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ABSTRACT
A quasi-3D sinusoidal shear deformation theory and an analytical 
solution are presented for free vibration analysis of a 5-layer 
sandwich plate. The core of the sandwich plate is composed of a 
functionally graded porous (FGP) material that is distributed in two 
different types of nonlinear functions. The porous core is 
surrounded by two randomly oriented straight single walled CNT 
reinforced layers and two piezoelectric face sheets. Eight various 
couples of distribution of CNTs are considered for interior layers of 
the sandwich plate. Symmetric distributions include uniform 
distribution and FG-XX, FG-OO, and FG-VA and asymmetric 
distributions are FG-XO, FG-UO, FG-UX, and FG-AV. Effective 
elastic moduli of the nanocomposite layers are calculated by Mori-
Tanaka approach; the set of the governing equations are derived 
using Hamilton’s principle and are solved for the simply supported 
boundary conditions using Navier’s method. Accuracy of the 
presented solution is confirmed and effects of different parameters 
on the natural frequencies of the plate are studied including aspect 
ratio, porosity parameter, porosity distribution pattern, volume 
fraction and distribution pattern of CNTs and Winkler and shear 
coefficients of the foundation.                               
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1    INTRODUCTION

UE to their excellent multi-functionality offered by low specific weight, the efficient capacity of energy 
dissipation and enhanced recyclability, porous materials are receiving worldwide interests as advanced 

engineering materials in mechanical, aerospace and civil engineering. There are a considerable number of papers 
regarding the mechanical analysis of FGP structures. Chen et al. [1] studied static bending and mechanical buckling 
analyses of shear deformable FGP beams. They focused on the influences of the porosity parameter and slenderness 
ratio of the beam on the bending and buckling characteristics of FGP beams. In another study, they studied free and 
forced vibration analysis of FGP beams [2]. They presented a parametric study to examine the influences of porosity 
parameter, porosity distribution pattern, slenderness ratio and boundary condition on the natural frequencies and 
dynamic response of FGP beams. In another work, They investigated nonlinear free vibration analysis of sandwich 
beams with an FGP core [3]. This time, they presented a parametric study to examine the influences of porosity 
parameter, slenderness ratio and thickness ratio on the linear and nonlinear natural frequencies. Size-dependent 
nonlinear vibration analysis of FGP tapered microbeams was investigated by Shafiei et al. [4]. They studied the 
effects of amplitude, material length scale, rate of thickness and porosity parameter on the nonlinear fundamental 
frequency of FGP tapered microbeams. Ebrahimi and Jafari [5] focused on the thermo-mechanical vibration 
characteristic of FGP beams in a thermal environment. They investigated the influences of porosity parameter, 
porosity distribution pattern, thermal load, boundary conditions and power-low exponent on the natural frequencies 
of FGP beams. Using a refined four-variable plate theory, Barati and Zenkour [6] studied electro-thermo-mechanical 
vibrational analysis of FGP piezoelectric plates. They discussed the effects of porosity distribution pattern, applied 
voltage, thermal load, material gradation, geometrical parameters and boundary conditions on the natural 
frequencies of FGP plates. Ebrahimi and Barati [7] studied size-dependent and porosity-dependent vibration analysis 
of magneto-electro-elastic FGP nanobeams resting on a two-parameter elastic foundation. They presented some 
numerical results to show the effects of porosity parameter, elastic and shear coefficients of foundation, magnetic 
potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the natural frequencies of 
FGP nanobeams. Free vibration analysis of CNT-reinforced cylindrical shells made of FGP materials with 
temperature-dependent properties under thermal load was investigated by Safarpour et al. [8]. They presented a 
parametric study to show the influences of length to radius ratio, porosity parameter, thermal load and boundary 
conditions on the natural frequency of FGP cylindrical shells. Using a quasi-3D hyperbolic shear deformation plate 
theory, Shahsavari et al. [9] studied free vibration behavior of FGP plates resting on elastic foundations. They 
presented comprehensive parametric results to study the influences of volume fraction index, porosity fraction index 
and geometrical parameters on the natural frequencies of FGP plates. Daikh and Zenkour [10] proposed a new 
porosity for bending analysis of various functionally graded sandwich plates. They used a New higher-order 
deformation theory to derive the field equations of the FG sandwich plate. Numerical results presented to show the 
effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of 
FG sandwich plates. A quasi-3D tangential shear deformation theory was employed by Amir et al. [11] to analyze 
the free vibration behavior of a three-layered FG porous micro plate integrated by nanocomposite faces in a 
hygrothermal environment that rested on Pasternak foundation. They used Hamilton’s principle and Navier’s 
solution to extract and solve motion equations, respectively. Akbari et al. [12] presented a numerical solution for 
free vibration analysis of sandwich cylindrical panels made of a saturated FGP core and two similar homogenous 
face sheets. They focused on the influence of various parameters on the natural frequencies such as geometrical 
parameters of the panel, porosity parameter, porosity distribution pattern, thickness ratio and compressibility of pore 
fluid.

Due to their extraordinary mechanical, thermal and electrical properties, CNTs can be used as reinforcements of 
polymer composites. So, since the discovery of CNTs in 1991 by Ijima [13], many researchers have focused on 
mechanical analysis of FG-CNTRC structures. Ghorbanpour Arani et al. [14] used an analytical approach as well as 
the finite element method (FEM) and studied buckling analysis of CNT-reinforced laminated composite plates. They 
focused on the influences of the orientation angle of CNTs, boundary conditions and the aspect ratio on the critical 
buckling load. Wang and Shen [15] studied nonlinear bending and vibration analyses of sandwich plates with CNT-
reinforced composite face sheets resting on an elastic foundation in thermal environments. They presented a 
parametric study to show the influences of volume fraction of CNTs, core-to-face sheet thickness ratio, temperature 
elevation and foundation stiffness on the nonlinear bending and vibration characteristics. Using FEM, Zhu et al. [16]
presented numerical solutions for bending and free vibration analyses of CNT-reinforced composite plates. They 
focused on the effects of boundary conditions, the volume fraction of CNTs and the edge-to-thickness ratios on the 
bending responses, natural frequencies and mode shapes of the plate. Lei et al. [17, 18] used element-free kp-Ritz 
method and presented numerical solutions for buckling and free vibration analyses of FG CNT-reinforced composite 
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plates. They devoted their results to examine the influences of volume fraction of CNTs, plate width-to-thickness 
ratio, plate aspect ratio, loading condition and temperature on the critical buckling load and natural frequencies. 
Bhardwaj et al. [19] studied non-linear dynamic response of CNT-reinforced laminated composite plates. They 
focused on the effects of volume fraction of CNTs and the aspect ratio of the plate on the non-linear dynamic 
deflection of laminated composite plates. Based on the three-dimensional theory of elasticity, Alibeigloo [20]
investigated bending analysis of FG CNT-reinforced simply supported composite plates embedded in thin 
piezoelectric layers. He studied the influences of volume fraction and distribution pattern of CNTs, the thickness of 
piezoelectric layers and length to thickness ratio on the static behavior of the hybrid plate. Using FEM, static 
bending analysis of FG CNT-reinforced composite plates subjected to non-uniform elevated temperature fields was 
investigated by Jeyaraj and Rajkumar [21]. They studied the effects of boundary conditions, the distribution pattern 
of CNTs and type of thermal loading on the static characteristics of the plate. Using a QUAD-8 shear flexible 
element developed based on higher-order structural theory, Natarajan et al. [22] investigated bending and free 
vibration analysis of sandwich plates with CNT-reinforced face sheets. The presented a parametric study to examine 
the effects of volume fraction of CNTs, and core-to-face sheet thickness on the bending and free vibration 
characteristics of the sandwich plate. Wattanasakulpong and Chaikittiratana [23] studied static bending and free 
vibration analyses of CNT-reinforced composite plates resting on the Pasternak foundation. They focused on the 
effects of volume fraction of CNTs, elastic and shear characteristics of the foundation and geometrical parameters of 
the plate on the static bending and free vibration characteristics of the plate. Free and forced vibration analysis of 
viscoelastic micro composite beams reinforced by FG CNTs was studied analytically by Mohammadimehr et al. 
[24]. They presented some parametric results to examine the influences of volume fraction and distribution of CNTs 
and also damping coefficients on the natural frequencies and dynamic response of microcomposite beams. In 
another work on the micro-magneto-electro-elastic sandwich panel with a transversely flexible core and functionally 
graded carbon nanotube–reinforced nanocomposite facesheets, Mohammadimehr et al. [25], studied free vibration 
analysis of this structure based on high-order sandwich panel theory and modified strain gradient theory. They 
focused on the influences of the volume fraction, the various distributions of carbon nanotubes, the multi-physical 
fields, open- and closed-circuit boundary conditions, the material length scale parameters, different face sheet and 
core thicknesses, and temperature changes on the natural frequency. Their obtained results can be used to prevent 
the resonance phenomenon.

Ghorbanpour Arani et al. [26, 27] presented numerical solutions for free and forced vibration and supersonic 
flutter analyses of laminated FG-CNT reinforced cylindrical panels subjected to supersonic yawed flow. They 
presented parametric results to examine the influences of volume fraction, distribution pattern and orientation of 
CNTs, yaw angle and geometrical parameters of the panel on the natural frequencies and critical velocity of the 
panel. Arefi et al. [28] by using the modified couple stress theory as a non-classical continuum method and first-
order shear deformation theory, studied the free vibration analysis of elastic three-layered nano-/micro-plate with 
exponentially graded core and piezomagnetic face sheets. They applied Navier’s solution as an analytical solution to 
solve seven governing equations of motion.

In the presented paper, an exact solution is presented for free vibration analysis of a 5-layer simply supported 
sandwich plate consisted of an FGP core, CNT-reinforced interior layers and piezoelectric face sheets resting on 
Winkler/Pasternak foundation. The porosity of the core is evenly and unevenly repartitioned through the thickness. 
For its simplicity and accuracy even at a high volume fraction of inclusions, Mori-Tanaka approach is utilized to 
estimate the effective moduli of the nanocomposite layers. Accuracy of the presented analysis is confirmed and the 
influences of various parameters on the natural frequencies of the plate are investigated such as aspect ratio, porosity 
parameter and distribution pattern of pores, volume fraction and distribution pattern of CNTs and also Winkler and 
shear coefficients of the foundation.

2    PROBLEM DESCRIPTION AND THE GOVERNING EQUATIONS  

As depicted in Fig. 1, a sandwich rectangular plate of total thickness h and dimensions a×b resting on an elastic 
foundation is considered. As Fig. 1 shows, the plate is made of an FG-porous core of thickness hc, two FG-CNT 
reinforced interior layers of thickness hnc and two piezoelectric face sheets of thickness hp. As we’re using the 
energy method to drive equations, the total potential energy of the structure should be determined. Considering the 
stress-strain relation of each layer and using quasi-3D sinusoidal theory, strain and kinetic energy of the porous, 
nanocomposite and piezoelectric layers are calculated separately.
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Fig. 1
Effect of step location on first two natural frequencies (Clamp boundary conditions) 5 2( 0.75, 10 ).k Nm  

2.1 Displacement field

The specified displacement field for this structure is a quasi-3D sinusoidal theory proposed by Zenkour [29,30] in 
which the stress-free boundary conditions on the top and bottom surfaces of the plate is applied [30]. Using 
sinusoidal functions first proposed by Levy [31] and assessed by Stein [32]. Simplicity and accuracy of these 
functions and the fact that they consider both normal and shear deformations caused Zenkour to use and develop 
them. Based on the quasi-3D sinusoidal shear deformation theory, components of displacement in a rectangular plate 
can be considered as [29]
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(1)

where u1, u2 and u3 are displacement in x, y and z directions respectively and u, v and w show corresponding 
components of displacement at the middle surface of the plate (z=0). φx and φy stand for rotations around y and x 
axes, respectively, φz is an unknown function and f(z) is defined as following [33, 34]:

  sin
h z

f z
h




   
 

(2)

Based on the strain-displacement relations in x-y-z coordinates, components of the strain can be calculated using 
Eq. (1) as [35]
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2.2 Porous core

A pore is a void space in a solid structure. A material that contains pores is called porous. Porosity is a fraction of 
the volume of pores over the total volume. It varies from 0% to 100%. The relation between stress and strain tensors 
can be specified using Hook’s law. For the porous core following relation can be considered [36]:
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in which γij=2εij indicates to shear strain and
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where Ec, Gc and υc are elasticity modulus, shear modulus and Poisson’s ratio of the porous core respectively. In this 
paper, two patterns are considered for the distribution of pores which are depicted in Fig. 2. For this cases elasticity 
modulus, shear modulus and density (ρc) are defined as [37,38]
Even porosity:
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Uneven porosity:
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where E1, G1 and ρ1 are specified in Fig. 2, 0≤e1<1 is porosity parameter which shows the size of pores and

11 1me e   (8)

It is worth mentioning that in porous materials Poisson’s ratio can be considered as a constant value.

2.3 CNT-reinforced layers

As depicted in Fig. 1. The porous core is surrounded by two CNT-reinforced layers. The CNTs are distributed 
uniformly with randomly orientated directions. According to the rule of mixture, the density of a CNT-reinforced 
polymer can be calculated as follow:

(9),m m r rV V   

in which ρ and V indicate density and volume fraction respectively and subscripts m and r indicate polymer matrix 
and CNT reinforcement, respectively.

In this paper, five linear types of CNTs distribution patterns are considered. The volume fraction of CNTs for 
these patterns can be stated as
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Fig. 2
Distribution patterns of pores.

Lower layer (-0.5hc-hnc≤z≤-0.5hc):
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Also, the volume fraction of the polymer matrix can be obtained using the following relation:
(12)1 .m rV V 

In Eqs. (10) and (11), V*
r is the total mass fraction of CNTs which can be calculated based on the mass fraction 

of CNTs (wr) as follow:
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As the CNTs are orientated randomly, the CNT-reinforced matrix can be considered as an isotropic structure and 
Eq. (4) can be used for CNT-reinforced layers as well, in which
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where elastic modulus (Enc) and Poisson’s ratio (νnc) of the CNT-reinforced layers can be estimated using the 
Eshelby–Mori–Tanaka scheme as
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in which Gnc and Knc are shear and bulk moduli of the CNT-reinforced layers respectively and can be calculated 
based on the Eshelby–Mori–Tanaka scheme as following [39, 40]:
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in which Gm and Km stand for shear and bulk moduli of the isotropic matrix which can be evaluated as
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where Em and νm are elasticity modulus and Poisson’s ratio of the isotropic matrix and αr, βr, δr and ηr are defined as 
following [41]:
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In Eq. (35), kr, lr, mr, nr and pr are five independent constants known as Hill’s elastic moduli [41].

2.4 Piezoelectric layers

For the piezoelectric face sheets, stress-strain relation can be written as follows [42]:
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(19-b)

where Cij are elastic coefficients of the piezoelectric layers, eij and kij are piezoelectric and dielectric coefficients, D 
is electric displacement and Ei show electric field which can be calculated using an electric potential function 
(Ψ=Ψ(x,y,z,t)) as
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x y xE E E

x y z
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(20)

In this paper following distribution is considered for electric potential function [37].
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in which ψ0 is the electric potential implied on the top and bottom of the plate and ψ= ψ(x,y,t) is an unspecified 
function and
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2.5 Hamilton’s principle

The set of the governing equations can be derived using Hamilton’s principle as [43]

 
2

1

. . 0,
t

n c

t

U T W dt      (23)

in which δ is a variational operator, [t1,t2] is a desired time interval, U is strain energy, T is kinetic energy and Wn.c.

is work done by non-conservative forces.
The strain energy can be calculated as
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in which S is the surface of the plate. The kinetic energy can be stated as
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The virtual work done by the external load can be stated as

ext

S

W F wdS   (26)

in which F is the load per unit area imposed by the foundation which can be stated based on the Pasternak model as 
follow:

2 2

2 2
( , ) w G

w w
F x y K w K

x y

  
      

(27)

where Kw and KG are Winkler and shear coefficients of the foundation, respectively.
Substituting Eqs. (24)-(26) into Eq. (23) leads to the following governing equations:
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in which Iij and Jij are defined in Appendix A and
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By substituting Eqs. (3), (4), (19), (20) and (21) into Eqs. (28) and (29), the set of the governing equations can be 
written as
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3    SOLUTION PROCEDURE  

For a simply supported plate, the following solution can be considered based on Navier’s solution:
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(31)

Substituting Eq. (31) into Eq. (30) leads to the following eigenvalue equation:
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(32)

in which, [K] and [M] are stiffness and mass matrices, respectively. These two symmetric matrices are presented by 
details in Appendix C. By solving the eigenvalue equation (30), the natural frequencies of the 5-layer sandwich plate 
can be achieved for different values of mode numbers m and n.

4    NUMERICAL RESULTS 

In this section, numerical results are reported for the analytical solution presented previously. For the sake of 
validation, consider a single layer homogeneous square plate of a/h=10 and ν=0.3 with no foundation (Kw=0, KG=0). 
For different values of mode numbers m and n, dimensionless natural frequency of the plate (λ=ωh(ρ/G)0.5) are 
presented in Table 1 against corresponding ones reported by other authors [44, 45]. As shown in this table, results 
with high accuracy can be obtained.



301                                M. Pakize et al.

Journal of Solid Mechanics Vol. 16, No. 3 (2024)  

Table 1
Dimensionless natural frequencies (λ=ωh(ρ/G)0.5) of a single layer, homogeneous square plate (a/h=10, ν=0.3, Kw=0, KG=0)

HSDT [45]Exact 3D solution [44]Present(m,n)

0.09310.09320.0933(1,1)

0.22220.22260.2230(1,2)

0.34110.34210.3428(2,2)

0.41580.41710.4182(1,3)

0.52210.52390.5253(2,3)

0.68620.68890.6911(3,3)

0.74810.75110.7537(2,4)

0.92300.92680.9304(1,5)

1.08471.08891.0938(4,4)

0.830.45-Maximum Error (%)

Again, a single layer homogeneous rectangular plate of a/b=0.5, a/h=10 and ν=0.3 with no foundation (Kw=0, 
KG=0) is selected. Table 2 shows dimensionless values of the natural frequency of the plate (Ω=ωa2(ρ/E)0.5/h) for 
various values of mode number m and n along with corresponding ones predicted by Hebali et al. [46]. As shown in 
this table, results are in high agreement.

Table 2
Dimensionless natural frequencies (Ω=ωa2(ρ/E)0.5/h) of a single layer homogeneous rectangular plate (a/b=0.5, a/h=10, ν=0.3, 

Kw=0, KG=0)

Quasi-3D [46]Present(m,n)

3.695903.70480(1,1)

5.839205.85420(1,2)

13.932413.9760(2,2)

17.107017.1641(2,3)

26.057926.1598(3,2)

28.875428.9933(3,3)

0.79-Maximum Error (%)
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Consider a thin square plate of b/h=300 and ν=0.3 with no foundation (Kw=0, KG=0). Values of the first three 
natural frequencies are presented in Table 3 in a dimensionless form (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) against 
corresponding ones reported by other authors [15, 47-49]. This table confirms the high accuracy of the presented 
solution and the achieved results.

Table 3
Dimensionless natural frequencies (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) of a single layer, homogeneous square plate (b/h=300, 

ν=0.3, Kw=0, KG=0)

Maximum Error (%)Mode 3Mode 2Mode 1

-98.933749.471819.7899Present work

0.2598.696049.348019.7392Exact solution [47]

0.2598.716249.348019.7392Finite element method [48]

0.3198.626849.345319.7392Differential quadrature method [49]

0.2798.676549.343119.7362Galerkin method [15]

An isotropic homogeneous single layer square plate of ν=0.3 resting on an elastic foundation is considered. For 
different values of thickness to length ratio (h/a) and dimensionless Winkler and shear coefficients of the foundation 

( 4ˆ
w wK K a D , 2ˆ

G GK K a D , D=Eh3/12(1-ν2)), natural frequencies of the plate are presented in Table 4 in a 

dimensionless form (Λ=ωa2(ρh/D)0.5) against corresponding ones reported by other authors [50-52]. Results of this 
table confirm the accuracy of the presented solution.

Table 4
Dimensionless natural frequencies (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) of a single layer, homogeneous square plate (ν=0.3)

PresentMoradi et al. [52]Atmane et al. [51]Akhavan et al. [50]ˆ ˆ,w GK K
h

a

19.7904

26.2499

58.0136

19.7396

26.2115

57.9963

19.7392

26.2112

57.9962

19.7391

26.2112

57.9961

(0,0)

(100,10)

(1000,100)

0.001

19.1196

25.5733

56.9680

19.0658

25.6235

57.3922

19.0658

25.6236

57.3923

19.0840

25.6368

57.3969

(0,0)

(100,10)

(1000,100)

0.1

17.5141

23.9892

56.0145

17.4530

24.2728

56.0363

17.4531

24.2728

56.0311

17.5055

24.3074

56.0359

(0,0)

(100,10)

(1000,100)

0.2
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It what follows, numerical examples are presented to study the influences of various parameters on the natural 
frequencies of the 5-layer sandwich plates. Except for the cases which are mentioned directly, mechanical properties 
are considered as those mentioned in Table 5. Porosity distribution is considered as uneven with porosity parameter 
e1=0.4 and CNTs are distributed with total volume fraction V*

r=0.11 based on uniform distribution pattern. Elastic 
and shear stiffness coefficients of the foundation are selected as Kw=1010 N/m3 and KG=105 N/m and the following 
dimensionless definition is defined for the natural frequencies:

  1

1

2 1
h

E

 
 


 (33)

Table 5
Mechanical properties

Core [37]

Interior layers

Piezoelectric face sheets [53]

Matrix[52] CNT[14]

E1= 200 GPa

ν=0.33

ρ1=7850 kg/m3

E=2.5 GPa

ν=0.34

ρ=1150 kg/m3

kr=30 GPa

lr=10 GPa

mr=1 GPa

nr=450 GPa

pr=1 GPa

ρr=1400 kg/m3

C11=226 GPa

C12=125 GPa

C13=124 GPa

C22=226 GPa

C33=216 GPa

C44=44.2 GPa

C55=44.2 GPa

C66=50.5 GPa

ρ=5550 kg/m3

e31=e32=-2.2 C/m2

e15=e24=5.8 C/m2

e33=9.3 C/m2

k11=5.64×10-9 C/Vm

k22=5.64×10-9 C/Vm

k33=6.35×10-9 C/Vm

For a sandwich plate of hc/hp=10 and hp/hnc=1 and constant surface area (S=ab), values of the natural frequencies 
are depicted versus aspect ratio (a/b) in Fig. 3. As shown in this figure, the minimum values of the natural belong to 
a square plate (a/b=1). For a/b<1 an increase in the value of aspect ratio decreases all natural frequencies and for 
a/b>1 reverse trend can be seen.

For a square sandwich plate, Fig. 4 shows the effect of thickness of the core to the thickness of the ratio of the 
CNT-reinforced layer (hc/hnc) on the values of the natural frequencies. As shown in this figure, with an increase in 
the value of hc/hnc, all natural frequencies reduce and get close to some constant values which are corresponding 
natural frequencies of a 3-layer sandwich plate with an FG porous core and piezoelectric face sheets.

For a sandwich plate of hc/hp=10 and hp/hnc=1, the effect of the porosity parameter and porosity distribution 
parameter on the values of the natural frequencies are illustrated in Figs. 5 and 6. As depicted in these figures all 
natural frequencies grow with an increase in porosity parameter which means that with an increase in the size of 
pores, the rate of the reduction in the inertia of the plate is higher than the reduction in stiffness. These figures also 
reveal that the value of the natural frequencies in even patterns is higher than the corresponding ones of the uneven 
pattern.
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Fig. 3
Effect of aspect ratio (a/b) on the natural frequencies.

Error! Not a valid link.

Fig. 4
Effect of thickness of the core to the thickness of the ratio of the CNT-reinforced layer (hc/hnc) on the natural frequencies.

Fig. 5
Effect of porosity parameter on the natural frequencies for even pattern.

Fig. 7 shows the influence of the total volume fraction of CNTs on the natural frequencies of the sandwich plate 
of hc/hp=1 and hp/hnc=0.1. This figure confirms that all natural frequencies increase with the rise in the value of the 
total volume fraction of CNTs which can be explained by an increase in the flexural rigidity of the CNT-reinforced 
interior layers. In other words, as the volume fraction of CNTs in Eq. (16) becomes more, Gnc and Knc that are shear 
and bulk moduli of the CNT-reinforced layers respectively, will increase. Therefore, according to Eq. (15), 
mechanical properties of nanocomposite layers increase. So the stiffness of the sandwich plate enhances which leads 
the natural frequency to increase. This result is in complete agreement with [11], [52] and [54].
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Fig. 6
Effect of porosity parameter on the natural frequencies for the uneven pattern.

Fig. 7
Effect of volume fraction of CNTs on the natural frequencies.

For a sandwich square plate (a/b=1) of hc/hp=1=hp/hnc=1, Figs. 8 and 9 show the effect of Winkler and shear 
coefficients of the foundation on the natural frequencies. As these figures show, an increase in both Winkler and 
shear coefficients of the foundation, all natural frequencies grow which can be explained by the increase in the value 
of stiffness of the plate-foundation system.
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Fig. 8
Effect of Winkler coefficient of the foundation on the natural frequencies.

Fig. 9
Effect of shear coefficient of the foundation on the natural frequencies.

In order to study the effect of distribution patterns on CNTs on the natural frequencies, eight different couples of 
distribution patterns are considered as depicted in Fig. 10. For a sandwich plate of hc/hp=1 and hp/hnc=0.1, the 
variation of the fundamental frequency is depicted in Fig. 11 versus the aspect ratio for different couples of 
distribution patterns. As shown in this figure, the highest value of the fundamental frequency belongs to FG-VA and 
the lowest one belongs to FG-AV. In other words, in order to increase the reinforcing effect, it is better to put the 
CNTs as far as away from the middle surface (z=0).
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Fig. 10
Distribution patterns of CNTs.

Fig. 11
Effect of distribution patterns of CNTs on the natural frequencies.
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5    CONCLUSIONS   

Using Navier’s method, an exact solution was presented for free vibration characteristics of 5-layer sandwich plates 
consisted of an FGP core, CNT-reinforced interior layers and piezoelectric face sheets. The plate was modeled using 
the quasi-3D sinusoidal shear deformation theory and the set of the governing equations are derived using 
Hamilton’s principle. The accuracy of the presented solution was validated and the influence of various parameters 
on the natural frequencies of the sandwich plate was investigated. It was concluded that by the assumption of 
constant surface area (S=ab), the minimum values of the natural belong to a square plate (a/b=1). Numerical 
examples showed that natural frequencies increase with the rise in the value of the porosity parameter (increase in 
the size of pores) and the even pattern for porosity distribution leads to higher values of natural frequencies rather 
than the uneven pattern. It was found that all natural frequencies increase with the rise in the value of the total 
volume fraction of CNTs and in order to maximize this increase, it is better to put the CNTs as far as away from the 
middle surface of the plate (z=0). It was concluded by numerical results that an increase in both Winkler and shear 
coefficients of the foundation leads to the increase in all natural frequencies of the plate.
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APPENDIX C   
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