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 ABSTRACT 

 Nanocomposites provide new properties and exploit unique synergism between 

materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix 

applicable in nanocomposites in a broad range of industries from oil and gas to 

electronics and automotive. And boron nitride nanotubes (BNNTs) show high 

mechanical, electrical and chemical properties. In this paper, the critical torsional 

load of a composite tube made of PVDF reinforced with double-walled BNNTs is 

investigated, under a combination of electro-thermo-mechanical loading. First, a 

nanocomposite smart tube is modeled as an isotropic cylindrical shell in an elastic 

foundation. Next, employing the classical shell theory, strain-displacement 

equations are derived so loads and moments are obtained. Then, the total energy 

equation is determined, consisting of strain energy of shell, energy due to external 

work, and energy due to elastic foundation. Additionally, equilibrium equations are 

derived in cylindrical coordinates as triply orthogonal, utilizing Euler equations; 

subsequently, stability equations are developed through the equivalent method in 

adjacent points. The developed equations are solved using the wave technique to 

achieve critical torsional torque. Results indicated that critical torsional buckling 

load occurred in axial half-wave number m = 24 and circumferential wave number 

n = 1, for the investigated cylindrical shell. The results also showed that with the 

increase in the length-to-radius ratio and in the radius-to-shell thickness ratio, the 

critical torsional buckling load increased and decreased, respectively. Lastly, 

results are compared in various states through a numerical method. Moreover, 

stability equations are validated via comparison with the shell and sheet equations 

in the literature.                               © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Torsional buckling; Piezoelectric; Electro-thermo-mechanic; Elastic 

foundation; Cylindrical shell.  

1    INTRODUCTION 

 VER the last decade, the developed nanocomposites have been immensely receiving attention. This comes 

from their unique properties and the synergy of incorporated materials. Polyvinylidene fluoride (PVDF) is 
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considered among the best piezoelectric matrices. It has a number of properties that make it an ideal matrix: 1) 

flexible in thermoplastic conversion techniques, 2) excellent dimensional stability, 3) resistant against abrasion and 

corrosion, and 4) preserving mechanical properties at high temperatures. Thus, they are being increasingly applied in 

various industries. Additionally, boron nitride nanotubes (BNNTs) have high resistance against oxidation. This 

composite can be used as a matrix reinforcer that outperforms the widely used nanoreinforcers like carbon 

nanotubes (CNTs) [1,2] Studying cylindrical shells made of functionally graded material (FGM) had been an area of 

interest to many researchers. Sofiyev [3] investigated the buckling of FG cylindrical shells, subjected to axial loads 

and hydrostatic pressure. Miraliyari, Najafizadeh [4] analyzed the buckling of FG cylindrical shells with various 

lengths. They determined the equilibrium and stability equations using the total potential energy and Euler 

equations. Their results demonstrated long cylindrical shells have zero axial strain, under thermal and mechanical 

loads. Additionally, the critical pressure increased with either the increase of thickness to radius ratio, or the increase 

of length to radius ratio. According to Bagherizadeh, Kiani [5] the critical buckling load of FG cylindrical shells 

increases in elastic medium. The critical buckling loads also increase with the increase of the shell thickness and 

decrease of the inhomogeneity Najafizadeh, Hasani [6]. Sheng and Wang [7] worked on thermoelastic vibration and 

buckling characteristics of the FGM cylindrical shells. Using the Hamilton’s principle, the Maxwell equation, and 

First-order Shear Deformation Theory (FSDT), the cylindrical shell made of various material was studied, in terms 

of direct piezoelectric, converse piezoelectric, thermoelastic vibration, and buckling characteristics. Their results 

showed fundamental frequency and axial critical load in cylindrical shells made of BaTiO3/PZT 4 is higher than 

those made of BaTiO3/PZT 5A and BaTiO3/PVDF. Additionally as the temperature differences between the inside 

and outside surfaces of the cell increases, the fundamental frequency decreases. Shen, Yang [8] studied the post 

buckling response of a FG cylindrical shell of finite length embedded in a large outer elastic medium and subjected 

to internal pressure in thermal environments. The post buckling analysis was based on a higher-order shear 

deformation theory (HSDT) with von Kármán-Donnell-type of kinematic nonlinearity. The results showed that the 

unilateral constraint has a significant effect on the post buckling response of shells when the foundation stiffness 

was sufficiently large. As it is evident, there are a lot of research need with regard to cylindrical shells made of 

pizoelectic materials. Most of buckling analysis on cylindrical shells in the literature had aimed at linear responses. 

Najafizadeh and Khazaeinejad [9] studied the buckling analysis of a nonhomogeneous cylindrical shell under 

torsion. They derived stability equations based on the FSDT and examined the validity of the analysis through 

comparing their results with those in the literature. The results show that the critical torsional load changed linearly 

when non-homogeneous parameters of the material changed, and the amount of the critical torsional load decreased 

when the thickness increased. Hassani, Jafari [10] investigated the transient heat transfer performed by a fluid power 

system through finite element method (FEM). They converted all the components of the system into a homogeneous 

one (30-mm long steel pipe) to calculate temperature increase due to the energy losses. Their results demonstrated 

after five hours working in field conditions the temperature of the inside surface of the modeled pipe will be 70°C, 

as the hottest area. The buckling analysis of piezoelasticity cylindrical shells by Arani , Amir [11] has shown that 

direct and reverse voltages, on the shells, decrease and increase the nonlocal buckling load, respectively. 

Additionally, the nonlocal critical buckling load, (m,n) = (78,0), was less than the local critical buckling load. To 

determine linear buckling responses of conical composite shells, Shadmehri, Hoa [12] put forward a semi-analytical 

technique. They represented the governing equilibrium equations using the minimum total potential energy rule, and 

solved the equations using the Ritz method. Arani, Barzoki [13] studied PZT-5 piezoelectric hollow cylinders. They 

represented creep strains for displacement, using a differential equation, and demonstrated the dynamic increase of 

electric potentials. Therefore, studying the non-linear response of piezoelectric cylinder shell is a potential research 

area. The critical buckling loads on cylindrical shells have been characterized according to the power law index: 

Khazaeinejad, Najafizadeh [14] studied the stability of cylindrical shells made of functionally graded material 

(FGM), which were under external pressure and axial compression loads. To determine the critical buckling loads, 

they employed the FSDT. Hence, characterizing the critical torsional buckling loads according to axial half-wave 

number and circumferential wave number is a contribution towards the optimal design of smart composites. Thermal 

changes is one of the main drivers in designed devices given the effect of materials and vibrational responses. In 

addition, Zargaripoor, Daneshmehr [15] studied the free vibration in FGM nanoplates using third-order shear 

deformation plate theory. Additionally, Moradi, Yaghootian [16] showed the vibration response of FG circular and 

annular Nanoplate is largely dependent upon size-dependent parameter; and temperature changes highly affected 

their mechanical behavior. This is also true about regular nanoplates [17, 18]. Shen and Zhang [19] studied torsional 

buckling and post buckling of CNTs, under torsion in thermal ambiance, using the HSDT. Their results 

demonstrated, for both single-walled and double-walled CNTs, the dependency in size and temperature of material 

properties is drastically effective on the torsional buckling and post buckling behavior. Mantari, Oktem [20] 

developed a theory for shear deformation of composite plates, using the principle of virtual work. The theory deals 
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with the distribution of the shear strains on the plate boundary. Hassani, Jafari [21] investigated the contact and 

fatigue analysis, using FEM. They estimated the critical points susceptible to the crack growth via the fully reverse 

loading. However, considering electro-thermo-mechanical medium results in more realistic studies. Arani, Kolahchi 

[22] studied the effect of material in-homogeneity on rotary shafts, in an electro-thermo-mechanical medium. The 

equations were derived according to HSDT. Their investigation on various boundary conditions showed the optimal 

design of the material in-homogeneity factor is among the influential factors. Arani, Abdollahian [23] investigated 

electro-thermo-torsional buckling of an embedded armchair double-walled boron nitride nanotubes (DWBNNTs). 

They showed the piezoelectricity reduces the critical buckling load, using nonlocal elasticity and piezoelectricity 

theory. The volume fraction of nanotube is a main factor in determining the critical load and stability of a system. 

Arani, Shajari [24] investigated nonlinear vibration and stability of a smart composite micro-tube made of PVDF 

reinforced by BNNTs embedded in an elastic medium under electro-thermal load. The smart micro-tube was 

modeled as a thin shell based on the nonlinear Donnell’s shell theory. It has also been found that the stability of the 

system was strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. 

Additionally, their results indicated that increasing mean flow velocity considerably increased the nonlinearity 

effects so that small scale and temperature change effects became negligible. Ansari, Rouhi [25] employed FEM to 

achieve thermal conductivity coefficients of CNTs reinforced polypropylene. They showed that the polypropylene 

reinforced by the regular distribution of nanotubes experience the largest thermal conductivity coefficients; 

additionally, larger volume percentages of CNTs generate larger thermal conductivity coefficients. Many studies 

have been conducted on the effect of length to radius ratio on the torsional buckling of the piezoelectric cylindrical 

shell reinforced by BNNTs. Barzoko, Arani [26] investigated electro-thermo-mechanical torsional buckling of a 

piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core, using Donnell linear theory 

and energy method. Their results showed that in low values of length to radius ratio (L/R), the critical buckling load 

is high and reduces sharply down to L/R = 1.5; also the shell buckling strength increased substantially as harder 

foam cores are employed. Kargarnovin and Shahsanami [27] showed: 1) the critical buckling load is less in 

comparison to isotropic cylindrical shells; 2) reinforcing cylindrical shells with FGM fibers reduces this metric 

compared to metal; 3) an inverse relationship between the critical buckling load and length-to-radius ratio in 

cylindrical shells. In addition, Barzoki, Arani [28] investigated nonlinear buckling of a cylindrical shell made of 

PVDF, in an electro-thermo-mechanical medium. They used the Hamilton’s principle and the FSDT to determine 

the equilibrium and displacement equations. Additionally, the harmonic differential quadrature method was used to 

determine the critical buckling load under the existence of electro-mechanical boundary conditions surrounding the 

cylindrical shell. They concluded that by considering piezoelectric effect the buckling load happened to be critical. 

And the increase of L/R ratios doesn’t affect the minimum critical buckling load; however, the increase affects the 

location of the critical load to be farther along the shell. To the best of the authors knowledge, no study has 

considered the effect of radius to thickness on the torsional buckling of such smart composites. Hence, such an 

investigation appears to be a necessity. As the literature study suggested, even though a significant amount of 

research has been conducted on smart composites, there are still significant gaps towards the optimal design of next 

generation of Nano devices. Motivated by these considerations, in order to improve the optimum design of smart 

composites, in this work we aimed at studying non-linear analysis for the torsional buckling of a composite tube 

made of PVDF reinforced by DWBNNTs under combined electro-thermo-mechanical loadings in order to achieve 

critical torsional torque.  

This study makes two contributions to the literature: 1) characterizes the critical torsional buckling loads based 

on wave analysis including axis half-wave number and circumferential wave number, in an elastic medium 

including Winkler and Pasternak foundation; 2) studies the physical characterization of the cylinder shell and 

volume percent of the embedded nanotubes on the critical torsional buckling load. The remaining of this paper is 

organized as follows: Section 2.1 presents the displacement field for a cylindrical shell model. In Section 2.2, the 

simplified stress-strain relations are presented, utilizing Donnell theory; subsequently, the relations between force 

and moments with internal stress are presented in Section 2.4. Then in Section 2.5, equilibrium equations are derived 

utilizing Euler equations; following that, in Section 2.6, stability equations are developed through equivalent method 

in adjacent point. And in Section 2.7, the developed equations are solved using the wave technique in order to 

achieve critical torsional torque, and represent the deformation of the buckling in cylindrical shells under torsional 

loads is expressed as a function of axial and circumferential waves. The Section 3, presents the results taking into 

account the influences of electric and thermal fields, elastic medium and small scale parameter on the electro-

thermo-mechanical buckling behavior of DWBNNTs. Finally, the work is concluded in Section 4.  

 



508                                 M. Sarvandi
 
et.al. 

 

© 2020 IAU, Arak Branch 

2    MATERIALS AND METHODS  

2.1 Strain-deformation equations 

The schematic diagram of a cylindrical shell made of PVDF reinforced with DWBNNTs and embedded in an elastic 

foundation is shown in Fig.1.The geometrical parameters of the cylindrical shell are indicated by length L, radius R, 

and thickness h. The diagram also shows the arbitrary coordination system. By utilizing classical shell theory, the 

displacement field for a cylindrical shell model is as following [7,26,28]: 

 

,( , , ) = ( , ) ( , )o o xu x z u x zw x    (1) 

 

,( , , ) = ( , ) ( , )o ov x z v x zw x    (2) 

 

( , , ) = ( , )ow x z w x   (3) 

 

where  u, v and w  denote displacements of an arbitrary point of shell in axial, circumferential and radial directions, 

respectively; 0u , 0v  and 0w  indicate point displacements on the middle plane of the shell, and z is the distance from 

an arbitrary point of the shell to the middle plane. 

 

  
Fig.1 

Cylindrical shell made of PVDF, reinforced with DWBNNTs embedded in an elastic foundation. 

 

In addition, strain terms follow as [28]: 
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where x , x , and   are mechanical strain parameters for an arbitrary point of shell, which depends on strains of 

the middle plane as ,0x , ,0 , and ,0x , as well as bending and torsion of the middle plane as xk , k  , and xk  . 

2.2 Stress-strain equations 

Applying an electric field to piezoelectric material produces a strain proportional to the mechanical field strength, 

which is a reversible process. The constitutive equation is arbitrarily combined for matrix of stresses  and strains 

  matrix on the mechanical side, as well as matrix of flux density (D) and matrix of field strength (E) on the 

electrostatic side as bellow [26]: 
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Lastly, stress and strain relations are simplified utilizing the Donnell theory for the composite shell, as below: 
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(8) 

 

where , , ( , =1,...,6), ( = , , )ij ij ii kC e i j k x z   , T , and xxE are elastic constants, piezoelectric constants, 

dielectric constants, thermal expansion coefficient, thermal gradient, and electric field, respectively. The electric 

field is defined as a function of electric potential, xx , as below [28]. 

 

=kE   (9) 

 

BNNTs have two structures of Zigzag and Armchair ones. Zigzag tubes have a piezoelectric response lengthwise 

for one-axial stress, while armchair tubes have an electrical linear torque which is two-polar and dependent on 
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torsion. Hence, armchair structure of BNNTs has been employed in order to investigate the torsional resistance 

behavior of smart composites for this study. Moreover, DWBNNTs were preferred to one-walled BNNTs due to 

their high level strength and stability in applications with mechanical resistance requisites, and also their high 

amount of hardness and thermal conductivity. 

2.3 Micro-electromechanically model 

Aimed at modeling, PVDF and DWBNNTs were taken into account as the main matrix and reinforced materials, 

respectively. In addition, the shell of polymeric piezoelectric fiber reinforced composites (PPFRC) with their 

constituents assumed to be orthotropic and homogeneous with respect to their major axes. To evaluate the effective 

properties of a PPFRC unit cell, Tan and Tong [29] approach was adopted in which they use representative volume 

element based on micromechanical models. Their approach utilizes RVE based on micromechanical models, first 

the properties of the required strips made from piezoelectric fiber reinforced composite (PFRC) are obtained using 

the appropriate ‘X model’ in association with the ‘Y model’ (or vice-versa). Then, the properties of a PPFRC unit 

cell are calculated using ‘XY (or YX) rectangle model’ (Fig.2). The closed-form formula used in ‘X model’ (or ‘Y 

model’) expressing the mechanical, thermal and electrical properties of the composite as explained in Eq. (6) and 

Eq. (7) above are [29]: 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 

A schematic of RVE and DBNNTs reinforced composite. 
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2.4 Force and moment equations 

Relation between forces and moments with internal stresses is specified as below [23]: 
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(10) 

 

Substituting stress and strain relations from the Eqs. (8) in the Eq. (10), force and moment equations in terms of 

strains are obtained as followings: 
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(11) 

 

where coefficients Aij (i,j = 1,2,3,4,5,6,7) are given as below 
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2.5 Equilibrium equations 

The potential energy of the cylindrical shell is defined as [26]: 
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(12) 

 

and potential energy attributed to work of torsional moment, applied on shell is stated as following: 

 

0, 0,= ( )dx
A
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where   denotes torsional moment applied on shell and h is shell thickness. In addition, work due to the elastic 

foundation is defined as [5]: 
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(14) 

 

where gk  and wk  are Pasternak and Winkler parameters of elastic foundation, respectively. Total potential energy 

is derived as below: 
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In addition, equilibrium equations are specified as following, using Euler equations: 
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2.6 The criterion of equilibrium in the vicinity 

In order to achieve force and moment equations as well as stability equations, displacement values of 0 0,u v  and 0w  

are superseded in formulas marked as (11) and (16), as below [4]: 
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where 
1 1 1( , , )u v w  represents displacement arbitrary components, and 
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sets which are close to stability. Thus, force and torque equations are derived as below: 
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and stability equations are derived as follows [4]: 
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2.7 Torsional buckling analysis 

The effect of pre-buckling rotations in many cases is negligible. Moreover, it is possible to ignore the pre-buckling 

displacement in the circumferential direction, that’s why in the intended equations 
0 0

0, 0,,xw w   equal zero. A cylinder 

under net torsional torque around its axial direction is defined as: 
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with substituting Eqs. (20) in Eqs. (19), stability equations are simplified as below: 
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Also with substituting Eqs. (18) into Eqs. (21), stability equations are obtained in terms of displacement: 
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Hence, assumed isotropic, the matrix will be verified through equations in[30]. As depicted below, the 

deformation of the buckling in cylindrical shells under torsional loads is expressed as a function of axial and 

circumferential waves. 
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= /m m L  (24) 

 

where m and n represent the number of half-waves in the axial direction and the number of full waves in the 

circumferential direction, respectively. So, substitution of Eqs. (23) into Eqs. (22) derives the following matrix: 
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where coefficients ( , =1,2,3)ijL i j  are given as below: 
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In order for the equations system (24) to have a unique answer, it is required the determinant of the coefficient 

matrix equals zero. Consequently, the critical torsional load is specified as: 
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3    RESULTS AND DISCUSSION   

Mechanical, electrical, and thermal characteristics of PVDF matrix and DWBNNTs reinforce are presented in Table 

1; and the amounts are calculated for a shell with features of L = 6000 mm, R = 60 mm, and h = 6 mm [28]. 

 
Table 1  

Mechanical, electrical and thermal properties of PVDF and DWBNNTs. 

 

In order to verify the equations of critical torsional load, it was assumed that the whole shell to be isotropic with 
the constants of ν = 0.3 and E = 380 GPa. The achieved results are represented in Table 2 [9]: 
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As shown in Table 2, the effect of various parameters on critical torsional load for a homogenous shell with 
specifications of ν = 0.3 and E = 380 GPa has been investigated. Results of this investigation has been compared 

with the results yielded byNajafizadeh and Khazaeinejad [9], for various amounts of m and n as well as for different 

ratios of L/R i.e. 10, 40, and 100, and for different ratios of L/R which are 10, 50, 100, and 500. The comparison 

demonstrates for higher ratios of R/h, that is 50, 100, and 500, regardless of the ratio of L/R, alterations are slight 

with the highest amount of 0.25 GPa. Whereas, for lower ratios of R/h as 10 the changes are noticeable, with the 

highest amount of 53.85 GPa increase in the produced results which is equivalent to 1.1 percent where L/R, n, and m 

are 10, 2, and 1, respectively. In addition, this change is 4.3 GPa equivalent to 0.2 percent increase in the generated 

results in this research for L/R = 100, n = 1, and m = 4. Considering the alteration are insignificant and negligible, 

the results revealed in this paper are verified through comparison with the results derived by byNajafizadeh and 

Khazaeinejad [9]. 

3.1 Determination of critical m and n 

Generating solutions, through MATLAB package, for the developed equations, Table 3; presents the critical 

torsional buckling load,  
cr , for various axial half-wave numbers, m, and circumferential wave numbers, n, at L/R = 

100 and R/h = 10. The minimum amount of critical torsional load occurred at m = 24 and n = 1, with the magnitude 

of 0.218 GPa. The circumferential wave number directly affected the critical load (Fig. 3); hence with the increase 

of this number the load increased, such that with n=20 and m=20, the load equaled  122 10 Pa . The impact of 

various axial half-wave numbers and circumferential wave numbers at L/R = 100 and R/h = 10 on 
cr  is depicted in 

Fig. 4. 

 
Table 3 

Critical torsional loads for PVDF reinforced with DWBNNTs for L/R = 100 and R/h = 10. 

L/R R/h m n                  Critical torsional buckling (GPa) 510  

100 10 1 1 5.124 

100 10 1 2 2.5 

100 10 1 3 1.619 

100 10 1 4 1.176 

100 10 1 5 0.914 

100 10 1 24 0.218 

100 10 2 1 41.34 

100 10 3 1 139.5 

100 10 4 1 330.8 

100 10 5 1 646 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3 

Critical torsional load as a function of n for L/R = 100 and 

R/h = 10. 
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Fig.4 

Critical torsional load as a function of n and m for L/R = 

100 and R/h = 10. 

3.2 Effect of the length-to-radius ratio on the critical torsional load 

Fig.5 demonstrates the critical torsional load as a function of length-to-radius. As shown, the critical torsional load 

increased with the increase of the L/R ratio and having a constant R/h ratio while m=n=1. Interestingly, the increase 

takes place nearly linearly. The quantitative changes of the critical torsional load in terms of length to radius are 

presented in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5 

Critical torsional load in terms of length to radius (L/R). 

 

 

 
Table 4 

The critical torsional load as a function of L/R for m = n = 1 and R/h = 10. 

L/R R/h m n                  Critical torsional buckling (GPa) 510  

50 10 1 1 0.25 

100 10 1 1 0.51 

200 10 1 1 1.03 

300 10 1 1 1.55 

400 10 1 1 2.07 

500 10 1 1 2.58 

3.3 Effect of the radius-to-thickness ratio on the critical torsional load 

As demonstrated in Fig.6, unlike the L/R ratio, the critical torsional load decreases when the ratio of radius to shell 

thickness increases. The critical load reduces drastically by the increase of the R/h ratio up to 20; then the critical 

load reaches a steady state with the increase of R/h ratio. The experiment took place when L/R = 100 and m=n=1. 

The quantitative changes of the critical torsional load as a function of the radius-to-the shell thickness ratio are also 

represented in Table 5. 
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Fig.6 

Critical torsional load as a function of radius to thickness 

(R/h). 

 

 

 
Table 5  

The critical torsional load as a function of R/h for m = n = 1 and L/R = 100. 

L/R R/h m n                Critical torsional buckling (GPa) 510  

100 10 1 1 5.124 

100 30 1 1 0.569 

100 50 1 1 0.205 

100 80 1 1 0.008 

100 100 1 1 0.005 

3.4 Effect of nanotubes volume fraction on the critical torsional load 

The critical torsional load as a function of nanotubes volume fraction is demonstrated in Fig.7. The critical torsional 

load increased by the increase of volume fraction of the nanotubes. As demonstrated for the nanotube volume 

fraction increase between 0.2 to 0.7, the critical load increases approximately linearly; whereas for higher volume 

fractions the increase of the critical load behaves non-linearly and at a higher rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7 

Critical torsional load as a function of nanotubes volume 

fraction. 

4    CONCLUSION 

In this study, equilibrium and stability equations of a piezoelectric cylindrical shell, reinforced with DWBNNTs 

were obtained. Then, non-linear torsional buckling under a combination of electro-thermo-mechanical loadings was 

investigated in elastic medium including Winkler and Pasternak foundation. The torsional buckling load for the 
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piezoelectric cylindrical shell reinforced with DWBNNTs under the combination of electro-thermo-mechanical 

loadings was computed to be critical at m = 24 and n = 1. Additionally, the critical torsional buckling load for the 

reinforced piezoelectric cylindrical shell under the combination of electro-thermo-mechanical loadings, in the elastic 

foundation, increased by the increase of the length-to-radius ratio. This load, however, decreased with the increase 

in the radius-to-shell thickness ratio. Finally, the increase of the volume fraction of nanotubes also directed affect the 

critical torsional buckling loads. That is, an increase in the amount of reinforcements in the matrix resulted in an 

increase of the critical torsional buckling loads.  

Future work of this paper would be the investigation of boundary conditions on the critical torsional buckling 

loads. Additionally, in this paper the classical shell method is used which has the limitations of being applicable on 

composites with low bucklings, and neglecting the strain energy; hence, we are interested in the comparison of 

results of this work with other types of reinforcements like CNTs nanotubes; and to generate solutions for the 

developed equations through the first order and higher order shear deformation theory in order to compare the 

results with the results presented in this work.  
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