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 ABSTRACT 

 In this article, the influence of hydrostatic stress and gravity on a 

clamped- free non-homogeneous magneto electro elastic plate of 

polygonal cross sections is studied using linear theory of elasticity. 

The equations of motion based on two-dimensional theory of 

elasticity are applied under the plane strain assumption of pre-

stressed and gravitated magneto electro elastic plate of polygonal 

cross-sections composed of non-homogeneous isotropic material. 

The frequency equations are obtained by satisfying the boundary 

conditions along the irregular surface of the polygonal plate using 

Fourier expansion collocation method. The complex roots of the 

frequency equations are obtained by secant method. The numerical 

computations are carried out for triangular, square, pentagon and 

hexagon cross sectional plates. Graphical representation is given 

for the various physical variables via gravity and different edge 

boundaries and its characteristics are discussed. This result can be 

applied for optimum design of concrete plates with polygonal cross 

sections.                      2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Stress-strain relation; Non-homogeneous; Pre-stressed 

and gravitated poly plate; FECM. 

1    INTRODUCTION 

 HE hydrostatic concrete solid plates are used in the construction to increase the inner tensile strength. It is 

widely used in the reduction of structural thickness with the improvement for longer span. The pre-stressed floor 

slabs consists of bracing wire strings, steel bars are laid over the reinforcement, which are having the longitudinal 

property. The most advantage of these types of floor slabs is large available span with minimal amount of support. 

These floor slabs are used in the structural engineering such as multi story car parking, residential, super market etc. 

Akbar [1] discussed various physical properties of multi layered, mechanical loaded cylinders. Mohammad Arefi et 

al. [2] presented the thermo elastic analysis of FG cylinder subjected to axially variable thermal and mechanical 

loads. Khoshgoftar et al. [3] used shear deformation theory to derive the analytical solution of functionally graded 
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cylinder with finite length thick cylinder under non-uniform pressure. Mohammed Arefi and Rahimi [4] discussed 

the thermo elastic behavior of clamped-clamped functionally graded cylinder under internal pressure also calculated 

the SCF due to clamping. Later, Mohammad Arefi [5] carried out the analytical investigation on the nonlinear 

behavior of the functionally graded piezoelectric cylinder along the thickness direction. He gave the nonlinear result, 

which justifies the importance of nonlinear analysis used in the sensors and actuator. Abbas et al. [6] used complex 

Fourier series to analyze the non-symmetric thermo elasticity of functionally graded cylinder and obtained the result 

that the considerable effect of loading on the non-symmetric behavior of the FG cylinder. Rahimi [7] introduced the 

term additional energy to the exact energy functional of a functionally graded piezo electrical rotating cylinder and 

obtained that the electrical potential is proportional to angular velocity. Nagaya [8, 11] derived a method for finding 

the solution of vibration problems on an arbitrary cross sectional plate. He also discussed the dispersion of the 

elastic waves in the cylindrical bars with the polygonal cross sections. Hutchinson [9] discussed the axisymmetric 

flexural waves over a thick circular plate. The effect of non-homogeneity and boundary conditions of a functionally 

graded circular plate on the Winkler-Pasternak foundation were investigated by Mohammed Arefi and Allam 

[10,12].Also he presented the nonlinear analysis of functionally graded square plate with piezoelectric layers resting 

on the Winkler-Pasternak foundation and gave the comparison between linear and nonlinear responses of the 

considered system. Chakraverty et al. [13] studied the flexural vibrations of non-homogeneous elliptic plates. 

Tanigawa [14] presented some basic thermoelastic problems for non-homogeneous structural materials. Annibale et 

al.[15] derived the stability of the discrete mechanical system which is controllable by the peizo electric nature. 

Selvamani [16] analyzed the elasto dynamic wave propagation in a piezo electric plate which is having the effect of 

fluid.  Bin et al. [17] analyzed the wave propagation in non-homogeneous magneto-electro-elastic plates. Chen et al. 

[18] worked on free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plate. Li [19] 

discussed the magneto electro elastic multi-inclusion and inhomogeneity problems and their applications in 

composite materials. Kong et al.[20] presented the thermo-magneto-dynamic stresses and perturbation of magnetic 

field vector in a non-homogeneous hollow cylinder. Rajneesh [21] discussed various behavior of the porous 

magneto electro elastic medium. Pan[22] and Pan and Heyliger [23] analyzed the three-dimensional behavior of 

magneto electro elastic laminates under simple support boundary conditions. Pan and Han [24] studied the exact 

solution for functionally graded and layered magneto-electro-elastic plates. Feng and Pan[25] discussed the dynamic 

fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plate. Rajneesh [26] 

solved the wave propagation in a slightly stretched elastic solid material. Selim [27] discussed the dissipation of the 

torsional wave in a prestressed cylinder. Rajneesh [28] studied the problem of propagation of wave and the 

reflection of plane waves under the initial stress on the generalized transversely isotropic half space which is 

insulated thermally. Akbarov [29] presented the numerical results on the influence of the initial compression on the 

three layered hollow cylinders along the direction of torsional wave propagation. Kakar[30] discussed the magneto 

elastic torsional surface waves in the prestressed fiber reinforced medium. Wave propagation in compressed 

materials with reinforcement in preferred direction subjected to gravity and initial compression reads from Kakar 

[31]. Kumari [32] investigated the edge wave propagation on the visco elastic initially stressed plate. Wilson[36] 

investigated the propagation of elastic waves with strain energy in a pre stressed plate and also derived the 

dispersion equation. De [33] modified the classical equations of motion using Biot’s theory for the elastic wave 

propagation in a homogeneous isotropic elastic solid medium with the assumption that the gravitational force creates 

an initial stress naturally. Dey  [34] used the damped equation in the complex form for the effect of torsional waves 

in a prestressed cylinder. Chen [35] discussed the exact solution of waves in the pre stretched electro active 

cylinders. Zhang[37] discussed the effects of initial stress on the frequency variables and solved the guided wave 

propagation under gravity in the single directed plate. Lofty [38] solved the effect of the gravity and analyzed the 

energy dissipation of  fiber reinforced thermo elastic. He analyzed also the magnetic effect on the considered 

material. He represented the graph with the damping and the initial stress. Ahamed [39] analyzed and gave the 

determinant form of equation the impact of the gravity on wave propagation in a granular medium. Hou [40] used 

the general solutions of transversely isotopic electro magneto thermo elastic material and constructed the three 

dimensional Green’s function for a steady point heat source in the semi infinite transversely isotopic electro 

magneto thermo elastic material. 

We have formulated the problem on the non-homogeneous wave propagation in a prestressed magneto 

piezoelectric polygonal plate. The plate possesses the gravitational force and the plate is kept in the magnetic field.  

The solution of the problem is derived using the Bessel function by considering the convenient form to uncouple the 

terms. The double Fourier series and the collocation methods are used to obtain the frequency equations for the 

polygonal shape of the plate. The numerical results and graphical representations are presented for the impact of 

different edge conditions and the gravitational force on physical variables. 
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2    FORMULATION OF THE PROBLEM  

The considered non homogeneous hydro static magneto electro poly plate is having the stress displacement and the 

constitutive stress-strain relations for linear elastic medium in polar cylindrical coordinates  , ,r t in the absence of 

body force from Kakar [30] as follows: 
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r r rr
rr r r rr s r rr r r tt
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where , ,rr r    the stress components and ρ are is the mass density of the material, sp  denotes the prestressed 

factor(when 0sP is hydrostatic tension and 0sP  represents hydrostatic compression ) and g is the gravitational 

force. , ru u
 
are the displacement components.  

The electric conduction equation is given by [41], 

 
1 1

, , 0 

   r r rr r  (3) 

 

The magnetic conduction equation is given by [41], 

 
1 1

, , 0 

   r r rr r  (4) 

 

where , r
and , r

are electric displacements and  magnetic displacement components. The mechanical, 

electrical and  magnetic stress strain relation for the isotropic material is given as: 

 

  2rr rr rre e e      (5) 

 

  2rre e e        (6) 

 

2r re    (7) 

 

11 11 r r rE m H  (8) 

 

11 11  E m H  (9) 
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where ,   are Lame’s constants, 11 is the dielectric constant and 11 11,m   are the electro-magneto material 

coefficients and magnetic displacements respectively. ,rE E  
are the electric potentials, ,rH H  are the magnetic 

potentials. The strain ije  can be represented by displacement as: 

 

,rr r re u  (13) 

 

 1
,re r u u  

   (14) 
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, ,r r re u r u u   
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The stress equation of motion is obtained in the following form 
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Since the material properties vary in the direction of thickness, the material constants can be taken with the 

rational number ‘m’ and the non-homogeneous form of the equation of motion is obtained by the following 

substitution  
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Upon using the Eqs. (16)-(18) together with Eq.(19) in Eqs.(1)-(4) ,we can get the following displacement 

equation of motions  for non-homogeneous material 
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3    SOLUTION OF THE PRESTRESSED AND GRAVITATED POLY PLATE
 

The recent Eqs.(20)-(23) are coupled partial differential equations and it can be uncoupled by considering the 

following solution  of the form 
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where 1/ 2n  for 0n   and 1n  for 1n  . By introducing the non dimensional quantity 
 2 2

2
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


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where a and b are the inner and outer radius of the polygonal plate   is the angular velocity and Substituting 

Eqs.(24)-(27) in Eqs.(20)-(23),we  get the following decoupled equations in the following form 
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We consider the free vibration of non-homogeneous polygonal cross-sectional plate and we seek the 

displacement function, electric and magnetic displacement function as: 
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Using the Eqs. (32)-(33) in the Eqs. (28)-(29), we get 
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The above equation can be reduced to the following forms of Bessel equations 
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and the corresponding solution is obtained by 
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Here 1nP , '

1nP 2nP and '

2nP are arbitrary constants and  J Nr ,  J Mr and  Y Nr ,  Y Mr are the Bessel 

functions of first and second kind of order  and 

 

respectively.  

Again, substituting Eqs.(33)-(35) in to Eqs.(30)-(31) and reducing to the simplest form as follows, 
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Solving Eq.(40) and Eq.(41),we can get, 
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The general solution of Eqs.(42) and (43) are as follows: 
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where 3nP , '

3nP , 4nP , '

4nP  are the arbitrary constants. 

4    BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS
 

Here, the problem of vibration of a magneto electro elastic polygonal plate  is considered via hydrostatic stress and 

gravity. Since the boundary is irregular it is difficult to satisfy the boundary conditions directly. Hence, from the 

formulation of Nagaya [8], the Fourier expansion collocation method is applied to satisfy the boundary conditions. 

Thus the boundary conditions are obtained as, 

 

     ( ) 0     xx xy j r rj j j
 (46) 

 

where x is the coordinate normal to the boundary and y is the tangential to the boundary  xx
 and xy

 are the 

normal and shear stress.  
j
is the value at the thj  segment of the cross section. Since the angle i

 between the 
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reference axis and normal to the thj  straight line boundary has a constant value in the segment as shown in the 

following figure 

 

 

 

 

 

 

 

 
 

Fig.1 

Line segment form.
 

 

In the above Fig.1  1 11 ,2 ,3 / 2,4 ,5           i i i i i
.Transforming the vibration displacements into 

the Cartesian coordinates 
ix and

 iy the relation between the displacements for the i-th segment of straight line 

boundaries is
  

 

   cos sin ,r r i iu u u      
 

   cos sini r iu u u          
(47) 

 

and  

 

   1cos , sini i

i i

r
r

x x


    

    
 

 

   1sin , cosi i

i i

r
r

y y


    

   
 

 

(48) 

Using the above Eqs. (47) and (48), the stress eqautions for the non homogeneity becomes, 
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, , , ,sin 2 cos2 0xy r r r i r r iu r u r u r u u r u                    
 

11 , 11 , 0x r rE m H    
 

11 , 11 , 0x r rm E H      

 

 

 

Applying the solution in the boundary condition (51) we arrive at the transformed form, 

 

    0i t
xxxx j j

e     
    

    0i t
xyxy j j

e     
    

    0i t
xx j j

E E e   
    

    0i t
xx j j

M M e   
  

 

(49) 

 

where 
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   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5xx n n n n n n n n

n

P e P e P e P e P e P e P e




       
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5xy n n n n n n n n

n

P f P f P f P f P f P f P f




       
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5x n n n n n n n n

n

P g P g P g P g P g P g P g




       
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5x n n n n n n n n

n

P h P h P h P h P h P h P h




         

(50) 

 

For anti-symmetric mode 

 

   4 1 2 3 4

40 1 2 3 40

1

0.5xx n n n nn n n n

n

P e A e A e A e A e




     
 

   4 1 2 3 3

40 0 1 2 3 3

1

0.5xy n n n n n n n n

n

P f P f P f P f P f




     
 

   4 1 2 3 4

40 1 2 3 40

1

0.5x n n n nn n n n

n

P g P g P g P g P g




     
 

   4 1 2 3 4

40 0 1 2 3 4

1

0.5x n n n n n n n n

n

P h P h P h P h P h




       

(51) 

 

Using the Fourier series expansion to the boundary Eq. (46) along the boundary surfaces are expanded in the 

form of double Fourier series .The boundary conditions are obtained as, for symmetric mode, 

 

 1 2 1 2 3

0 10 0 20 1 2 3

0 1

cos 0m m m mn n mn n mn n

m n

E P E P E P E P E P m 
 

 

 
     

 
 

 

 1 2 1 2 3

0 10 0 20 1 2 3

0 1

sin 0m m mn n mn n mn n

m n

F P F P F P F P F P m
 

 

 
     

 
 

 

 1 2 1 2 3

0 10 0 20 1 2 3

0 1

cos 0m m m mn n mn n mn n

m n

G P G P G P G P G P m 
 

 

 
     

 
 

 

 1 2 1 2 3

0 10 0 20 1 2 3

0 1

cos 0m m m mn n mn n mn n

m n

H P H P H P H P H P m 
 

 

 
     

 
   

 

 

For anti-symmetric mode, 

 

 3 1 2 3

0 30 1 2 3

0 1

sin 0m mn mn mnn n n

m n

E P E P E P E P m
 

 

 
    

 
 

 

 3 1 2 3

0 30 1 2 3

0 1

cos 0m mn mn mnm n n n

m n

F P F P F P F P m 
 

 

 
    

 
 

 

 3 1 2 3

0 30 1 2 3

0 1

sin 0m mn mn mnn n n

m n

G P G P G P G P m
 

 

 
    

 
 

 

 3 1 2 3

0 30 1 2 3

0 1

sin 0m mn mn mnn n n

m n

H P H P H P H P m
 

 

 
    

 
   

(52) 

 

where 
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The coefficients ~
i

i
nne h  are given in the appendix. 

5    NUMERICAL RESULTS AND DISCUSSIONS 
 

To illustrate the analytical result presented earlier, now we consider the numerical example for which computational 

results are presented. The physical constants for the numerical computation is taken from copper at 42 K , Poisson 

ratio 0.3  , density
3 38.96 10 /kg m   , the Young’s modulus 11 22.139 10 /E N m  ,

11 28.20 10 /kg ms   , 

10 24.20 10 kg ms   , 2 2 29.1 10c m ks
  and 

2 2113 10K kgm ks  . The material properties of the magneto- 

electro elastic material based on Peng-Fei Hou et al.[40] are 11 2 1 2

11 8.26 10 C N m     , 6 2 2

11 5 10 Ns C    , 

11

11 3612 10m Ns VC   . The geometric relations for the polygonal cross-sections given by Nagaya [8] as 

 
1

cosi iR a  


    ,  
1

cosi iR b  


  
  

, i i   . To study the convergence and validation of the present 

study, the frequency equation of a thick polygonal cross-sectional plate without non homogeneous parameter and 

other interacting field variables is chosen to show the exactness of the result obtained in the present case with the 

results of Nagaya [2]. The non-dimensional frequencies  , obtained for a ring shaped polygonal plates using 

Fourier expansion collocation method, with clamped edges, in both the Author and Nagaya’s [2], have exact 

coincidence, which is shown in Table 1.  
 

Table 1      

Comparative display of non-dimensional frequencies   of polygonal plate of Author results with  the results of Nagaya [8] of a 

ring shaped polygonal plates with clamped (ICOC)  edges. 

 

a/b 

 Mode Triangle Square Pentagon Hexagon  

   Nagaya[8]  Author Nagaya[8]  Author Nagaya[8]  Author Nagaya[8]  Author  

  n1 4.148  4.146 4.850  4.849 4.995  4.995 5.061  5.061  

0.1  n2 4.392  4.393 4.997  4.997 5.132  5.132 5.163  5.162  

  n3 4.547  4.551 5.889  5.886 5.627  5.626 5.784  5.783  

                

  n1 4.269  4.267 5.128  5.127 5.297  5.296 5.367  5.365  

0.15  n2 4.510  4.511 5.271  5.272 5.419  5.418 5.449  5.446  

  n3 4.769  4.765 6.069  6.068 5.782  5.784 5.951  5.945  

                

  n1 4.413  4.412 5.431  5.431 5.636  5.636 5.712  5.712  

0.2  n2 4.622  4.613 5.573  5.572 5.742  5.741 5.771  5.772  

  n3 4.924  4.924 6.315  6.316 5.995  5.996 6.180  6.181  

                

  n1 4.474  4.573 5.757  5.756 6.018  6.017 6.103  6.103  

0.25  n2 4.739  4.738 5.910  5.911 6.106  6.104 6.138  6.136  

  n3 5.019  5.016 6.627  6.627 6.264  6.265 6.470  6.471  
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Fig.2 

Geometry of Polygonal shapes of plate (a. Triangular, b. Square, c. Pentagon, d. Hexagon). 

 

A graph is drawn for the variation of radial stress 
rr

 
with plate radius r for IFOC and IFOF edge boundary 

conditions via 0.0,9.8g   for the polygonal plate in Fig.3 and Fig.4. From the Figs. 3 and 4, it is observed that, the 

radial stress  
rr  increases with respect to its radius r, also it is noted that the radial stress attains the maximum 

value in IFOF edge boundary than the radial stress of IFOC edge boundary conditions and also in higher gravity.  

The energy level is higher in hexagonal and pentagonal cross sections as compared to other cross sections. Figs. 5- 6 

display the distribution of displacement u against the radius r with IFOC and IFOF of polygonal plates 

for 0.0,9.8g  . From the Figs. 5 and 6, it is observed that the displacement is higher for a plate with inner free and 

outer free edges. It is shown that, the displacement of the pentagon and hexagon cross section is higher in both the 

values of the gravity.  

 

 

 

 

 

 

 
Fig.3 

Radial stress with radius of the polygonal plate with IFOC 

edges via 0.0.g   

  

 

 

 

 

 

 

 

Fig.4 

Radial stress with radius of the polygonal plate with IFOF 

edges via 9.8.g   
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Fig.5 

Displacement with radius of the polygonal  plate with IFOC 

edges  via 0.0.g   

  

 

 

 

 

 

 

 
Fig.6 

Displacement with radius of the polygonal plate with IFOF 

edges via 9.8.g   

 

Dispersion curves are plotted for the variation of electric displacement
r

with radius r of Triangle, Square, 

Pentagon and Hexagonal cross-sectional plates with IFOC and ICOF edges via 0.0,9.8g   in Figs. 7-8. From the 

Figs. 7 and 8, it is observed that the dispersions behavior of Triangle, Pentagon and Square, Hexagon are similar to 

each other at 0.0,9.8g   . The crosses over points denote the transfer of energy between the modes of vibrations 

due to the hydrostatic stress, gravity and clamped- free boundaries. Figs. 9-10 show magnetic displacement 
r
with 

radius r of polygonal plates with IFOC and IFOF boundary conditions via 0.0,9.8g  . The magnetic displacement 

is higher in the lower values of radius and became linear in the other part of radius in both boundary conditions and 

higher in the case of 9.8g   and ICOF edge. It is shown that, the magnetic displacement of the pentagon and 

hexagon plate is more in two cases due to the symmetry of cross section and the influence of other interactive fields.  

 

 

 

 

 

 

 

 

 
Fig.7 

Dispersion of electric potential with radius of polygonal plate 

with IFOC edges via 0.0g  . 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Dispersion of electric potential with plate radius of polygonal 

plate with and ICOF edges via 9.8.g   
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Fig.9 

Dispersion of magnetic potential with plate radius of polygonal 

plate with IFOC edges via 0.0g  . 

  

 

 

 

 

 

 

 
Fig.10 

Dispersion of magnetic potential with plate radius of polygonal 

plate with ICOF edges via 9.8.g   

 

Figs.11-14 illustrates the frequency distribution  with radius r of Triangle, Square, Pentagon and Hexagonal 

cross-sectional plates with different boundary conditions and aspect ratio through 9.8g  . From the Figs. 11-14, it is 

noted that the frequency increases as the radius increases in all the boundary conditions. 

 

 

 

 

 

 

 

 

 

 
Fig.11 

Frequency with radius of triangular cross-sectional plate with 

ICOF edges via 9.8.g   

  

 

 

 

 

 

 

 

 

 

Fig.12 

Frequency with radius of square cross-sectional plate with 

IFOC edges via 9.8.g   
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Fig.13 

Frequency with radius of pentagonal cross-sectional plate with 

IFOC, ICOF edges via 9.8.g   

  

 

 

 

 

 

 

 

 
Fig.14 

Frequency with radius of hexagonal cross-sectional plate with 

IFOC, ICOF edges via 9.8.g   

6    CONCLUSIONS 

The clamped free non homogeneous wave propagation on a magneto electro elastic plate of polygonal shape is 

studied in this paper. The interactive force terms gravity and the hydro static stress on the polygonal plate also have 

been derived using linear elasticity theory. Fourier expansion collocation method is used to solve the irregular 

boundary of the polygonal shape of the plate. The numerical result of the stress, mechanical, displacement, electric 

displacement, magnetic displacement  and non-dimensional frequency of the wave in the various shapes such as 

triangle, square, pentagon and hexagon cross section plates with IFOC, ICOC, ICOF edges and fixed gravity are 

computed and the graphical representations are presented. We concluded that 

 The hydrostatic stress, gravity and non-homogeneity of the poly plate have important role on the 

distribution of physical variables. 

 The boundary edge IFOC and IFOF are noted to be more significant in all the field variables. 

 Pentagon and Hexagon cross section plate attain higher values in all the physical quantities. 

 The Fourier expansion collocation method gave faster convergence in irregular boundaries. 

 This type of study is more important in the construction of foundation of footing, turbine disks, floor and 

roof with irregular boundaries. 
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