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 ABSTRACT 

 In this study, we consider the propagation of the Love-type wave in 

piezoelectric gradient covering layer on an elastic half-space having an 

imperfect interface between them. Dispersion relation has been obtained 

in the form of determinant for both electrically open and short cases. The 

effects of different material gradient coefficients of functionally graded 

piezoelectric material (FGPM) and imperfect boundary on the phase 

velocity of Love-type waves are discussed. Also, the influence of 

mechanically and electrically imperfect interface on the surface wave 

phase velocity is obtained and shown graphically. The dispersion curves 

are plotted and the effects of material properties of both FGPM and 

orthotropic material are studied. Moreover, dispersion relation of the 

considered microstructure depends substantially on the material gradient 

coefficients and width of the guiding plate. Numerical results are 

highlighted graphically and are validated with existing literature. The 

present study is the prior attempt to show the interfacial imperfection 

influence with the considered structure on wave phase velocity. The 

outcomes are widely applicable and useful for the development and 

characterization of Love-type mechanical waves in FGPM-layered 

media, SAW devices and other piezoelectric devices. 

                                        © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ATERIALS play a significant role in the modernization of society by introducing advance devices which 

result in ease in the livings. Advanced materials like Functionally Graded Piezoelectric Materials (FGPM) are 

one of the most useful engineering composites which are developed by mixing two or more distinct constituent’s 

phases with smooth continuous variation. Using such materials and surface wave propagation phenomenon through 

them creates valuable gadgets like SAW devices, transducers, etc. The articles carrying the wave propagation 

phenomenon in which the material coefficients of the guiding plate play a substantial role in describing the 

dispersive nature of the considered seismic wave are critical. In the theory of elastodynamics, Love waves are 

horizontally polarized surface waves and these waves is an outcome of the interfaces of many shear waves in 
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layered structure, i.e. elastic layer welded on a elastic substrate on one side and vacuum medium on the other side. 

Therefore, such study of surface guided waves has collected much attention in the area of material crack or defects 

estimating capabilities of seismic waves. These surface waves are also beneficial for investigating the surface 

mechanical properties of underlying solids by non-destructive testing techniques (NDT) and in electronics industry 

even. During the manufacturing time of some material cracks or defects may occur at the interface due to thermal 

mismatch or some faults which result into an imperfect interface. Displacements fields’ components are not 

continuous at the surface of common boundary of two distinct media in case of an imperfect interface, and this 

interfacial imperfection at the joint interface affects the surface wave propagation. Such types of mechanical 

problems are very helpful which explored the influence of material gradients, width of the plate and elastic constants 

on phase velocity of the surface wave. Also provide the better prediction of imperfectness effect in electrically short 

and open case. Love-type waves in layered piezoelectric structures/FGPM structure are interesting because of their 

many device applications in the acoustic and microwave fields. Following Love [1], many researchers have 

presented comprehensive results of seismic wave propagation in the isotropic and anisotropic medium. It is a well-

known fact that Love waves propagating in the piezoelectric materials are extensively used in sensors, transducers, 

and surface acoustic wave (SAW) devices because of their better performances. So the study of Love-type waves in 

piezoelectric materials is of great importance. Du et al. [2] have studied the Love wave propagation in the 

functionally gradient piezoelectric material layer and analytically derived some special cases. The problem of 

transverse surface waves in a piezoelectric material carrying a functionally graded layer of finite thickness was 

studied by Qian et al. [3]. Eskandari and Shodja [4] have discussed the problem of Love waves in FGPM with 

elastic properties having quadratic variation. Cao et al. [5] and Singhal et al. [6-7] have investigated the propagation 

of Love waves in the FGPM-layered composite system. Fan et al. [8] studied the antiplane piezoelectric surface 

wave over a ceramic half-space with an imperfectly bonded layer. Recently, Rayleigh wave on the half-space with a 

piezoelectric gradient layer and imperfect interface investigated by Li et al. [9]. Chaudhary et al. [10] has examined 

the surface wave propagation in piezoelectric layer lying over an orthotropic substrate and deduced some particular 

cases.  

As for FGPM framework, especially those who considered smart material layered structure, no endeavor has 

been taken to explore the concept of mechanical wave propagation phenonmenon in the FGPM layer deposited on 

elastic substrate with interfacial imperfection. The main aim of the present study is to explore the remarkable 

influence of material gradients parameters in relation with the imperfect interfacial parameter grahically. In this 

present article, we analytically derive dispersion relation of Love-type wave propagation in smart material structure 

following the elastic wave theory. Distinct parametric graphs are drawn ( numerically) to exhibit the influence of 

parameters, like material gradients, mechanical imperfect and electrical imperfect on phase velocities. Moreover, the 

effects of these considered parameters with wave propagation analysis over imperfectness of the boundary on 

dispersion relation are observed and discussed in details. The results obtained show that possible imperfections 

of interface bonding must be considered in the design and fabrication of composites materials and also a benchmark 

for further investigation of FGPM coupled structures and design of SAW devices. 

2    FORMULATION OF THE PROBLEM 

We have considered an FGPM layer of finite thickness over a vertically elastic substrate with imperfect interface as 

shown in Fig. 1. We choose a Cartesian coordinate system in such a way that y axis is in the direction of wave 

propagation and x axis pointing vertically downward. The variations in parameters of FGPM layer are considered in 

the form 

 

     0 0 0 0

44 44 15 15 11 11, , , ( ) .x x x xc x c e e x e e x e x e           

 
 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 
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For the piezoelectric layer with initial stress, the equilibrium equations of elasticity without body forces and the 

Gauss’ law of electrostatics without free charge are given as follows [11, 12 and 13] 

 
0

, , ,

0

, ,

( ) ,

( ) 0

ij j i k k j j i

i j i j j i

u u

D u D

   

 
 (1) 

 

where , , 1,2,3,i j k   is the mass density, 
iu  and 

iD  denote the mechanical and electrical displacements in the 

 i th direction, respectively, 
ij  is the stress tensor, 0

kj  is the initial stress tensor and 0

jD  
is the initial electric 

displacement. The dots denote time differentiation and the comma denotes spatial differentiation. 

The well-known piezoelectric constitutive equations are 
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where ij  and k lS  are the stress and strain tensors, 
jD  and 

kE  are the electrical displacement and electric field 

intensity and , ,i j k l k i j j kc e  are the elastic, piezoelectric and dielectric coefficients respectively. For FGPM layer 

the material properties are only function of x-axis. 

Mechanical displacement and strain components are related as: 

 

, ,

1
( ).

2
i j i j j iS u u   (3) 

 

According to the quasi-static Maxwell’s equation, relation between the electrical intensity and the electrical 

potential is 

 

i

i

E
x
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 (4) 

 

where   is the electrical potential function [Cao et al.14] On the assumption that the Love wave propagates in the y 

direction and with the initial stress component 0

y , the mechanical displacement components and the scalar electric 

potential function can be given as: 

 

0, ( , , ), ( , , ).u v w w x y t x y t      (5) 

 

Hence, the motion equation and the electrical displacement equilibrium equation for FGPM buffer layer are 

given by 
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where 1w  and 1  denote the mechanical displacement and the electrical potential in the FGPM buffer layer, 

respectively. 

The field equations for elastic substrate can written as: 
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(8) 

      

where 44

s

s

sh s

c
c


  is the shear wave velocity in the elastic substrate with s , 

44

sc  and
 11

m   being the density, shear 

modulus and dielectric constant in the  substrate half-space.  

3    ANALYTICAL SOLUTIONS 

3.1 Solution for FGPM layer 

By assuming 
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Eq. (12) and (13) can be rewritten as: 
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The solutions of Eqs. (10) and (11) are assumed as

 

 

     1 1, , exp ,w x y t W x ik y ct     (12) 

 

     2 2, , exp .x y t x ik y ct      (13) 

 

The above assumed solution reduces Eqs. (10) and(11) to 
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The solution of Eq. (14) is 
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the solution of Eq. (16) is obtained as: 
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where 
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 Substituting Eqs. (16) and (17) into Eqs. (12) and (13), we get 
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3.2 Solution for elastic substrate 

Since we have the condition 
2 0w  and 

2 0  when .x   

Therefore the solution of (14) and (15), satisfying the above condition may be written as: 
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4    BOUNDARY CONDITIONS 

For Love waves propagating in the considered structure, mechanical displacement and electrical potential satisfy the 

following boundary conditions and interface continuity conditions. It should be pointed out that two kinds of 

electrical boundary conditions, i.e. electrical open and short conditions, would be considered in this study. 

The mechanical and electrically open conditions at the free surface can be given as: 

 

   1 1, 0, , 0.x z xh y D h y      (22) 

 

The mechanical and electrically short conditions at the free surface are expressed as follows: 

 

   1 1, 0, , 0.x z h y h y      (23) 

 

Here we introduce the imperfection interface factors
TK and 

NK  to indicate the imperfections exist along the 

interfaces between the upper piezoelectric layer and the FGPM layer.  
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5    DISPERSION RELATION 

5.1 Dispersion relation for electrically open case 

Using boundary conditions i.e. (Eqs. (22) and (24)) and eliminating the arbitrary constants, we get 
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Eq. (25) is the dispersion relation for Love type wave in the considered structure. 

5.2 Dispersion relation for electrically short case 

Using boundary conditions i.e. (Eqs. (23) and (24)) and eliminating the arbitrary constants, we get 
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where all the terms are similar to those given in Eq. (25) except  
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Eq. (26) is the dispersion relation for Love type wave propagation in a considered structure. 

6    NUMERICAL EXAMPLE AND DISCUSSION 

The dispersion relations (Eqs. (25) and (26)) have been used for numerical illustration and graphical representation. 

We have used the following data. The material constants of BaTiO3 ceramics are taken from Wang and Huang [8] 

and the material constants of elastic substrate are taken from Ristic [9].  

 
Table 1 

Material constants. 

Materials          Elastic constant           Mass density            Piezoelectric constant             Dielectric constant 

                        C44(1010 Nm-2)               (kgm-3)                    e15 (Cm-2)                           11 (10-10 Fm-1) 

BaTiO3               4.40                             7.28                        11.4                                      128.0  

SiO2                    3.12                             2.20                         0.0                                       0.336 

 

Figs. 2(a) and 2(b) are drawn to explore the influence of mechanical and electrical imperfect parameters on the 

profile of phase velocity of Love-type mechanical surface waves against dimensionless wave number for electrically 
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open case. In the Figs. 2(a) and 2(b) dimensionless phase velocity is represented by vertical axis and dimensionless 

wave number is represented by horizontal axis. The variation of dimensionless phase velocity gets increases with the 

increment of imperfect parameters i.e. mechanical and electrical parameters in a fashion of arithmetic progression of 

common difference 4 in the Figs. 2(a) and 2(b) respectively. Also, this increment in the imperfect parameters 

increases the angular frequency. Imperfect parameter strongly increases the phase velocity in both cases which is a 

very significant result. In comparison, mechanically imperfect parameter influences more in increasing the phase 

velocity as compared to the electrical imperfect parameter. Both the Figs. 2(a) and 2(b) give valuable information 

for the choice of FGPM plate to be used in SAW devices.  

 

 
(a) 

 
(b) 

Fig.2 

Variation of dimensionless phase velocity with respect to dimensionless wave number for different values of imperfectness 

parameters for electrically open case. 

 

Figs. 3(a) and 3(b) are drawn to explore the influence of mechanical and electrical imperfect parameters on the 

profile of phase velocity of Love-type mechanical surface waves against dimensionless wave number for electrically 

short case. In the Figs. 3(a) and 3(b) dimensionless phase velocity is represented by vertical axis and dimensionless 

wave number is represented by horizontal axis. The variation of dimensionless phase velocity gets increases with the 

increment of imperfect parameters i.e. mechanical and electrical parameters in a fashion of arithmetic progression of 

common difference 4 in the Figs. 3(a) and 3(b) for electrically short case respectively. Also, this increment in the 

imperfect parameters increases the angular frequency. Imperfect parameter strongly increases the phase velocity in 

both cases which is a very significant result. Both the Figs. 3(a) and 3(b) give valuable information for the choice of 

FGPM plate to be used in SAW devices. 

 

 
(a) 

 
(b) 

Fig.3 

Variation of dimensionless phase velocity with respect to dimensionless wave number for different values of imperfectness 

parameters for electrically short case. 

 

In consecutive Figs. 4(a) and 4(b), the variations in the dimensionless phase velocity of Love-type mechanical 

surface wave (effect of material gradient coefficients) are shown. It is significantly noticed that the dimensionless 

phase velocity curves are monotonically increasing with increasing value of material gradients with the interval 

value of 7 along the dimensionless wave number. Furthermore, the effect of material gradient coefficients is 
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remarkably shown under electrically open case on dispersive curves of Love-type wave is more sensitive as 

compared to an electrically short case. All the self-explanatory figures suggest that the choice of FGPM plate to be 

used in seismic devices which are very significant result. Also, the outcomes of the problem suggest that FGPM 

with high dielectric gradient values should be preferred for designing SAW devices to reduce ultrasonic high-

frequency wave’s effect. 

 

 
(a) 

 
(b) 

Fig.4 

Variation of dimensionless phase velocity with respect to dimensionless wave number for different values of material gradient 

for (a) electrically open case (b) electrically short case. 

7    CONCLUSIONS 

An analytical approach is used to to investigate the propagation of Love-type mechanical surface waves in FGPM 

layer deposited over an elastic substrate with imperect interface. The influence of imperfectness parameters has been 

shown significantly. Outcomes of the following study are as follows: 

 Mechanical imperfect parameter influences more to increase the phase velocity in electrically open case 

comparison to electrically imperfect parameters in the same case respectively.  

 Wave propagation analysis following some numerical examples suggests that the phase velocity increases 

with increasing value of imperfectness parameters and this result clearly indicate that imperfectness 

parameters significantly affect the dispersion relation. 

 Moreover, interface with mechanical imperfect parameters affects the phase velocity curves more in 

comparison to electrically short case. 

 The expressions for dispersion relations are obtained and matched with existing results. 

 Obtained results of the present study may be useful in many application of piezoelectric/FGPM composites 

or structures and SAW devices. 

The present research paper confirms that material gradient coefficients have same x-coordinate variation which 

comprehend the effect of material gradient coefficients on the Love-type mechanical surface wave properties and 

suggests knowledge for better and more enhancing designing of SAW devices.  
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