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 ABSTRACT 

 In this research, free flexural vibration of a thick sandwich 

composite beam that is made up of two composite face sheets and a 

flexible foam-made core based on a fluid is investigated. Governing 

equations for the sandwich beam were extracted using a higher-

order theory. The face sheets were modeled using the first-order 

shear deformation theory (FSDT). In the analysis of the multilayer 

sandwich composite beam, the layers and the core in the middle 

were assumed to be well attached to one another, and continuous 

strain functions at the layer interfaces were assumed. Moreover, 

displacements were assumed to be small, so that the analyses could 

be performed in linear elastic region with simply supported 

boundary condition for the beam. Equations of motion of the beam 

were extracted using energy equations and Hamilton’s principle. 

Continuing with the research, effects of changing different 

parameters were evaluated; these included core thickness to total 

thickness ratio, beam length to total thickness ration, face sheet 

material, fluid density, and fluid height. The results showed that the 

presence of the liquid tend to lower the natural frequency of the 

structure. Our investigations further indicated that the natural 

frequency follows an increasing trend with decreasing the fluid 

density.                      © 2023 IAU, Arak Branch.All rights reserved. 

 Keywords: Free vibration; Thick composite beam; Flexible core; 

Fluid Foundation; Higher-order theory. 

1    INTRODUCTION 

URING the recent decades, sandwich structures and multilayer orthotropic composites have found widespread 

applications in various industries, including the aerospace industries and marine, civil, and mechanical 

structures. This has been thanks to relatively high strength-to-weight coupled with excellent flexural stiffness of 

such advanced material. Accordingly, a number of research works have been performed to estimate natural 
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frequency of sandwich structures. Frostig and Thomson presented an investigation into free vibration of sandwich 

panels with flexible cores using the higher-order theory. In this work, they analyzed the face sheets and the core 

using the classical and 3D elasticity theories, respectively, ignoring in-plane strains. Their calculations were based 

on two models. The first model took the shear strain in the core and displacements of the top and bottom face sheets 

as unknowns. This model was based on the assumption that the core transmits the inertial loads into the face sheets 

rather than withstanding them, i.e., distribution of acceleration along the thickness of the core was in the form of a 

static displacement field under extended loading. The second model assumed a polynomial distribution for the 

displacement field in the core, where the unknowns included the coefficients of the polynomial and face sheet 

displacements. The main advantage of this methodology was the direct incorporation of dynamic loads into the core 

equation, eliminating the need for considering the core interactions with the top and bottom face sheets [1]. Amirani 

et al. studied free vibration of a sandwich beam with a functionally graded (FG) core. In this research, the element-

free Galerkin (EFG) method was used to formulate 2D elasticity problems, with the so-called penalty method used 

to handle the core- face sheet relationships in the sandwich beam [2]. Banerjee et al. analyzed free vibration of the 

three-layer sandwich beam at different beam thicknesses. They used the Timoshenko’s beam theory to simulate the 

displacement field for each layer and derive the equations of motion (EoMs). Subsequently, they considered an 

exact dynamic stiffness model into which harmonic variables were incorporated, with the Wittrick-Williams 

algorithm further employed to enhance the accuracy of the results. Comparing their findings to experimental data, 

they reported very good agreement [3]. Damanpack and Khalili focused on higher-order free vibration of sandwich 

beams with flexible core using dynamic stiffness method. Using the Hamilton’s principle, they derived the EoM for 

a single element and then expanded it to numerous elements to build a system of equations with seven differential 

equations. Finally, they calculated natural frequencies and mode shapes for symmetric sandwich beam and discussed 

their results [4]. Khdeir and Aldraihem undertook to analyze free vibration of sandwich beams with flexible core 

using the so-called zigzag theory. Following this approach, they managed to obtain natural frequency and mode 

shapes of the system using the state space and compared their results to experimental data as well as analytic and 

numerical results. Their solution method was comparable to approximation methods like Rayleigh-Ritz method, 

finite-element technique, and other numerical procedures [5]. Salami et al. adopted the higher-order theory to 

analyze sandwich beams with soft core and fiber-reinforced carbon nanotube (CNT) face sheets. Performing 

micromechanical modeling, they considered uniform or FG distribution of fibers along the face sheet thickness, 

assuming that the face sheet follows first-order shear deformation theory (FSDT) [6]. Stoykov and Margenov 

investigated nonlinear vibration of 3D layered composite beams. For this purpose, they used the Timoshenko’s beam 

under flexural loading for beam analysis. Their results showed that the natural frequency of the beam was 

determined by the placement angle of the layers [7]. Robinson and Palmer performed modal analysis of a 

rectangular plate floated on top of an incompressible fluid at lower frequencies under the effect of small-amplitude 

surface waves. In this work, they derived the governing vibration equations for the plate-fluid system [8]. Hosseini-

Hashemi et al. investigated free vibration of simply supported Mindlin plates in contact with a fluid using a semi-

analytic method. First, they developed an implicit analytic solution by separation of variables. They then applied the 

Ritz method onto the plate domain to extract final governing equations [9]. In another piece of research, Hosseini-

Hashemi et al. studied free vibration of a horizontal rectangular plate submerged in floated on top of the free surface 

of a fluid for six different conlurations, namely two parallel edges with simple supports and the other two edges 

subjected to different boundary conditions. In this work, equations governing the relatively thick rectangular plate 

was obtained based on those for a Mindlin plate, with the velocity potential function and Bernoulli’s equation used 

to evaluate the pressure exerted to the free surface of the plate [10]. Rezvani et al. studied the effect of added mass 

on the natural frequencies of the structure and fluid. They began by performing a frequency analysis and then 

verified their results against experimental data and numerical findings [11]. Esmailzadeh et al. obtained free 

vibration of the structures that contained or were submerged into a fluid. They used potential function for assessing 

the hydrodynamic pressure applied to the structure and concluded that the fluid depth imposes a great impact on the 

structure-fluid interactions [12]. Li et al. investigated free vibration of the beams made from FG material into 

variable thicknesses and submerged into a fluid. They adopted the Hamilton’s principle, Timoshenko’s beam model, 

and boundary conditions to derive EoMs of the beam before estimating the natural frequency of the beam using the 

DQ method [13]. 

In this research, free flexural vibration of a thick sandwich composite beam that is made up of two composite 

face sheets and a flexible foam-made core based on an incompatible fluid is investigated. Innovation and the 

difference between this article and other similar works are express in two cases: 

1. Differences between different fluid densities on the natural frequency of the structure. 

2. The effect of fluid height as a substrate on the natural frequency of the structure. 

https://www.infona.pl/contributor/0@bwmeta1.element.elsevier-16236f0b-e38a-33b0-aeba-2ef4c1b565ad/tab/publications
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Also, the effect of physical parameters such as the effects of changing parameters such as core thickness to total 

beam thickness, beam length to total thickness on the vibration response of the system, has been investigated. 

2    CONSIDERED GEOMETRY  

In the present research, a sandwich beam with two composite face sheets and one flexible core was studied (Fig.1). 

Thicknesses of the top and bottom face sheets and the core are herein denoted by ht, hb, and hc, respectively. The 

considered coordinate system is depicted in Fig. 1, with the indices t and b referring to the top and bottom face 

sheets, respectively. The following assumptions are made in this work: 

1. For analyzing the multilayer sandwich composite beam, the layers and the middle core are attached to one 

another, with the strain function being continuous at the interface of different layers. 

2. Layer placement in the sandwich composite beam is symmetric and balanced. 

3. Simply supported boundary conditions for the considered beam. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry and dimensions of the sandwich beam [14]. 

3    GOVERNING EQUATIONS OF MOTION  

3.1 Face sheet displacement fields 

In the present work, the face sheets were modeled by FSDT. Accordingly, displacement fields of different face 

sheets in the Cartesian coordinate system takes the form of Eq. (1) [15]: 
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where 
j

0 (x, t)u  is the displacement component in the x direction in the mid-plane, 
j

0 (x, t)w is the displacement 

component in the z direction in the mid-plane, and (x, t)0

j  denotes the cross-sectional rotation around the x-axis in 

the top and bottom face sheet. 

 

3.2 Core displacement field 

According to Frostig’s second model (Frostig and Thomson, 2004), the core displacement field was modeled by 

third-order and quadratic functions of zc for its in-plane and out-of-plane components, respectively. 
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In which 
c

0 (x, t)u ,
c

1 (x, t)u , 
c

2 (x, t)u and 
c

3 (x, t)u  denote in-plane displacement components in x direction and 

c

0 (x, t)w ,
c

1 (x, t)w and 
c

2 (x, t)w  refer to out-of-plane displacement components in z direction at the middle plane of 

the core. 

3.3 Displacement strain relationships for core and face sheets  

Considering Eqs. (1) and (2) and the linear strain assumption, the following equations describe the relationships 

between the strains and displacements [1]:  
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Substituting Eqs. (1) and (2) into Eq. (3) gives: 

 

= +z0, ,

0,

( , )

j
j

xx x j x x

j j

xz x x

u

j t b

w

 

 



 

 (4) 

 

u u u u

u u u

cc c c c 2 3

xx 0,x 1,x c 2,x c 3,x c

c cc

zz 1 2 c

c c c c c cc 2

xz 1 0,x 2 1,x c 3 2,x c

ε z + z + z

ε =w + 2w z

γ =( +w )+(2 +w )z +(3 +w )z

= +

 (5) 

3.4 Compatibility condition 

One of the assumptions made in this analysis was no separation between the core and face sheets. That is, we herein 

assumed complete continuity between the core and top and the bottom face sheets during the loading and 

deformation stages occurred to the sandwich beam. The face sheets and the middle core are assumed to be well 

attached to another, with the strain function being continuous at the core- face sheet interface. Accordingly, 

compatibility condition at the interface between the core and faces sheets, which somewhat couples the core 

equations to those of the top and bottom face sheets, takes the following form: 
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when j = t, then k = 0 and 
2

c

ct

h
z   . Moreover, if j = b, then k = 1 and 

2

c

cb

h
z   . Now, substituting Eqs. (1) and 

(2) into Eq. (6), compatibility condition at the core- face sheet interface is derived as follows: 
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One can reduce the number of unknowns by writing some coefficient as functions of other coefficients, as 

expressed in the following: 
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According to the above equation, the number of unknowns for the core decreased to 3. Energy method and 

Hamilton’s principle were utilized to extract the governing equations and boundary conditions in this research [16]: 
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where T and U are kinetic and potential energies, respectively, and t refers to the period delineated by the times t1 

and t2. 

3.5 Total strain energy variation 
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In general, stress resultants on the face sheets are defined as stress components, as follows: 

 

2 2 2 2 2 2

2 2 2 2 2 2

, , ,

j j j j j j

j j j j j j

b h b h b h

j j j j j j

xx xx j j xx xx j j j xz xz j j

b h b h b h

N d z d y M z d z d y Q d z d y j t b  

     

          (12) 

 

Given that the considered structure is a sandwich beam with multilayer composite face sheets, stress resultants of 

the face sheets are defined as follows: 
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In Eq. (13), k is the shear correction factor, which is herein set to 5/6 [17]. The components ,j j

mn mnA B  and j
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(m, n =1,5 and j= t, b) are the components of the tensile and flexural stiffness matrices [15].  
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In general, when the layers are at an angle of θ with respect to the original coordinate, stress vs. reduced strain 

relationship for the k
 th

 layer can be expressed as follows: 
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The following equation defines stress resultants in the core as a function of stress components: 
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Moments of inertia for the face sheets and the core are defined as follows: 
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4    GOVERNING EQUATIONS FOR THE FLUID     

In order to model the dynamic behavior of a fluid (Fig.2) with a density of ρf, we begin by analyzing the solid-fluid 

interactions at their interface using a mathematical model. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Beam and fluid configuration. 
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This mathematical model is based on the following assumptions [9,18]:  

 Fluid flow is in potential mode. 

 Fluid is ideal, i.e. incompressible, non-rotational, and inviscid. 

 Stationary fluid flow velocity is zero. 

Based on the first assumption (potential nature of the fluid flow), one can calculate the velocity potential using 

Eq. (18): 
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where  , ,x z t   denotes velocity potential function of the fluid. Now, in order to apply boundary conditions 

for the fluid, one may notice that Eq. (19) shall be satisfied in the beam-fluid contact area for particular velocities in 

z direction (applying Bernoulli’s equation and ignoring non-rotational terms)[10]:  
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Other boundary conditions for the considered structure in terms of the position of supports (x = 0, L) and fluid 

depth (z = H) are as explained in Eq. (20): 
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Applying the separation of variables technique onto the velocity potential function then gives: 
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Therefore, kinetic energy of the fluid can be obtained from Eq. (27): 
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Obtaining kinetic energy of the fluid and adding it to that of the structure and substituting the stress resultants of 

the core and face sheets into the Hamilton’s principle, Equations of motion can be extracted as follows. 

5    EQUATIONS OF MOTION    
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 (36) 

5.1 Solving the equations of motion 

A common approach to solving governing equations of the problems concerning free vibration of simply supported 

sandwich composite beams is to use a Fourier transform that satisfies all boundary conditions. For a simply 

supported beam, one may use the Fourier transform as expressed in the following equations. 
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where i= t, b refers to the top and bottom face sheets, respectively. Moreover, K (K = 0, 1, 2, 3) and l (l = 0, 1, 2),  

m

mn

a
   , where m is the half wave numbers in x directions and a is the length of the beam. Where 

0 0

, , , ,i i i
x

m m m m m

uk wku w
C C C C C


 are the time dependent coefficients to be determined. 

The abovementioned functions are applicable to symmetric and balanced composite face sheets, in which case 

we have: 

 
i i i i i i

16 26 16 26 16 26A = A = B = B = D = D = 0  (38) 

 

In which j=t, b. Using Eqs. (9) and (37), one can write a system of differential equations for the beam based on 

planar and transverse displacement and rotation functions for the face sheets and the middle core, as follows: 

 

[ ]{ } [ ]{ } 0M K    (39) 

5.2 Validation and discussion on numerical results 

In this section, in order to validate the proposed model and demonstrate the performance and accuracy of the 

methodology developed for solving Eq. (39), the results are compared to the reported data in published works at 

credible journals. 

Case 1: Analyzing the vibration of a sandwich beam with foam-made core and isotropic face sheet. In this case, a 

sandwich beam with simply supported boundary conditions and a geometry and core and face sheets properties 

defined in Fig. 3 was considered [19]. 

 

 

 

 

 

 

 

 

Fig.3 

Geometrical model of sandwich beam [19]. 

 

The results obtained using the methodology proposed in this article regarding the free vibration are reported in 

Table 1, where those are further compared to previously published results that were obtained through analytical 

procedures[19-21] and finite-element method [19]. 

Table 1 indicates that the natural frequencies obtained from the proposed methodology were in good agreement 

with previously reported results. Indeed, the observed differences could be attributed to different choices for 

representing the core displacement field. Moreover, Refs [19-21] used 5 governing equations, while the proposed 

theory in this work described the problem using 9 governing equations. This implies more complete mathematical 

modeling of the problem, thereby lowering the system error down to an acceptable level. 
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Table 1 

Natural frequencies of the sandwich beam in Hz. 

Mode 

number 

 

Frostig and 

Baruch[20]  

Yang and 

Qiao [19]  

 

ABAQUS 

[19]  

 

Rahmani 

 et al. [21]  

Present  

work 

Percentage 

difference 

Frostig 

and 

Baruch 

[20]  

Percentage 

difference 

Yang and  

Qiao [19]  

Percentage 

difference 

Rahmani 

 et. al. [21]  

 

m=1 

325.98 325.98 

 

349.86 

326.39 334.30699 2.55 2.55 2.43 

4287 4767.31 4767.31 4526.3691 5.58 5.05 5.05 

6518.11 6769.24 6777.76 6683.8948 2.54 1.26 1.38 

7304.78 7304.79 7311.82 7308.9806 0.06 0.06 0.04 

 

m=2 

825.3 824.96 

 

777.42 

826.62 834.17395 1.08 1.12 0.91 

7304.8 7304.85 7311.87 7332.3235 0.38 0.38 0.28 

8574 9534.62 9534.63 8859.426 3.33 7.08 7.08 

10278.7 10674.7 10680.08 10684.796 3.95 0.09 0.04 

 

m=3 

1310.38 1308.9 

 

1657.33 

1311.84 1319.4966 0.70 0.81 0.58 

7305.01 7305.05 7312.08 7356.5329 0.71 0.70 0.61 

12861 14301.9 14301.94 12616.131 1.90 11.79 11.79 

14520.4 15080 15083.8 15119.41 4.13 0.26 0.24 

 

Case 2: Analyzing the vibration of a sandwich composite beam with foam-made core and orthotropic face sheet. 

According to Fig. 4, a sandwich beam with a foam-made core and symmetric three-layer composite face sheets was 

considered. For the sake of modeling, the top and bottom face sheets were layered under the [0, 90, 0] scheme [19, 

22, 23]. 

 

 

 

 

 

 

 

 

Fig.4 

Sandwich beam with foam-made core and composite face 

sheets. 

 

Face sheet properties: 

 

3
, , , faces

kg
E1 = 172.7GPa  E2 = 7.2GPa  = .3  G12 = 3.76  GPa,  G23 = G12 ,  = 1566

m
    

 

Core properties: 

 

3
, ,c c c

kg
E  = 0.0 5GPa  = .3  G12 = 0.02  GPa,  G23 = G12 ,  = 52.06

m
    

 

Geometrical configuration of the composite sandwich beam: 

 

plythickness300 , 20 , 20 , h .5 , 3ca mm b mm h mm mm N       

 

where a and b are the beam length and width, respectively, the subscript c refers to core, hplythickness is the thickness of 

each layer of the face sheet, and N is the number of the face sheet layers. Table 2 reports the obtained values of 

natural frequency for the first three modes of the structure. The table further presents the effect of an increase in 

beam length to total thickness of the sandwich beam on dimensionless frequencies of the sandwich composite beam 

with foam-made core. The dimensionless frequencies,  , were obtained from the formula c

c

h
E


   where   
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denotes natural frequencies, h is the beam thickness,  
c  is the core density, and 

cE  is the Young’s modulus along 

the thickness. 

 
Table 2 

Effect of increasing beam length to total thickness ratio on dimensionless frequencies of the sandwich beam with foam-made 

core. 

Mode 

number 10
a

h
  20

a

h
  30

a

h
  40

a

h
  50

a

h
  

 

 

m=1 

 

0.090008627 0.041035597 0.024469113 0.016245337 0.01149585 

1.0464883 1.0453603 0.83128036 0.62657903 0.50235187 

2.0500377 1.2254569 1.0449631 0.94131255 0.85103294 

2.733793 1.4930095 1.1113884 1.0449357 1.0447657 

 

m=2 

 

 

0.19331649 0.090008277 0.057410135 0.041036641 0.031114579 

1.0532959 1.0464883 1.045587 1.0453603 0.99227693 

2.3426101 2.0500376 1.5815635 1.2254569 1.0449133 

3.0976797 2.5728509 2.0500378 1.7346551 1.259225 

m=3 

0.31298167 0.14014928 0.090008854 0.065551873 0.050881563 

1.0712979 1.0489456 1.0464883 1.0457653 1.0454688 

2.4699393 2.2619029 1.9001969 1.4930095 1.4456865 

3.9466533 2.7337928 2.5257521 2.1078946 1.7355737 

 

Table 3 considers the effect of increasing core thickness to total thickness ratio on dimensionless frequencies of 

the sandwich beam with foam-made core. 

 
Table 3 

Effect of increasing core thickness to total thickness ratio on dimensionless frequencies of the sandwich beam with foam-made 

core. 

Mode 

number   0.1ch

h
     0.2ch

h
     0.3ch

h
     0.4ch

h
    0.5ch

h
    0.7ch

h
    0.9ch

h
  

 

 

m=1 

 

0.0071319 0.0127597 0.0192586 0.0264694 0.0342803 0.0513933 0.0701185 

0.4854326 0.6871888 0.7836778 0.8329824 0.8819776 0.9742383 1.0580442 

0.6737377 0.7398125 0.8827337 1.0707945 1.2491616 1.5629278 1.7907661 

0.7326688 0.7400843 1.0331097 1.2305694 1.4289858 1.8227513 2.2073159 

 

 

m=2 

 

0.0195215 0.0315291 0.0452039 0.0602154 0.0763566 0.1114380 0.1495546 

0.7327664 0.7408899 0.7841477 0.8337604 0.8831402 0.9764315 1.0616484 

0.9705159 1.3699879 1.7419657 2.0489315 2.2240624 2.2806097 2.2668171 

1.454829 2.0389631 2.4691291 2.5344687 2.6295378 2.6617257 2.7779883 

 

 

m=3 

0.0350444 0.0542733 0.0758398 0.0992619 0.1242517 0.1781315 0.2362345 

0.7331126 0.8409974 0.7855573 0.8359281 0.8862276 0.9818695 1.0701608 

1.0829268 1.4738138 1.8783417 2.2819168 2.3820097 2.4051746 2.3796223 

1.5396613 2.1472495 2.7586434 2.7825661 2.8723705 3.4324064 3.9189691 

 

On Fig. 5, it is clear that any increase in the L/H ratio decreases all of the three dimensionless natural frequencies 

(i.e., the first, second, and third dimensionless natural frequencies). It is then evident that the structure loses some of 

its stiffness upon increasing this ratio, or say the sandwich beam becomes more flexible, as is demonstrated in Fig. 

5. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Increasing the beam length to total thickness ratio. 
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On Fig. 6, it is clearly observed that all of the dimensionless natural frequencies of the beam structure increase 

with the core thickness to total thickness ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Increasing the core thickness to total thickness ratio. 

 

 

Case 3: Analyzing the vibration of a sandwich composite beam with foam-made core and orthotropic face sheet 

on a fluid foundation.  In order to analyze vibration of a beam on a fluid foundation, effects of two fluid parameters, 

namely the fluid height and density, on the vibratory behavior of a beam with the geometrical properties introduced 

in the Case 2 were investigated. To this end, the first three natural frequencies of the structure were taken into 

consideration, and the fluid height variations were studied up to the point where these natural frequencies converged 

to those of the corresponding fluid-free case. 

Table 4 presents the properties of the fluids used in this research [24].   

 
Table 4 

Fluid properties  

 3/kg m  Fluid 

860 Gasoline 

1000 Pure water 

1025 Sea water 

1261 Glycerin 

 

Table 5 

Effects of fluid density and height on the natural frequencies (Hz). 

Mode number 

 

 

Fluid 

  hf (m)     

0 0 .001 0 .003 0.005 0 .007 0 .009 0 .01 

m=1 Pure 

water 

455.57102 364.1889 441.40165 447.16268 449.02046 449.81623 450.03994 

m=2 973.71566 776.67687 943.22202 955.62509 959.62338 961.33589 961.81723 

m=3 1540.4661 1224.0047 1491.6887 1511.545 1517.9413 1520.6802 1521.4499 

m=1 Sea 

water 

* 362.55502 441.06408 446.95835 448.86025 449.67516 449.90422 

m=2 * 773.15178 942.49503 955.18531 959.27865 961.03222 961.52518 

m=3 * 1218.335 1490.5243 1510.8413 1517.3899 1520.1946 1520.9829 

m=1  

Gasoline 

* 373.76436 443.30648 448.31203 449.92064 450.60889 450.80223 

m=2 * 797.33831 947.32369 958.0988 961.56052 963.04145 963.45752 

m=3 * 1257.2425 1498.2574 1515.5026 1521.0394 1523.4075 1524.0728 

m=1  

 

Glycerin 

* 348.13991 437.91479 445.04318 447.35646 448.34959 448.62897 

m=2 * 742.05832 935.71207 951.06269 956.0422 958.17965 958.78094 

m=3 * 1168.346 1479.6563 1504.2434 1512.2123 1515.6319 1516.5938 

 

The results reported in Table 5 and depicted in Fig. 7 show that all three natural frequencies (i.e., for the three 

modes, m = 1, 2, 3) decreased with changing the fluid type to achieve a higher fluid density. The outputs further 

show that the decrease in the natural frequencies was greater for fluids of higher densities. Therefore, it can be 

stipulated that glycerin led to the most significant changes in the natural frequency, followed by seawater, pure 

water, and gasoil, as compared to the case with no fluid foundation. 
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Fig.7 

Effect of fluid density on natural frequency. 

 

Figs. 8 through 11 imply that an increase in the fluid height tend to increase the natural frequency. At a given 

fluid depth, the smallest reduction in frequency was triggered by glycerin, followed by seawater, pure water, and 

gasoil. Moreover, the higher the fluid density, the higher the required fluid height to have the natural frequencies 

converged to those of fluid-free structure. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effect of fluid height on natural frequency. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effect of fluid height on natural frequency. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.10 

Effect of fluid height on natural frequency. 
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Fig.11 

Effect of fluid height on natural frequency. 

 

6    CONCLUSIONS 

Natural frequencies of sandwich beams with foam-made cores were investigated under two scenarios: 

A. Natural frequency of sandwich beam without the effect of fluid: 

In this case, we investigated the effects of beam length to total thickness ratio and core thickness to total 

thickness ratio, ending up with the following results: 

1. The first, second, and third natural frequencies decrease with increasing the beam length to total thickness 

ratio. It is trivial that an increase in this ratio. according to the relationship  /k m   reduces the effect 

of structure stiffness or, say, makes the sandwich beam more flexible.   

2. The first, second, and third natural frequencies increase linearly with increasing the core thickness to total 

thickness ratio. 

B. Natural frequency of sandwich beam under the effect of fluid:  

The presence of a fluid foundation tends to add to the mass matrix of the structure, thereby reducing the natural 

frequency of the beam, this is due to the increase in the kinetic energy of the beam on the fluid foundation. The 

natural frequencies were found to increase with the fluid height under the structure. Moreover, lower natural 

frequencies were observed with denser fluids as the increase in fluid density tends to increase the structure mass at 

constant stiffness. At a given fluid depth, the smallest reduction in frequency was triggered by glycerin, followed by 

seawater, pure water, and gasoil. 
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