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 ABSTRACT 

 In this article, the anti-plane deformation of an orthotropic sector 

with multiple defects is studied analytically. The solution of a 

Volterra-type screw dislocation problem in a sector is first 

obtained by means of a finite Fourier cosine transform. The 

closed form solution is then derived for displacement and stress 

fields over the sector domain. Next, the distributed dislocation 

method is employed to obtain integral equations of the sector 

with cracks and cavities under anti-plane traction. These 

equations are of Cauchy singular kind, which are solved 

numerically by generalizing a numerical method available in the 

literature by means of expanding the continuous integrands of 

integral equations with different weight functions in terms of 

Chebyshoff and Jacobi polynomials. A set of examples are 

presented to demonstrate the applicability of the proposed 

solution procedure. The geometric and force singularities of 

stress fields in the sector are also studied and compared to the 

earlier reports in the literature. 

© 2020 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE stress analysis of wedges and sectors has been considered by a number of earlier investigators. These 

investigations may be grouped into two major categories: those primarily dealing with wedges and sectors with 

no defects, and those studying wedges and sectors with single or multiple defects. Within the first category, the 

problem of anti-plane stress analysis of an isotropic and dissimilar finite wedge, with different boundary conditions 

under point tractions on the wedge straight edges, was originally studied by Kargarnovin, Shahani and Fariborz [1] 

and Kargarnovin and Fariborz [2]. A finite Mellin transform was used to analyze the wedge problem, and 

subsequently the geometric and loading singularities were investigated. Similarly, the stress analysis of an 

anisotropic finite wedge under anti-plane deformation was studied by Shahani [3]. Using the above-mentioned stress 

field and changing only the apex angle of finite wedge, the stress intensity factor (SIF) due to an edge crack in 

circular shafts and also the stress concentration factor in the apex of bonded wedges as well as bonded half planes 

were evaluated. More recently, the stress concentration factor for a double cantilever beam (DCB) was extracted by 
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Shahani [4]. Solutions of dissimilar isotropic wedges subjected to anti-plane point forces and screw dislocations 

were studied by Lin and Ma [5] using the Mellin transform and an image method. It was assumed that wedges with 

equal apex angles are attached to each other along their interface. Various boundary conditions on the wedge edges 

were considered and with the aid of the Peach–Koehler equation, the stress field of the image forces exerted on 

screw dislocations was derived. The solution of an isotropic sector wedge subjected to anti-plane shear loading on a 

circular edge of the wedge was obtained by Chen and Wang [6]. Different boundary conditions including fixed and 

traction free conditions were considered for straight edges of the finite wedge. A combination of the finite Mellin 

transform and the Laplace transform was used to solve the ensuing governing equations. Finally, the stress 

concentration of the wedge apex was studied for different edge boundary conditions. Wedges and sectors weakened 

by multiple defects have been the subject of other earlier investigations. The anti-plane stress analysis of an infinite 

wedge weakened by a finite number of collinear cracks located on the wedge bisector was first studied by 

Mkhitaryan, Melkoumian and Lin [7]. The anti-symmetric mixed boundary conditions on both wedge faces were the 

specified displacement and stress components on the nonintersecting intervals. A closed-form solution of the 

ensuing mixed boundary problem was derived using the Mellin integral transformation in conjunction with the 

singular integral equations, and the crack opening and SIF on cracks tips were calculated. Anti-plane stress analysis 

of an infinite wedge weakened by multiple cracks with an arbitrary smooth shape and orientation was also 

investigated by Faal, Fotuhi, Fariborz and Daghyani [8]. The Mellin transform was used to solve the problem and 

the stress field of an uncracked wedge under point traction on the wedge edges was obtained. In another report by 

[9], the Mellin transform in conjunction with an image method was used to analyze the anti-plane stress field of a 

finite wedge weakened by multiple cavities. Similarly, the stress field of an undamaged finite wedge under 

concentrated traction on the edges was attained. In both aforementioned works, various types of boundary conditions 

were considered. Anti-plane stress analysis of an anisotropic finite wedge weakened by a single radial crack was the 

subject of the study by [10]. The governing equation of the problem was rewritten in a complex form by introducing 

appropriate complex variables, and the solution was obtained in terms of complex functions using a set of finite 

complex transformations (also see [3, 11]). The latter complex method may be analogous to the standard finite 

Mellin transforms of the first and second types. The ensuing singular dual integral equations were solved 

numerically to calculate the stress intensity factors at the wedge crack tips. The anti-plane stress analysis of two 

different types of dissimilar sectors, i.e. the sector consisting of two isotropic sectors with the circular or the radial 

interface, was accomplished by [12]. Using the finite Fourier cosine transform as well as the technique of separation 

of variables, the closed-form solutions were obtained for the displacement and stress fields in each sector. Anti-

plane deformation of a typical dissimilar sector, consisting of two sub-sectors with a circular interface, was the 

subject of study by [13]. Using the finite Fourier cosine transform, the exact closed-form solutions for the 

displacement and stress fields of a Volterra type screw dislocation were attained. Next, using a distributed 

dislocation method, singular integral equations of the dissimilar sector weakened by defects (located in one of the 

sub-sectors) were obtained. The governing equations were found to be of the Cauchy type and solved numerically. 

For the sector in [12], in comparison with [13], an additional boundary condition was chosen such that the finite 

Fourier cosine transform was no longer useful and the technique of separation of variables was employed. 

Moreover, a new dissimilar sector, namely with the radial interface, was analyzed. 

According to the brief review above, the stress analysis of orthotropic sectors weakened by multiple, arbitrarily 

shaped defects and with two circular fixed edges has not been the subject of previous investigations. In this article, 

the classical theory of elasticity for the stress analysis of an orthotropic sector containing Volterra-type screw 

dislocations is first presented (Section 2). For the simplicity of dislocation solutions, we use the dislocation arc 

instead of dislocation line to define the dislocation. Results in Section 2 have been validated by available dislocation 

solutions of isotropic finite wedges in the literature. Next, the stress analysis of a sector under point and patch 

loading is studied for selected boundary conditions (Section 3). Similar to Section 2, results for special cases 

(namely, finite wedges) have been validated by the reported data in the literature. Methodologically, Buckner’s 

principle can be used to analyze sectors weakened by multiple cracks and cavities using the results of Sections 2 and 

3. This approach is shown in Section 4. Numerical examples are presented in Section 5 and results are compared to 

those of an isotropic infinite wedge. Concluding remarks are included in Section 6. 

2    GENERAL FORMULATION 

 

Let us consider an orthotropic sector (Fig. 1(a)) with inner and outer radii 1R  and 2R  and sector angle .  The 

origin of polar coordinate is located at the center of the sector circular edges and the angle  is measured from the 
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lower edge. Such, the sector consists of two sub-sectors 1R r a   and 2a r R   which are attached together 

along the circular arc r a . The only nonzero displacement component under anti-plane deformation is the out of 

plane component  ,w r  in each region.  

The equilibrium equation in the absence of body forces in the polar coordinates is written as: 

 

1
0zrz rz

r r r

 




  

 
 (1) 

 

The constitutive equations for non-vanishing stress components are: 
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where 
rzG and 

zG  are the orthotropic shear moduli of the sector ([14]). Substituting Eqs. (2) into Eq. (1) leads to  
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where .z
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G
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G

  Finite Fourier cosine transform for a sufficiently regular function ( )f   is defined as: 
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The inverse of finite Fourier cosine transform yields 
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The traction-free condition on the sector straight edges and also the fixed edge conditions at the edges
1r R and 

2r R imply that 
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 1, 0w R                           2 , 0w R    

(6) 

 

Application of finite Fourier cosine transform (4) into Eq. (3) and viewing the boundary conditions (6) leads to 
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where  
G




 .The general solution to Eq. (7) is obtained as: 

 

 , , 1,2n n

kn knW r n A r B r k     (8) 

 

Constants
knA  and 

knB  should be determined by applying appropriate boundary and continuity conditions. The 

index  k = 1, 2 is used to refer to the closer and farther sectors to the origin O, respectively (Fig. 1(a)). By virtue of 

Eqs. (5) and (8), the out of plane component ( , )w r   is written as: 
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A Volterra type screw dislocation with Burgers vector  is situated at the point  ( , )a   with the dislocation arc 

,  0r a     . Here we use dislocation arc instead of dislocation line (see [8, 9]) to define the dislocation. The 

boundary condition representing an arc dislocation under anti-plane deformation reads 

 

     , ,w a w a H         (10) 

 

where H  is the Heaviside step function. The continuity condition (self-equilibrium of stress) in the sector containing 

the dislocation as follows. 

 

   , ,rz rza a      (11) 

 

Appling the finite Fourier cosine transform to Eqs. (10) and (11) results in 
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The first pair of boundary conditions (6) is readily satisfied and applying the second pair of boundary conditions 

(6) to Eqs. (9) gives 
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Application of the conditions (12) to Eq. (9) leads to 
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Solution of Eqs. (13) and (14) gives  
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where  n 1 2Λ sin( / ) / 1 ( / ) . nn n R R    Substituting coefficients (15) into Eqs. (9) results in: 
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Using the first Eq. (16) in Eq. (2), the stress field when, 
1R r a   is obtained as: 
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For 
2a r R   the stress component  ,rz r   is achieved by replacing /r a with /a r . Analogously for stress 

component  , ,z r  similar changes are made for each region. Moreover the changed parts are multiplied by a 

negative sign. Making use of the formulas given in the Appendix of the report by Faal, Fotuhi, Fariborz and 

Daghyani [8] and the Taylor’s expansion of expression
nΛn ( i.e.,  n 1 2Λ sin( / ) / 1 ( / )  nn n R R    ), the stress 

components (17) are summed in the whole sector region, leading to 
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where 
1 2/R R   and  
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For the sake of brevity, the constants   and   were eliminated from Eqs. (18). For finite wedges, 1 0 R  then 

0   and the functions  , , ,m x     and  , , ,m x     are vanished for all 0. m   Therefore, the stress field 

(18) is simplified for finite wedge as: 
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Comparing the above stress field and that was obtained by Faal, Fariborz and Daghyani [9] after some 

manipulations shows identical results. It is also worth mentioning here that the dislocation definition used by Faal, 

Fariborz and Daghyani [9] was based on a straight cut of the wedge, but here we employ a circular cut to define the 
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dislocation. One of the benefits of the use of circular cut here is the simplicity of the finding the dislocation 

solutions. To investigate the behavior of stress fields in the dislocation position, let us change to a new coordinate 

system ( , ),   (Fig. 1 (a)). The relationships between the two coordinates may be written as: 
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Substituting (21) into   0 / , /r a       and   0 / , /r a      and carrying out the necessary 

manipulations yields 
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According to the above relations one can conclude that
1

( ,   ) ~rz z 


 as 0  . It should be added that this 

Cauchy singularity was previously reported, e.g., by Weertman, Friedel and Rhodes [15], for the stress field of two-

dimensional isotropic media containing screw dislocations. It has also been reported by [8, 9] for the stress field of 

an orthotropic strip and rectangular containing screw dislocations. 

 

 
(a) 

 
(b) 

Fig.1 

(a) Sector with screw dislocation, (b) Sector under anti-plane loading. 

3    ORTHOYROPIC SECTOR UNDER TRACTION  

In this section we use the analyses framework of Section 2 and predict the anti-plane deformation of an orthotropic 

sector under two point forces/tractions with a magnitude of 0 .   (Fig. 1(b)). The boundary conditions (6) hold but 

the first two boundary conditions are replaced by 
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where ( )   is Delta Dirac function. Application of finite Fourier cosine transform (4) to Eq. (3) and viewing the 

boundary conditions (23) leads to 
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Solving Eq. (24) as a Green function problem leads to seeking a  ,W r n  as follows: 
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Continuity of displacements at 0r r  imply that 
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Application of the last two boundary conditions (6) and continuity Eqs. (26) to (25) in view of (5) gives 

 

1 1 1 1 0n nC R D R      

2 2 2 2 0n nC R D R    

1 0 1 0 2 0 2 0

n n n nC r D r C r D r        

(27) 

 

Integrating Eq. (24) across the arc 0r r  gives 

 

   
     

0 0 0 0

0 0 0 0

2
2 12 0

02

, ,
, 1 1 ( )

r r r r
n

zr r r r

W r n W r n
r dr r dr nk W r n dr r r r dr

r Gr 




   

   

 
      
      (28) 

 

Considering the fact that the displacements are continuous along the arc 0r r  and making use of the integration 

by parts, Eq. (28) are simplified to 

 

   
 

0 0 1

0 0

, ,
( / ) 1 1

n

z

W r n W r n
r G

r r


 


 

    
  

 (29) 

 

Application of conditions (29) to Eqs. (25) leads to 

 

 
1

2 0 2 0 1 0 1 0 0 0( ) ( ) ( / ) 1 1
nn n n n

zC r D r C r D r n r G   

 
        

 
 (30) 

 

The solution of Eqs. (27) and (30) results in the coefficients 1 1 2, ,C D C   and 2D   and substituting of those into 

Eq. (25) and applying the inverse transform (5) to the ensuing equations leads to the displacement field as: 

 

         
1 2 20
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1

, (1 1 )Γ [ / / /
n nn n
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GG

 
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
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



      

2 2

1 0 2 1 0( / ) ] ,n n
R r R r cos R r r 


    

       
1 2 2 2 20

n 0 2 1 2 0 1 0

1

, (1 1 )Γ [ / ( / ) /
n nn n

nz

w r r r R R r R r R r r
GG

 














      

0 0 2( / ) ] ,n n
r r cos r r R 


    

(31) 

 

where   2

n 1 2 nΓ 1/ 1 / Λ / sin(nπβ / α).
n

n R R


    Stress components in the whole region are attained in view of 

the constitutive Eqs. (2) as follows: 
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       
1 2 20

n 0 2 0 1 02
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, (1 1 )Γ [ / ( / ) /
n nn n
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n

r n r r R r r R r r
G r
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 
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


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2 2

1 2 0 1 0( / ) ] ,n n
R r R r cos R r r 


    

       
1 2 20

n 0 2 0 1 0

1

, (1 1 )Γ [ / ( / ) /
n nn n

z

n

r n r r R r r R r r
G r


 






 







       

2 2

1 0 2 1 0( / ) ] ,n n
R r R r sin R r r 


    

(32) 

 

For 0 2r r R   the stress component  ,z r    is achieved by replacing 0/r r with 0 /r r . Analogously for stress 

component  ,rz r    similar changes are done for each region. Moreover the changed terms will be multiplied by 

negative sign. The term  nΓn  is replaced by the series 
2

1 2

0

( / ) mn

m

R R 




  and the stress components are summed up 

through the use of relations given in Appendix of [8]. 
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rz m m
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
        


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1 0R r r   
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r r r R
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


    







      2

0 2 0/ , / / , /m mr r R r r          

     2 2

0 1 0 1 0/ , / / , / / , /m m mr r R r r R r r                

   2 2 2 2

1 0 2 1 0 2 1 0/ , / / , / },m mR r R r R r R r R r r            

(33) 

 

It can easily be seen that the displacement and stress fields satisfy the prescribed boundary and continuity 

conditions. For 1 0R   and , z rzG G   Eqs.(33) are simplified and the stress field of reference [9] is achieved. The 

local coordinates  ' ', ,r   Fig. 1(b), is moved to the load location as  1 ' ' '  sin / , 0r sin r       and 

'2 2 ' '

0 02 .r r r r r cos    Using this transformation we deduce that 
'( , ) ~ 1/rz z r    near the traction 0   i.e. 

' 0r  . Choosing a similar local coordinates in the sector corners it can be shown that the stress is not singular. 

These corners can be modeled by rectangular wedge apex which is not singular, confirming the report by [1] for 

isotropic wedges. 

4    ORTHOTROPIC SECTOR WITH MULTIPLE CRACKS AND CAVITIES  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Schematic view of the sector with a smooth curved crack. 
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The dislocation solution accomplished in Section 3 may be extended to analyze sectors with multiple defects 

consist of cracks and cavities. The cavities are considered as closed-curve cracks without singularity. Consequently, 

the analysis resembles that of [8, 9] but with overriding the crack singularity. We consider a sector weakened by 

0r r  M
 
cavities, 0r r  N1 embedded cracks, and 0r r   N2 edge cracks. Henceforth, we designate cavities, 

embedded cracks, and edge cracks with the respective subscripts as follows    11, 2, . . . ,  ,   1,    2, . . . ,      ,i M j M M M N      

1 1 1 2    1,      2, . . . ,     k M N M N M N N        where 1 2   N M N N   and represents the total number of defects. 

The antiplane traction on the surface of the i-th defect,   1,2, , ,i N   Fig. 2, in terms of stress components in polar 

coordinates becomes 

 

     , , ,tz i i z i i i rz i i ir r sin r cos          

     , , ,nz i i z i i i rz i i ir r cos r sin          
(34) 

 

where i  is the angle between tangent to the surface of the i-th defect and the radial direction ir . Suppose 

dislocations with unknown density ( )zj jB r   are distributed on the infinitesimal segment at the boundary of the j-th 

defect. The traction on the surface of the i-th defect due to the presence of the present distribution of dislocations, 

utilizing (34) and (18), leads to 
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




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     2 2 2 2
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2 1 2/ , / / , /m i j j i m j i j ir r R r R r R              

     2 2 2

1 2 1/ , / / , /m j i j i m i j j ir R r R R r r              

  2 2 2

1 1/ , / } } ( ) ( ) ;m i j j i i j j j i jR r r cos dr r d R r r            

 

(35) 

For 2 ,j ir r R   the traction ( , )nz i ir    is written through the replacement of the term /i jr r  by /j ir r   and 

multiplying the functions m   by a negative sign. Covering the boundary of cavities or border of cracks by 

dislocations, the principle of superposition may be brought into play to obtain traction on the surface of cavities or 

cracks. Equation set (35) is integrated on the boundary of defects and the resultant tractions are superimposed. The 

integration of Eq. (35) may be facilitated by describing the configuration of cracks and cavities in a parametric form. 

For example, the parameter 1   1s    is chosen and the following change of variables is employed for elliptical 

cavities with major and minor semi-axes ia  and ib , respectively, 

 

     2 2 2 2 2 2 2{ /[ ]i i i i i si i sir s d a b b cos s a sin s         

     
1

2 2 2 2 22 cos / }i i i si si i si i sia b d s b cos s a sin s             

     1 2 2 2 2{ sini i i i si i sis tan d b cos s a sin s          

     2 2 2 2sin /[ cosi i si si i i i i si i sia b s d b cos s a sin s                cos ]}i i si si ia b s        

       1 ' '[ / ]i i i is tan r s s r s   

(36) 
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where ( , )i id   is the coordinate of cavity center and  i s  is the angle between a tangent to the surface of cavity 

and the radial direction    .ir s Also si   is the angle specifying the starting point and si   is the orientation angle of 

the major axis. For more details, see [9]. In Eq. (36), prime designates differentiation with respect to the argument. 

The traction on the surface of the i-th crack or cavity in the sector containing N defects may be expressed as: 

 

     
1

1 1

( ), ( ) ,       1   1, 1,2, ,
N

nz i i zj ij

j

r s s b t k s t dt s i N 
 

       (37) 

 

where  zjb t  is the dislocation density on the non-dimensional length of the boundary of the j-th crack or cavity. 

The above kernel  ,ijk s t in light of Eq. (35) can be obtained as in the appendix. The functions 

     0 ( / , / ) i j j ir s r t      and      0 ( / , / )i j j ir s r t       are singular for  i j as t s . Hence,we 

may conclude that  ,ijk s t  has the Cauchy-type singularity for  i j  as t s . By virtue of Bueckner’s principle, 

the left-hand side of Eq. (37), after changing the sign, is the traction caused by the external loading on the sector 

without defect at presumed boundary of cavities or crack border. The applied traction on sector with multiple defects 

is taken to be as Eq. (23) and the stress components as Eq. (33). Utilizing Eqs. (33) and (34), the following traction 

should be applied on the surface of the i-th defect: 
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(38) 

 

Employing the definition of dislocation density function, the equation for crack opening displacement across the 

j-th crack is 

 

   ' 2 ' 2

1

( ) ( ( )) ( ( ) ( ))  ,  1   1, 1,2, ,

s

j j j j j zjw s w s r t r t t b t dt s j N 


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The uniqueness requirement of displacement field on the surfaces of cavities and embedded crack borders 

implies 
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The Cauchy singular integral Eqs.(37) and (40) are solved simultaneously to determine dislocation density 

functions. Cavities are defined as closed curved cracks with bounded dislocation density at both ends of cracks. 

Thus, for 1   1, 1,2, ,t j M      the dislocation density functions for cavities are expressed as: 

 

    21zj zjb t g t t   (41) 

 

Stress fields for embedded cracks in orthotropic media are singular at crack tips with square root singularity 

([16]).To show the order of stress singularity for embedded cracks located at the orthotropic sector, we chose a local 

coordinate  ( , ) x y or 
' '( , ) r   as , 0x y   or 

' 0, r  Fig. 1(b). Following, the transformation between the two 

coordinate systems  ( , ) x y  or  ,r   is written as: 

 

 x rcos d                  y rsin     (42) 

 

Application of above transformation to Eq. (3) leads to 
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        

    
          

(43) 

 

For , 0x y    the above equation is approximated by  

 
2 2

2

2 2
0

w w
G

x y

 
 

 
             (44) 

 

Now let us make a comparison. We consider an orthotropic material where the shear modulus in the x-direction  

 xzG is different from that in the y-direction ( )yzG . The governing equation of this material under anti-plane 

deformation is

2 2

2 2
0xz yz

w w
G G

x y

 
 

 
 [11]. The interesting thing is that we may be able to compare this equation 

with Eq. (44) by defining /yz xzG G G . The displacement field of orthotropic sector, which is globally governed 

by Eq. (3) by the coordinates  , ,r   is locally governed by Eq. (44). We recall that Eq. (44) is valid only for the 

infinitesimally neighborhood of point  , .A r   Therefore in the vicinity of each specified point of the orthotropic 

sector we may assume an orthotropic material with the governing equation 

2 2

2 2
0xz yz

w w
G G

x y

 
 

 
, but the material 

properties xzG  and yzG  should be replaced by  rzG and , zG  respectively. We consider a crack tip located at the 

point  ,x y  of an orthotropic sector ( )xz yzG G  . The displacement and stress distributions around the crack tip 

are given in the study by Liebowitz, Lee and Eftis [11] by solving the equation 

2 2

2 2
0xz yz

w w
G G

x y

 
 

 
. For the 

brevity we give only the displacement field solution as: 

 

   , 2 / [ / ]III xz yzw x y k G G Im x y G i               (45) 

 

where   /yz xzG G G  and IIIk   is the stress intensity factor of the tearing mode of fracture. The equation above is 

also valid for the infinitesimally neighborhood of each specified point of the orthotropic sector but the material 
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properties xzG and yzG are replaced by rzG and , zG respectively. In view of Fig. 1(b) we have 

' 'x r cos and
' '.y r sin  Consequently, it is easy to deduce that the stress field in the crack tip has a square root 

singularity. Thus, the dislocation density functions are represented 11   1, 1,2, ,t j M M N        as: 

 

    2/ 1zj zjb t g t t               (46) 

 

Following, Eq. (45) is rewritten for a crack tip located at the point    ,A r  of the orthotropic sector, Fig. 1(b), as 

follows: 

 

   , 2 / [ / ]III rz zw x y k G G Im x y G i               (47) 

 

Thus, the stress intensity factors for the i-th crack in terms of crack opening displacement are 

 

0 0

2 ( ) ( ) 2 ( ) ( )
lim , lim

4 4L Ri i
i i

IIILi rz IIIRi rz
r r

L R

w s w s w s w s
k GG k GG

r r 

    
               (48) 

 

For 1,2, ,i M N   , where r is the distance from a crack tip. Setting the points iL  and  iR  on the surface of 

the crack, as shown in Fig. 2, yields 

 

             
2 2

1 2 1 ( 1 )
iL i i i i i ir r s r r s r cos s           

             
2 2

1 2 1 ( 1 )
iR i i i i i ir r s r r s r cos s                

(49) 

 

Substituting Eq. (46) into Eq. (39), substituting Eq.(49) into Eq. (48), and finally employing L’Hopital’s rule 

yield the stress intensity factors for the embedded cracks: 

 

     
1

2
' 2 ' 4

1
[( 1 ) ( 1) ( 1) ] 1

2
IIILi rz i i i zik GG r r g         

     
1

2
' 2 ' 4

1
[( 1 ) (1) (1) ] 1

2
IIIRi rz i i i zik GG r r g            

(50) 

 

where 11,2, ,i M M N    . For edge cracks, taking the embedded crack tip at t = −1, for 1   1,t    

1 11, 2, , ,j M N M N N        we let 

 

   
1

1
zj zj

t
b t g t

t





           (51) 

 

Analogously, for an edge crack the stress intensity factor is 

 

     
1

2
' 2 ' 4[( 1 ) ( 1) ( 1) ] 1IIILi rz i i i zik GG r r g                 (52) 

 

where 1 11, 2, ,i M N M N N      .The anti-plane strain components on the surface of the i-th defect, 

  1,2, , ,i N  Fig. 2, in terms of strain components in polar coordinates become 

 

     , , ,tz i i z i i i rz i i ir r sin r cos          

     , , ,nz i i z i i i rz i i ir r cos r sin                    
(53) 
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Substituting strain components /rz rz rzG  and /z z zG     into Eq. (53) and eliminating stress components 

rz   and z   between the resultant equations and Eqs. (34) gives 

 

     
2 2

1 1
, , ,i i

tz i i tz i i i i nz i i

rz z z rz

cos sin
r r sin cos r

G G G G 

 
       

   
      
   

           (54) 

 

The calculation of hoop stress on the surface of cavities is accomplished by employing the definition of 

dislocation density function, i.e.       ,tz i i zir s s b s     and Eq. (54) and also using the fact that the i-th cavity 

surface is traction free  , 0nz i ir    as follows: 

 

    
   

 
2 2

, , 1 1 1,2, ,rz z

tz i i zi

rz i z i

G G
r s s b s s

G sin s G cos s
i M



 
 

   


             (55) 

 

The system of Cauchy integral Eq. (37) in conjunction with Eq. (40) can be solved numerically. To this end, the 

original numerical procedure developed by Erdogan, Gupta and Cook [17] may not be directly applicable since it 

does not consider all types of defects; i.e., embedded and edge cracks and also multiple cavities at the same time. In 

the study by Faal, Fariborz and Daghyani [18], a minor generalization of the numerical procedure, by means of 

expanding the continuous integrands of integral equations with different weight functions in terms of Chebyshoff 

and Jacobi polynomials, was introduced to overcome this problem. Various weight functions resulted from various 

stress fields of different types of crack tips and cavity boundaries. The only approximation in the modified method 

was the truncating integrand infinite expansion, which does not change the accuracy of results if an adequate 

number of discrete points are used (see, Faal [18] for more details).  

5    NUMERICAL EXAMPLE AND DISCUSSIONS  

The analysis framework developed in the preceding section allowed the consideration of an orthotropic sector with 

an arbitrary number of defects. These defects may contain embedded and edge cracks as well as cavities with 

different orientations. Let us consider a sector with 2 12R R  and a sector angle 2 /3.   In the examples to 

follow, the orthotropy ratio G is assumed to be 0.8811 for an orthotropic material. For the isotropic case, G=1. The 

applied tractions are patch loads with the magnitude of 0   which are distributed on the sector straight edges, except 

for Example 4.  

 

Example 1  

 

Assume an orthotropic sector weakened by an elliptical cavity with major and minor semi-axes 1  0.3a R  and 

10.1 ,b R  respectively, Fig. 3. The center of cavity is on the line bisecting the sector at the distance 11.5d R . 

Fig.3 depicts the dimensionless hoop stress on the surface of the cavity for two different orientations of the cavity 

and also different materials (isotropic/orthotropic).The angle   on the cavity is measured from the minor axis in the 

counter-clockwise direction. As can be seen in Fig. 3, the most severe hoop stresses are obtained at the sharpest 

points of the cavity. In the orthotropic sector, weaker material stiffness in the angular direction compared to that of 

the radial direction reduces the dimensionless hoop stress. For   0,   one of the sharpest points i.e. / 2   is in 

the minimum distance of the inner sector circular edge and has the global maximum hoop stress. Also other sharpest 

point at 3 / 2   has a local maximum hoop stress. For   / 2   two sharpest points of cavity are in the identical 

distances of the sector bisector and have identical hoop stresses. One of the sharpest points of cavity i.e. / 2   

for   0   is closer than the distance from the point 
2


   to the fixed edge of the sector,  therefore the hoop stress 

of point / 2   for   0   is higher than the one for   / 2  , Fig. 4 also shows the variation of non-dimensional 

hoop stress for point 3 / 2   of the cavity against the orientation angle   .  Similarly, in the orthotropic sector, 
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the weaker material stiffness in the angular direction compared to that of radial direction reduces the dimensionless 

hoop stress. The problem is symmetric with respect to the angle   0   and    as it can be seen in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Dimensionless hoop stress for a cavity in an isotropic/orthotropic 

sector and two different cavity orientations. 

  

 

 
 
 
 
 
 
Fig.4 

Variation of dimensionless hoop stress for point 
3

2


   of a 

cavity versus the orientation angle. 

 

Example 2 

The variation of hoop stress for two identical parallel axes cavities with centers at the distances 1 1  1.25d R and 

2 11.75d R  from the circular edges center is shown in Fig. 5. Minor axes of the cavities are on the line bisecting the 

sector. Also we have 1 2 1 1 2 1  0.3 , 0.1a a R b b R    and the cavities orientation angle is 1 2 . 
2


    Similar to 

the example with one cavity, the most severe hoop stresses are seen at the sharpest points of cavities or points with a 

maximum curvature. Moreover, the stress level of the isotropic sector is higher than the sector made of the 

orthotropic material, mainly because the material stiffness in the angular direction is weaker than that of the radial 

direction. 

 

 

 
 
 
 
 
 
 
 
Fig.5 

Dimensionless hoop stress for two cavities located at the sector 

with two different materials (isotropic/orthotropic). 
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Example 3 

 

For this example let us consider two identical circular embedded cracks which are parallel with sector circular 

edges. The crack centers are fixed and located at the points 1(1.5 , /12)R   and 1(1.5 , / 4). R   Fig. 6 shows the 

variations of non-dimensional stress intensity factors, 0  /k k  at crack tips against 1/l R  where l is the half length of 

embedded circular cracks where 0 0k l   . These cracks are located at an isotropic sector. The variation of stress 

intensity factor of crack tip 2R is negligible whereas those near crack tips 1R , 2L   and also 1L  increase rapidly. In 

particular, for the tip 1L , the SIF increases because of approaching the loading point. Problem was solved again for 

an orthotropic sector and a similar trend was seen in Fig. 7. In the orthotropic sector, the weaker material stiffness in 

the angular direction increases the stress intensity factor. For two radial collinear cracks, one would envisage that it 

would behave reversely, which will be shown in Example 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of dimensionless stress intensity factor with 1/l R  for 

an isotropic sector. 

  

 

 
 
 
 
 
 
 
 
Fig.7 

Variation of dimensionless stress intensity factor with 1/l R  for 

an orthotropic sector. 

 

Example 4 

 

Now we consider a sector weakened by a circular edge crack and an elliptical cavity with the length of major semi-

axis 10.3a R  and a minor semi-axis 10.1b R . The major axis of the cavity is tangential to the circle with radius 

11  .5R at the point 1(1.5 , / 4).R   The circular edge crack is parallel with the sector circular edges and in equal 

distances from the lower and upper boundaries. The patch loads are distributed on the sector straight edges except 

for the small gap with length 1 0.1R   around the starting point of the edge crack. Fig.8 shows the dimensionless 

stress intensity factors, 0  /k k , for the crack tipversus the dimensionless crack length 1/l R . For all crack lengths, 

the magnitude of SIF in the isotropic sector is higher than that of the orthotropic sector. As the crack tip approaches 

the sharpest point of the elliptical cavity, 0  /k k  at the tip L increases rapidly. It is worth mentioning that when the 
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crack length grows up, SIF increases and when the crack tip recedes from the loading point, SIF deceases. In the mid 

points, depending on which of the aforementioned effects becomes dominant, SIF decreases or increases. The latter 

may explain the reason for the reduction of SIF in the middle portion of the plot in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of dimensionless stress intensity factor with 1/l R for 

edge crack in a isotropic/orthotropic sector. 

  

 

 
 
 
 
 
 
 
 
 
Fig.9 

Variation of dimensionless hoop stress for a cavity in an 

isotropic/orthotropic sector. 

 

Example5 

 

This example contains a sector weakened by two equally-sized radial cracks bisecting the sector angle. The distance 

between the center of cracks is 1 0.5R  and the distance from the center circular edges to the center of the first crack 

is 1 11.25 .d R   Figs.10 and 11 show the normalized stress intensity factors (SIF), 0  /k k  of crack tips against  

1/l R  where l is the half length of the embedded radial cracks. As can be seen from these figures, SIF increases 

rapidly as the distance between the tips of cracks decreases. The formation of regions with high stress level is 

attributed to the interaction of geometric singularities. Moreover, the slow reduction of other crack tips versus the 

crack length may be noteworthy. Interestingly, compared to the case in Example 3, an inverse trend is seen here in 

that the SIF for the isotropic sector is smaller than that of the orthotropic sector. For validation purposes, for an 

infinite wedge ( 1 0R  and 2R  ) weakened by two equal-sized radial cracks bisecting the apex angle, we 

reexamined the solution procedure. The distances between the each crack center and wedge apex are 1 /10d l   and 

2 3 /10,d l  respectively, where the applied traction is patch load on the two wedge edges with the length 

 0.1  .l m  The dimensionless stress intensity factors 0( / )k k  determined by the present approach were found to 

be in excellent agreement with the results in Fig. 4 of the work by Faal et al. [8].    
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Fig.10 

Variation of dimensionless stress intensity factor with 1/l R  for 

an isotropic sector. 

  

 

 
 
 
 
 
 
 
Fig.11 

Variation of dimensionless stress intensity factor with 1/l R  for 

an orthotropic sector. 

6    CONCLUSIONS 

An analytical solution for the problem of orthotropic sectors weakened by Volterra-type screw dislocation was first 

obtained in terms of two new definite functions. Consequently, the stress field in an orthotropic sector under traction 

on its straight edge(s) was presented in a compact form, where the load and geometric singularity of stress field was 

shown. The dislocation density on the crack surfaces is obtainable by solving a set of integral equations of the 

Cauchy singular type. Finally, the distributed dislocation technique was used to solve problems with multiple cracks 

and cavities with smooth geometries. The presented examples on the embedded and edge cracks as well as cavities 

revealed that: 

1. The normalized stress intensity factor (SIF) of the crack tips increases rapidly as they approach each other 

or near the sharp points of cavities or the loading point.  

2. SIF at crack tips for both orthotropic  1 G   and isotropic  1G    materials is symmetrically increased 

by an increase of the crack length. In the orthotropic sector, however, the weaker material stiffness in the 

angular direction reduces the stress intensity factor for radial collinear cracks and increases for circular 

cracks. 

3. SIF of a crack tip that is closer to the sharpest point of the elliptical cavity increases as the crack 

approaches the cavity boundary. Also the largest value of dimensionless hoop stress is obtained at the 

points of cavity boundary with minimum curvature, which are at the nearest distances from the inner sector 

circular edges. The latter is because of the presence of regions with high stress concentration. A similar 

trend for the dimensionless hoop stress but with higher magnitude was observed on the cavity of the 

isotropic sector. Also SIF and hoop stress for finite wedge are obtained to be higher than those for a sector 

because of the singularity of finite wedge apex (for some apex angles), while the sector corners are not 

singular. 

In Summary, the SIF of crack tips in orthotropic sectors can depend on critical factors such as the distance of the 

crack tip from the load, fixed edges or corners, and also the curvature of cavities. The individual and combined 

effects of these factors on SIF can be evaluated for different sector problems following the analytical solution 

provided in this work. 



A.R Hassani and A. Hassani                  383 

 

© 2020 IAU, Arak Branch 

APPENDIX  

Kernels of the integral equations 
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