '
22

1
= = = .

'

r
rr

d
d 



 
 

  

 
  
 
 

 

On substituting, 1

'

( )
( ) =

v z
v z

L

 in Eq. (12) we have  



R.M. Prasad and S. Kundu                            712 

 

© 2019 IAU, Arak Branch 

 
2

2 2 ' ' 2 ' ' 2
'1

1 12 ' 2 ' ' '

( ) 1 1
( ) 1 ( ) = 0,

2 2

d v z d L dL k N d c
v z v z

dzdz L dz L L N




     
           

     

 (13) 

 

Now, the variation of directional rigidity (elastic moduli), initial stress and density has been taken as: 
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where   is a constants having dimension equal to inverse of the length. Using Eq. (14), Eq. (13) becomes 
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Solution of Eq. (15) is obtained by  
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where 1D  and 2D  are arbitrary constants. In this way, the displacement in the anisotropic porous layer is  
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4    DYNAMIC OF PRE-STRESSED HETEROGENEOUS ANISOTROPIC MEDIUM  

The dynamic equation of motion for the propagation of torsional wave in a prestressed anisotropic elastic medium is 

given by Biot [20] as: 
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, N   and L   are the directional rigidities of the medium along  r and 

z  directions respectively. 

Using the above relations, Eq. (18) can be written as:  
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The solution of Eq. (19), when wave propagating along radial direction with amplitude of displacement as 

fuction of dept may be written as: 

 
'

1= ( ) ( ) ,i tv v z J kr e 
  (20) 

 

where   is the circular frequency of the wave, where ( )v z  is solution of  

 
2 ' 2 ' 2

2 ' ' '

( ) 1
1 ( ) = 0,

d v z dv d k N c
v z

dz dzdz N

 
   

    

 (21) 

 

where =c
k


 is the velocity of the dispersion of torsional surface wave and 1J  is the Bessel’s function of first kind 

and of order one. 

By letting 2

'

( )
( ) =

v z
v z



, Eq. (21) can be expressed as: 

 

2
2 2 ' ' 2 ' 2

2
2 22 ' 2 ' ' '

( ) 1 1
( ) = 1 ( ),   

2 2

d v z d d k N c
v z v z

dzdz dz N


      

                

 (22) 

 

Now, the variation of directional rigidity(elastic moduli), initial stress and density in the upper layer has been 

taken as: 

 
2

'
2

2
'

2

2
'

2

2
'

2

= 1

= 1

,

= 1

= 1

z
N N

a

z
L L

a

z
p p

a

z

a
 

 
 
 


  
  

  

 

  
  


      

 
(23) 

 

where a  is constant having dimension equal to the length. Using relation (23), Eq. (22) takes the form  

 
2

22
2 22

( )
( ) = 0,   

d v z
m v z

dz
  (24) 

 

where, 
 

2 2
2 2
2 2

2 2 2

= 1
1

k N c
m

L c

 
 
 
 

, 2
2

2

=
2

p

L
  is the dimensionless initial stress parameter, 2

2
2

=
N

c


 is the shear wave 

velocity in the upper layer along radial direction. 

The solution of Eq. (24) is obtained as: 
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2 2
2 3 4( ) = ,

m z m z
v z D e D e


  (25) 

 

where 3D  and 4D  are arbitrary constants. Thus, the displacement in pre-stress asisotropic heterogeneous medium is 

 

2 2
' ' 3 4

2 1

2 2

= ( ) = ( ) .   

1 1

m z m z
i tD e D e

v u say J kr e
z

L
a









 
  

 

 
(26) 

5    DYNAMIC OF POROUS LAYER UNDER INFLUENCE OF GRAVITY  

The dynamic equation of motion for anisotropic porous medium under the effect of gravity and in the absence of 

body forces for the dispersion of torsional surface is given by Biot [20] as: 

 

   
' ' ' ' ' 2

' ' ' ' ' ' '

2

1
2 = ,   

2

r z r
z rr r

s s s v v
d gze d gz v V

r z r z z r r t

    
    

       
       
         

 (27) 

 

 
' 2

' ' ' '

2
= .   r

s
v V

t
    



 


 
 (28) 

 

where,  ' , ,v r z   and  ' , ,V r z   are the displacement along circumferential direction of solid and liquid 

respectively and g is the acceleration due to gravity, ijs   and s   are the stress component of solid and liquid 

respectively. 

For gravitating anisotropic porous medium the stress are related to strain by  

 
' ' '

' ' ' ' ' ' ' '1 1
= 2 ,   = 2 ,   = ,   = ,   

2 2
r r z z r z

v v v
s N e s Le e e

r r z
     

  
 

   

 (29) 

 

where N   and L   be the directional rigidity of the porous medium along r and z direction respectively. Under the 

assumption that there is no relative motion between solid and liquid of porous layer, the mass coefficients ,rr r     

and   are related to the density , s    and l  of the layer, solid and liquid respectively by Biot [8] 

 

 ' ' '= 1rr r s    
 

' ' '= .r l     
 

                     

Therefore, mass density of the bulk material is  

 
' ' ' '= 2rr r     

 

        ' ' ' '= rr r r       
 

     
 ' ' '= ,s l s      

 

                         

 where,   being porosity of porous layer and  

 
' ' ' ' ' ' 2> 0,   > 0,   < 0,   > 0.rr r rr r           
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Introducing the Eq. (29), dynamic equation of motion obtained by Eqs. (27)-(28) reduces to 

 
2 ' ' ' 2 ' 2 '' '

' ' ' ' '

2 2 2 2

1 1 1
= ,   

2 2 2

v v v v vd g v
N d gz N d gz d

r r zr r z t

    
        

         
        

 (30) 

 

For the wave propagating along r direction we may assume the harmonic solution of Eq. (30) as: 

 
' '

3 1= ( ) ( ) .i tv v z J kr e 
  (31) 

  

 Here 
'
3( )v z  is the solution of  

 

'
'

'2 ' ' 2
2 '3 3

32
' 2

3

1
2( ) ( )

( ) = 0,   

2 1 1 1
2 2 2

GdkzL
N

Nd v z dv zGdk c d
k v z

Gdkz Gdkz Gdkzdzdz L c

  
  

   
   

                   
 

 (32) 

where, 
'

3 '
=

L
c


 is the velocity of the shear wave in anisotropic elastic medium along r direction, 

'

'
=

g
G

L k


, Biot’s 

gravity parameter, 
'

11 '
= ,rr




 
'

12 '
  = ,r



 

'

22  =
'





 are the dimensionless parameter for the material of porous 

medium, 
' 2 2'

' 12
11' '

22

1
= = = .

'

r
rr

d
d 



 
 

  

 
  
 
 

 

By letting '
3

( )
( ) =

1
2

z
v z

Gdkz



 
 

 

 in Eq. (32), we obtain  

'
'

2 '2 2 2 2 2
2

2
' 2

3

1
2( )

1 ( ) ( ) = 0,   
16 2

1 1
2 2

GdkzL
N

Nd z G d k Gdkz c d
z k z

Gdkz Gdkzdz L c


 



   
   

         
        

                    
   

 (33) 

Again letting 
4

= 1
2

Gdkz

Gd


 
 

 
, the Eq. (33) can be expressed as: 

 

' 3

2

1 1
( ) ( ) = 0,   

44

m
   



  
   
 

 (34) 

 

where, 
2 '

3 2 '
3

1
= 1 ,

c N
m

Gdc G L

 
  

 
 

Eq. (34) is well known Whittaker equation, whose solution is obtained by 

 

5 0 6 03 3
( ) = , ( ) , ( ).m mD W D W       

 

As the solution of the Eq. (34) must be bounded and vanishes as z   for the surface wave. i.e,   , we 

make take the solution as: 

 

6 03
( ) = , ( ).mD W      
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Therefore, the displacement in porous layer half-space is given by 

 

6 03
' '

3 1

4
, 1

2
= ( ) = ( ) .   

1
2

m
i t

Gdkz
D W

Gd
v u say J kr e

Gdkz






  
   

  

 
 

 

 (35) 

6    BOUNDARY CONDITION AND FREQUENCY EQUATION  

Since the thickness of the intermediary layer 2( )M  is H and at =z H , there is another semi-infinite medium that is 

1( )M . It is assumed that the dispersion of wave is continuous at the interface of the media, that is, at =z H , the 

velocity of the 1( )M  is equal to the velocity of 2( )M . Also, stress at the interface =z H  of the media are contained 

like any other internal surface that means stress of the intermediate layer is the same as that of the upper semi-

infinite medium. 

So, mathematically, boundary conditions at =z H  are: 

i. ' '
1 2=u u   i.e, displacement components are continuous. 

ii. 
' '
1 2

1 2=
u u

L L
z z

 

 
  i.e, stress components are continuous. 

Again at the interface of the layer 2( )M  and the lower half-space 3( )M , the displacement component is 

continuous with any other internal surface in the media at = 0z , which behaves as the stress on one side of it is same 

as that on the other side. 

Mathematically, boundary conditions at = 0z  are: 

i. ' '
2 3=u u   i.e, displacement components are continuous. 

ii. 
''

' 32
2 =

uu
L L

z z



 
  i.e, stress components are continuous. 

     

     

Apply boundary condition (1) in Eq. (17) and in Eq. (26) it becomes 

 

1 2 2 2
2 2 2 3 1 4 11 1 = 0,   

m H
m H m HH

D L e D L e D L e
a





 
    

    
 

 (36) 

 

2
1 2 2 2

2 1 2 3 2 2 2
1

1 1 1
2

m H
m H m HH H

D L e D L m e L e
a a a






 
 

 
    

         
    

 

2 2
4 2 2 2

1
1 = 0.   

m H m HH
D L m e L e

a a

   
    

  
 

(37) 

 

Apply boundary condition (2) in Eq. (26) and in Eq. (35) it becomes 

 

3 4 6 1 2 21 = 0, D D D Q L     (38) 

 

where, 
6 03

1

=0

4
, 1

2
=

1
2

m

z

Gdkz
D W

Gd
Q

Gdkz



   
    

   
 

   
   
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'
3 2 2 4 2 2 6 2 2

1 1
1 = 0,   D m L D m L D LQ

a a


   
       

   
 (39) 

 

where, 
6 03

2

=0

4
, 1

2
=

1
2

m

z

Gdkz
D W

Gd
Q

z Gdkz



   
    

    
     
   

. 

Now eliminating D D D2 3 4, , and 6D  from Eqs. (36), (37), (38) and (39) we have  

 

1 2 2 2
2 2 1 1

2
1 2

1 2 1 2

2 2

'
2 2 2 2 2 2

1 1 0

= 0,1 1 0
2

0 1 1 1
1 1

0 1

m H
m H m H

m H

H
L e L e L e

a

H
L e R R

a
L

m L m L LQ
a a














 
   

 
 

 

 
    

 

 
    

 
 

   
      

   

  

  

where,  

 

2 2
1 2 2 2

2 2
2 2 2 2

1
= 1

1
= 1

m H m H

m H m H

H
R L m e L e

a a
H

R L m e L e
a a

 

  
          
    

    

 (40) 

 

Expanding the determinant, we have  

 

 

2
2

2
2 22

tan 1 =
1

Nc
kH

Lc 

  
  
  
  

 
2 2 2

' ' 2 ' ' 2 '
2 2 2 2 2 1 1 2 2 1 2 2 1

2 2
2 '2 ' 2 '
2 2 1 2 2 2 1 1 2 2 12 2

1 1
1 1 1 1

2

1 1 1
1 1 1 1

2

kH kH kH kH
L m LQ L m Q L m L Q L m Q

ak ak ak ak k ak ak

kH kH kH kH
L m Q L LQ L Q L LQ L Q

ak ak ak ak ak k aka k





       
             

       

         
               

         

,      



 

(41) 

 

where, 
 

2
' 2
2 2

2 22

= 1
1

Nc
m

Lc 

 
 
  
 

. 

Eq. (41) gives the required dispersion equation of torsional surface wave in a pre-stress anisotropic 

inhomogeneous layer lying over an anisotropic porous layer half-space under gravity and underlying a pre-stress 

anisotropic porous layer . It should be noted that if the upper layer is non-porous solid than 0   and ' ' ,s   

which leads to 11 12 1    and 12 22 0   , which gives to 
2

12
11

22

1





   or 1.d   Again if 1   then 

' '
l   and liquid becomes fluid 

2
12

11
22

0





   or 0d  . Hence for porous layer 0 < <1d .  
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7    PATICULAR CASES  

Case-i  

When the upper porous layer is homogeneous i.e. = 0  then Eq. (41) reduces to  

 

 

2 2
' ' 2 ' 2 '

2 2 2 2 2 1 2 2 12
2

2 2
2 22 2 '2 ' 2

2 2 1 2 2 2 12 2

1 1
1 1 1
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                    
     

 
 

 

 which is the dispersion equation of torsional surface wave in a homogeneous porous layer under the gravity. 

  

Case-ii 

 

When the intermediate inhomogeneous layer is free from pre-stress i.e. 2 = 0p  then Eq. (41) becomes  

 

2
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 where, 
2

' 2
2 2

22

= 1 ,
Nc

m
Lc


 
 
 
 

which is the dispersion equation of torsional surface wave in an initially stress free 

inhomogeneous layer underlying a inhomogeneous porous layer and lying over an anisotropic porous half-space 

under gravity. 

 

Case-iii  

 

When the lower half-space is elastic isotropic solid and free from gravity i.e. N L' '= ,  1d   and = 0G  then Eq. (41) 

reduce to 
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   

  
  

 

 

 

Case-iv 

 

If the inhomogeneous layer is homogeneous, isotropic and pre-stress free i.e. 
1

= 0
a

, 2 2=N L , and 2 = 0p  then Eq. 

(41) takes the form  
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 
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which is the dispersion equation of torsional surface wave in a homogeneous, isotropic and initial stress free layer 

lying under an anisotropic porous medium and lying over a gravitating anisotropic porous half-space. 

 

Case-v 

 

If the upper half-space is omitted, case (4) reduces to  
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 which on approximation gives 
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 

  

  

which is the well known classical dispersion equation of torsional surface wave.  

8    NUMERICAL CALCULATION AND DISCUSSION  

Mathematical statement (41) is the frequency equation giving the velocity of torsional surface wave in an initially 

stressed anisotropic heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite 

medium and an anisotropic porous half-space under gravity. Numerical computation of dispersion Eq. (41) has been 

performed to exhibit the consequence of initial stress, porosity, gravity and inhomogeneity parameters related to the 

accepted medium at the dispersion of torsional surface wave. For numerical computation, we take a few numerical 

data for porous medium from Samal and Chattaraj [22] and Gubins [23] for heterogeneous. 

For upper and lower anisotropic porous half-space 

 
' 10 2

1 = = 0.1387 10 /L L N m
         

' 10 2
1 = = 0.2774 10 /N N N m

      
3 3= 1.926137 10 /rr Kg m 

 
3 3= 0.002137 10 /r Kg m  

      
3 3= 0.215337 10 /Kg m 

         
= 0.26f  

 

 

For heterogeneous layer 

 
10 2

2 = 6.34 10 /N N m
                

10 2
2 = 3.99 10 /L N m

                 
3

2 = 3364 /Kg m   

  

All the figures have been plotted on the vertical axis as dimensionless phase velocity 2/c c  towards horizontal 

axis as non-dimensional wave number kH. For graphical illustration, numerical values of all the figures had been 

taken from Table 1 .  
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Table 1 

Values of various dimensionless parameter. 
 Fig.2  Fig.3  Fig.4  Fig.5  Fig.6 Fig.7  

/k  -  0.1 0.2 0.1 0.1 0.2 

1/ak  0.1 - 0.1 0.3 - 0.1 

d 0.9 0.9 - 0.9 0.9 - 

G 0.3 0.5 0.3 - 0.5 0.3 

2p  0.4 0.2 0.5 0.6 0.2 0.5 

 

Using above numerical data, results are depicted in Fig. 2-7. In Fig. 2, phase velocity 2/c c  has been plotted 

against wave number kH  for the different value of inhomogeneity parameter / k  associated with directional 

rigidity, density and initial stress of the upper semi-infinite porous medium. It is inferred that as rigidity, density and 

porosity of the upper half-space increases, the phase velocity 2/c c  increases for a fixed value of wave number kH. 

This leads to fact that the phase velocity of torsional wave is directly proportional to the wave number for different 

value of / k . 

Fig.3 represents the dispersion curve for the torsional surface wave when inhomogeneity parameter 1/ak  related 

to directional rigidity, density and pre-stress of the heterogeneous layer. It has been observed that as the 

inhomogeneity parameter 1/ak  of the heterogeneous layer increases, the phase velocity decreases at a particular 

wave number thereby reflects the reality that phase velocity of the torsional surface wave is inversely proportional to 

the inhomogeneity of the heterogeneous layer. 

Fig.4 signifies the effect of porosity of the half-space under the influence of the gravity. The dispersion curves 

are plotted for different value of d with fixed value of gravity, rigidity, pre-stress and inhomogeneity parameters. It 

has been seen that as the porosity of the half-space decreases, the phase velocity of the torsional wave increases for a 

fixed value of wave number. It reflects the facts that porosity and velocity of torsional wave are inversely 

proportional to each other. 

In Fig.5 study has been made to obtain the effect of gravity G in the anisotropic porous half-space. In this figure 

2/c c  has been plotted against kH  for different value of gravity G. These dispersion curves show that the velocity of 

the torsional surface wave increases as the value of G decreases. 

Fig.6 has been plotted to depict the influence of inhomogeneity 1/ak  if the upper half-space space not noted 

beneath have an effect on of gravity. It gives the identical impact as compared to Fig.3. 

Fig.7 manifests the effect of porosity d of the half-spaces in the absence of gravity in the lower half-space. As 

compared to Fig.4 it has been seen that the phase velocity of the torsional wave raises with decreases of d  for fixed 

wave number. Which well-known shows that absence of gravity, plays an important role in torsional wave 

propagation.  
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Fig.2 

Variation of dimensionless phase velocity 2/c c  with respect 

to non-dimensional wave number kH for different values of 

inhomogeneity /a k  in upper porous layer.  
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Fig.3 

Comparison of dimensionless phase velocity 2/c c  against 

dimensionless wave number kH for various values of 

inhomogeneity 1/ak  for non-homogeneous layer between 

porous half-space. 
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Fig.4 

Correlation of dimensionless phase velocity 2/c c  against 

non-dimensional wave number kH for different values of 

porosity d in porous half-spaces. 
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Fig.5 

Assortment of dimensionless phase velocity 2/c c  versus a 

function dimensionless wave number kH for various values 

of gravity G in gravitating anisotropic porous half-space. 

  

0.5 1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

kH

c/
c 2

1

2

3

 

 

41 1/ak=0.100

2 1/ak=0.102

3 1/ak=0.104

4 1/ak=0.106

 

 

 

 

 

Fig.6 

Variation of dimensionless phase velocity 2/c c  with respect 

to dimensionless wave number kH for different values of 

inhomogeneity 1/ak  in the absence of initial stress 2p  in 

upper porous half-space. 
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Fig.7 

Correlation of dimensionless phase velocity 2/c c  against 

non-dimensional wave number kH for various values of 

porosity d in porous half-spaces under gravity. 

9    CONCLUSIONS 

In this paper, we have got studied the dispersion of the torsional surface wave in a heterogeneous finite thickness 

layer with quardratic variation in rigidity, density and initial stress, underlying an anisotropic porous semi-infinite 

medium with exponential variation in rigidity, density, pre-stress and lying over an anisotropic porous half-space 

underneath the affect of gravity. We determined that the existing geometry of this problem lets in the torsional wave 

to propagate. Phase velocity is computed numerically and the consequence of applicable parameters are studied and 

shown graphically the use of MATLAB software program. The closed-form solutions have been obtained for 

dispersion equations pertinent to numerous surface boundary condition. From the aforementioned figures, the 

outcome can be summarized as comply with:   

(i)       All the figures exhibit that phase velocity of the torsional surface wave decreases with the raise of  

dimensionless wave number, which is well nature of seismic wave, i.e., as depth raises, the rate of surface 

wave decreases.  

(ii)       When the upper semi-infinite porous medium is omitted, the dispersion Eq. (41) coincide with the classical 

dispersion relation of Love wave. It has been seen that as heterogeneity increments in an intermediate layer, 

the rate of phase velocity decreases. It prompts actuality that phase velocity  and wave number kH for 

various estimation of 1/ak  is contrarily corresponding to each other.  

(iii)       The speed of torsional surface wave increments as abatement of porosity d, for a specific estimation of 

directional rigidity, initial stress and gravity. It is likewise seen in the absence of gravity field, phase 

velocity increments as abatement of porosity.  

(iv)      Decreases of inhomogeneity 1/ak  in heterogeneous layer, speed of phase velocity increases and velocity of 

wave increases with increases of inhomogeneity / k  in the upper porous layer in the presence of gravity, 

pre-stress, rigidity and density.  

(v)      Without pre-stress 2p  of the heterogeneous layer, the torsion surface wave increments for reductions of 

wave number kH. From the dispersion relation, it is far proven that the upper anisotropic porous semi-

infinite medium is exempted from the impact of pre-stress 1p  i.e, the torsional surface wave is not getting 

effected by initial stress 1p . 

(vi)      As gravity in lower half-space diminishes the velocity of torsional surface wave increments.  

Since the real Earth is not homogeneous and can be considered as made out of various inhomogeneous layers, in 

this manner, it is more sensible to consider the inhomogeneity talked about in the present issue to contemplate the 

engendering of torsional surface waves in heterogeneous Earth medium. Likewise, the earth is gravity medium, the 

speeding up because of gravity G has an awesome significance in investigating the dynamic and static problems of 

the earth. The present study might be valuable for geophysical utilizations of propagation of torsional waves in 

various layered Earth’s media.  
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