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 ABSTRACT 

 This article presents Navier type closed-form solutions for static 

bending, elastic buckling and free vibration analysis of symmetric 

functionally graded (FG) sandwich beams using a hyperbolic shear 

deformation theory. The beam has FG skins and isotropic core. 

Material properties of FG skins are varied through the thickness 

according to the power law distribution. The present theory accounts 

for a hyperbolic distribution of axial displacement whereas transverse 

displacement is constant through the thickness i.e effects of thickness 

stretching are neglected. The present theory gives hyperbolic cosine 

distribution of transverse shear stress through the thickness of the beam 

and satisfies zero traction boundary conditions on the top and bottom 

surfaces of the beam. The equations of the motion are obtained by 

using the Hamilton’s principle. Closed-form solutions for static, 

buckling and vibration analysis of simply supported FG sandwich 

beams are obtained using Navier’s solution technique. The non-

dimensional numerical results are obtained for various power law index 

and skin-core-skin thickness ratios. The present results are compared 

with previously published results and found in excellent agreement. 

                                       © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, wide applications of sandwich structures in aerospace, automotive, marine, mechanical and civil 

engineering led to the development of sandwich structures due to their high strength-to-weight and stiffness-to-

weight ratios. Laminated sandwich structures, composed of a soft core bonded to two thin and stiff skins, exhibit 

delamination problems at the layer interfaces. To overcome this problem, functionally graded (FG) sandwich 

structures are proposed due to the gradual variation of material properties through-the-thickness. Therefore, 

understanding bending, buckling and free vibration behaviour of FG sandwich structures becomes an important task 

for the researchers. A functionally graded material is formed by varying the microstructure from one material to 

______ 
*
Corresponding author. Tel.: +91 9763567881.  

E-mail address: attu_sayyad@yahoo.co.in (A.S. Sayyad). 

I 

https://dx.doi.org/10.22034/jsm.2019.664227


                                                                                                                                   A.S. Sayyad and P.V. Avhad                        167 

 

© 2019 IAU, Arak Branch 

another material with a specific gradient. Applications of FG materials in various fields are presented by Koizumi 

[1, 2], Muller et al. [3], Pompe et al. [4] and Schulz et al. [5]. In general, behavior of FG sandwich beams can be 

predicted using either elasticity theory or displacement based beam theories. Few researchers put their efforts 

towards development of elasticity solutions for the analysis of single layer FG beams such as Sankar [6], Zhong and 

Yu [7], Daouadji et al. [8], Ding et al. [9], Huang et al. [10], Ying et al. [11], Chu et al. [12] and Xu et al. [13]. 

Elasticity theory is mathematically difficult and computationally more cumbersome. Therefore, displacement based 

beam theories are widely used by various researchers to approximate the analysis of FG beam. These displacement-

based beam theories are classified as classical beam theory (CBT) [14], Timoshenko beam theory (TBT) [15] and 

higher-order beam theories. Since the effect of transverse shear deformation is more pronounced in thick FG 

sandwich beams, CBT and TBT are not suitable for the analysis of thick beams. This led the use of higher-order 

beam theories for the accurate structural analysis of FG sandwich beams. Among several higher order beam 

theories, parabolic beam theory (PBT) of Reddy [16] is widely used by many researchers for the modeling and 

analysis of beams, plates and shells. Recently, Sayyad and Ghugal [17-19] presented a comprehensive literature 

survey on various displacement based beam theories available in the literature for the analysis of advanced 

composite beams/plates. Nguyen et al. [20, 21] and Nguyen and Nguyen [22] proposed a new hyperbolic shear 

deformation theory for the bending, buckling and free vibration analysis of FG sandwich beams. Thai and Vo [23] 

carried out bending and free vibration analysis of functionally graded beams using various higher order shear 

deformation theories. Osofero et al. [24, 25] developed 2D shear deformation theories for the bending behaviour of 

simply supported functionally graded sandwich beams. Bennai et al. [26] developed a new refined hyperbolic shear 

and normal deformation beam theory to study the free vibration and buckling response of functionally graded 

sandwich beams under various boundary conditions. Bouakkaz et al. [27] also developed a hyperbolic model for the 

free vibration analysis of functionally graded sandwich beams. Giunta et al. [28, 29] also developed refined theories 

for the analysis of mono-layer and sandwich functionally graded beams using unified formulation. Vo et al. [30-32] 

also developed a quasi-3D shear deformation theory for the static, buckling and vibration analysis of FG sandwich 

beams. Finite element model and Navier solutions are developed to determine the displacement, stresses, critical 

buckling loads and natural frequencies of FG sandwich beams. This theory includes both shear deformation and 

thickness stretching effects. Yarasca et al. [33] developed a finite element model based on hybrid shear and normal 

deformation theory for the static analysis of functionally graded single layer and sandwich beams. Amirani et al. 

[34] presented the natural frequencies of a sandwich beam with FG core using the element free Galerkin method. 

The penalty method is used for imposition of the essential boundary condition and material discontinuity condition. 

Tossapanon and Wattanasakulpong [35] applied Chebyshev collocation method for the buckling and vibration 

analysis of functionally graded sandwich beams resting on two-parameter elastic foundation using Timoshenko 

beam theory. Karamanli [36] analyzed the elastostatic behavior of the two directional simply supported FG 

sandwich beams based on a quasi-3D theory by using the symmetric smoothed particle hydrodynamics method. 

Mashat et al. [37] carried out free vibration of functionally graded layered beams by various theories and finite 

elements based on Carrera’s unified formulation. Trinh et al. [38] obtained fundamental frequencies of functionally 

graded sandwich beams of various boundary conditions using the state space method based on the classical beam 

theory, first order and higher-order shear deformation theories. Wattanasakulpong et al. [39] studied vibration 

analysis of layered functionally graded beams using an improved third order shear deformation theory with 

experimental validation. Yang et al. [40] examined the influence of material composition, material gradient, the 

layer thickness proportion, thickness to length ratio and boundary conditions on the free vibration response of FG 

sandwich beams using mesh free boundary-domain integral equation method. Sayyad and Ghugal [41] have 

developed a unified shear deformation theory for the bending analysis of functionally graded beams and plates. 

Recently, Sayyad and Ghugal [42] have obtained analyrical solution for the bending, buckling and vibration analysis 

of functionally graded beams of various boundary conditions. Alipour and Shariyat [43-45] studied transient and 

forced dynamic responses of annular sandwich plates with functionally graded face sheets or cores by an analytical 

zigzag-elasticity approach. It was the first time that a global–local theory is combined with a layerwise analytical 

solution for analysis of the annular functionally graded sandwich plates. Shariyat et al. [46] and, Shariyat and 

Hosseini [47] proposed odd-even hyperbolic plate theory. This theory includes both odd and even functions and 

consequently, is especially adequate for description of the general asymmetric displacement fields. The important 

contributions of the present research are summarized as follows: 1) Despite of significant research available on 

analysis of single layer FG beams, studies on bending, buckling and free vibration analyses of functionally graded 

sandwich beams with FG skins and homogeneous core layer are limited in the literature, and it will be the main 

focus of this article. 2) Soldatos [48] have suggested the use of hyperbolic shearing strain function in the modelling 

and analysis of thick beams and plates. It is recommended by the Soldatos that the hyperbolic shearing strain 

function yields more accurate predictions of displacements, stresses, frequencies and the buckling loads of thick 



168                                  On Static Bending, Elastic Buckling and Free Vibration ….    
 

© 2019 IAU, Arak Branch 

beams and plates. Hyperbolic shear deformation theory of Soldatos described the displacement field through odd 

functions to satisfy the zero shear traction condition on the top and bottom surfaces of the beam/plate and thus it is 

mainly suitable for symmetric lamination schemes or material properties distributions. Since then many researchers 

have used this function for the analysis isotropic, laminated and sandwich beams and plates. To the best of the 

authors’ knowledge, in the whole variety of literature no one has applied this function to check global response of 

FG sandwich beams. 3) Natural frequencies for higher modes of vibration are the first time presented in this paper. 

4) Accuracy in the numerical results is obtained without considering the effect of normal deformation i.e. thickness 

stretching which increases one additional unknown in the mathematical formulation if considered.      

In this study, Navier type closed-form solutions are obtained for static, buckling and free vibration analysis of 

FG sandwich beams. The beam has functionally graded skins and isotropic core. Material properties of FG skins are 

varied through the thickness according to the power law distribution. The present theory accounts for a hyperbolic 

distribution of axial displacement whereas transverse displacement is constant through the thickness. The present 

theory gives hyperbolic cosine distribution of transverse shear stress through the thickness of the beam and satisfies 

zero traction boundary conditions on the top and bottom surfaces of the beam. The equations of the motion are 

obtained by using the Hamilton’s principle. The non-dimensional numerical results are obtained for various power 

law index and skin-core-skin thickness ratio. This article is organized in six sections. The need of FG sandwich 

beams and research on its modeling and analysis is highlighted in section 1 i.e. Introduction. Geometry and 

coordinate system of FG sandwich beam, the power-law for layer wise material gradation and assumptions made in 

the theoretical formulation are discussed in section 2. In section 3, mathematical modeling of FG sandwich beam 

using hyperbolic shear deformation theory is presented. Section 4 covers the analytical solution for simply-

supported FG sandwich beams using Navier’s solution technique. Numerical results and discussion are presented in 

section 5. Concluding remarks on the present study are presented in section 6.  

2    FUNCTIONALLY GRADED SANDWICH BEAMS 

Consider a sandwich beam with functionally graded skins and isotropic core. The beam has length L, width b and 

thickness h; made of FG-metal-FG material as shown in Fig. 1. The beam occupies the region 0≤  x ≤  L; -b/2≤  y 

≤  b/2; -h/2≤  z ≤  h/2 in Cartesian coordinate systems. The x -axis is coincident with the beam neutral axis and the 

origin is at the left support. The z-axis is assumed downward positive. It is assumed that the beam is deformed in the 

x-z plane only. 

 

 

 

 

 

 

 

Fig.1 

FG sandwich beam under bending in the x-z plane. 

 

 

The power law for the material gradation introduced by Wakashima et al. [49] is the simplest rule which is 

widely used by many researchers for material property gradation. The law follows linear rule of mixture and 

properties are varying across the dimensions of FG beam. 
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where the volume fraction function (Vc) for sandwich beam with FG skins and isotropic core is as follows 
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where E represents the modulus of elasticity and  represents the mass density; subscripts m and c represent the 

metallic and ceramic constituents, respectively; and p is the power law index. The variation of the modulus of 

elasticity E(z) through the thickness z/h of the beam for various values of the power law index is shown in Fig. 2. 

 

 
(a) 1-0-1 

 
(b) 1-1-1 

  

 
(c) 2-1-2 

 
(d) 1-2-1 

Fig.2 
Through the thickness variation of modulus of elasticity of FG sandwich beams for various skin-core-skin thickness ratios. 

2.1 Assumptions in theoretical formulation  

The theoretical formulation of the FG sandwich beams is based on the following assumptions. 

1) The axial displacement u consists of the extension component, bending component and shear component.  

2) The present theory accounts for a hyperbolic distribution of axial displacement whereas transverse 

displacement is constant through the thickness. 

3) Effects of transverse normal deformations ( 0z  ) are neglected. 

4) Since there is no relative motion in the y-direction at any points in the cross section of the beam; one 

dimensional Hooke’s law is used to obtain stresses. 

5) The theory gives hyperbolic cosine distribution of transverse shear stress through the thickness of the beam 

and satisfies zero traction boundary conditions on the top and bottom surfaces of the beam. 

3    A HYPERBOLIC SHEAR DEFORMATION THEORY 

Based on the aforementioned assumptions, the displacement field of a hyperbolic shear deformation beam theory of 

Soldatos [41] is given by: 
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where u0 and w0 are the x and z-directional displacements of a point on the neutral axis of the beam. Shape function f 

is a function of z and assumed according to transverse shearing stress distribution across the thickness of the beam 
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i.e. zero at the top and bottom surfaces of the beam. For the classical beam theory, f = 0; and for the Timoshenko 

beam theory, f = z. The only nonzero normal and shear strains at any point of the beam are, 
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where 0 0, , ,b b

x x x zxk k  are related with the unknown displacements variables as follows: 
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3.1 Constitutive relations  

The FG sandwich beam is made of aluminum (Al) and alumina (Al2O3) materials. The properties of material are 

varying continuously in the thickness direction according to power law distribution given by Eq. (1). The stress-

strain relationship at any point of the k
th

 layer of the beam is given by one dimensional Hooke’s law as follows: 
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3.2 Equations of motion  

In order to derive the equations of motion of a hyperbolic shear deformation theory for FG sandwich beam, 

Hamilton’s principle is used.  
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where, , andU V K   denotes the variations in total strain energy, potential energy and kinetic energy respectively; 

t1 and t2 are the initial and final time respectively. 

The variation of the strain energy  U  can be stated as: 
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where xN represents the resultant axial force, 
cM represents the resultant bending moment analogous to classical 

beam theory, 
sM represents the resultant higher order moment associated with shear deformation and Q  represents 

the resultant shear force. 
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where, 
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The variation of the potential energy  V due to transverse load q and axial load N0 can be written as: 
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The variation of kinetic energy  K  can be written in following form, 
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where,  z is the mass density of each layer. IA, IB, IC, ID, IE, IF are the inertia coefficients defined by: 
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The equations of motion can be obtained by integrating Eq. (7) by parts; collecting the coefficients of 0 0, ,u w    

and equating with zero. The following equations of motion are obtained. 
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By substituting the stress resultants ( , , ,c s

xN M M Q ) from Eq. (9) into Eq. (14), the following equations of 

motion can be obtained in terms of unknown displacement variables ( 0 0, ,u w  ), 
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4    NAVIER’S SOLUTIONS 

The Navier’s solution technique is used to determine the closed-form solutions for static bending, elastic buckling 

and free vibration analysis of a simply-supported functionally graded sandwich beam. The boundary conditions of 

the simply-supported beam are as follows: 

 

0 0c s

xw N M M     at x = 0 and x = L   For buckling analysis 0xN   (16) 

 

It is to be noted that the edges are movable simply supported ones for bending, buckling and vibration analyses. 

The solution is assumed to be of the form: 
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where, 1i    the imaginary unit,  is the natural frequency, /m L   and  , ,m m mu w   are the unknown 

coefficients to be determined. The uniform transverse load (q) acting on the top surface of the beam is assumed to be 

of the form 

 

  0

1,3,5

4
sin

m

q
q x x

m








   (18) 

 

where q0 is the maximum intensity of load at the centre of the length. The beam is subjected to an axial compressive 

force N0. By substituting Eqs. (17) and (18) into Eq. (15), the analytical solution can be obtained from the following 

equations: 
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The solution of the Eq. (19) allow to calculate the displacements and stresses, the solution of Eq. (20) allow to 

calculate critical buckling loads and the solution of Eq. (21) allow to calculate natural frequencies of FG sandwich 

beams. 
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5    NUMERICAL RESULTS AND DISCUSSION 

In this section, accuracy of a hyperbolic shear deformation theory is demonstrated by applying to bending, buckling 

and vibration analysis of simply supported functionally graded sandwich beams. The skins of the sandwich beams 

are made of FG (Al/Al2O3) material while the core is made of homogeneous isotropic (Al) material. Length of the 

beam is taken as 1m which is constant and thickness of the beam is varied according to aspect ratio (L/h). The 

material properties of alumina (Al2O3) are 
3380 , 3960 / , 0.3c cE GPa kg m    ; and the material properties 

of aluminum (Al) are 
370 , 2702 / , 0.3m mE GPa kg m    .  

The numerical results are presented in the following non-dimensional form  

Axial displacement (u) at x = 0 and z = -h/2: 
3

0

100 mu E h
u

q L
  

Transverse displacement (w) at x = L/2 and z = 0: 
3

0

100 mw E h
w

q L
  

Axial stress ( x ) at x = L/2 and z = -h/2: 
0

x
x

h

q L


   

Transverse shear stress ( xz ) at x = 0 and z = 0: 
0

xz
xz

h

q L


   

Critical buckling load: 

2

0

3

12
cr

m

N a
N

E h
  

Natural frequency: 
2

m

m

L

h E


   

5.1 Static bending analysis  

In this problem, static bending analysis of three types of symmetric (1-1-1, 1-2-1, 2-1-2) sandwich beams is carried 

out. The non-dimensional vertical displacements for various power law indexes are given in Table 1. The present 

results are compared with those obtained by using 1D beam theories ( 0z  ) such as CBT [14], TBT [15], PBT 

[16] and 2D beam theory ( 0z  ) of Vo et al. [29]. The examination of Table 1., reveals that the transverse 

displacements predicted by using the present theory are in excellent agreement with 1D and 2D higher order beam 

theories. As expected, due to ignoring the effect of transverse shear deformation, the CBT underestimates transverse 

displacement. The smallest and largest displacement correspond to the (1-2-1) and (2-1-2) sandwich beams since 

they have the highest and lowest portion of the ceramic phase. It can be seen that the increase in power law index 

increases transverse displacement. This is due to the fact that an increase of the power law index makes FG beams 

more flexible. Through the thickness distribution of axial displacement is plotted in Fig. 3 which shows that due to 

symmetric layup axial displacement of neutral axis is zero. Table 2., shows comparison of non-dimensional axial 

stress with those of CBT [14], TBT [15], PBT [16] and Vo et al. [29]. It is observed that as the power law index 

increases, axial stress decreases. Through the thickness distribution of axial stress is plotted in Fig. 4. The same 

maximum axial stress at the top and bottom surfaces of FG sandwich beam is observed due to symmetry in material 

gradation. Since core is made of isotropic/homogenous material (Metal: Aluminum) and elastic properties are 

constant through the thickness, all distributions for all volume fraction indices are observed linear. Whereas, skins 

are made of functionally graded materials i.e. nonhomogeneous which results in hyperbolic distributions of stresses. 

Also, in case of functionally graded skins, modulus of elasticity is varied across the thickness which results in 

reduction and growth trends within each individual skin for the higher values of the volume fraction indices.   The 

axial stress is increases with increase in the power law index. The maximum axial stress is observed for 

configuration 2-1-2 whereas the minimum is observed in configuration 1-2-1. The non-dimensional values of 

transverse shear stress of simply-supported FG sandwich beams for various power law indexes are shown in Table 

3., and plotted in Fig. 5. The present results of shear stresses are in excellent agreement with other theories. It can be 

seen that the maximum shear stress for symmetric FG sandwich beams occurs at the neutral axis of the beam. 
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Table 1 

Non-dimensional vertical displacement of simply-supported FG sandwich beams. 

p Theory  L/h=5    L/h=20  

  1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

0 1D [14] 2.8783 2.8783 -  2.8783 2.8783 - 

 1D [15] 3.1657 3.1657 -  2.8963 2.8963 - 

 1D [16] 3.1654 3.1654 -  2.8963 2.8963 - 

 2D [29] 3.1397 3.1397 -  2.8947 2.8947 - 

 Present 3.1241 3.1241 3.1241  2.8585 2.8585 2.8585 

1 1D [14] 5.9181 5.0798 -  5.9181 5.0798 - 

 1D [15] 6.3128 5.4408 -  5.9428 5.1024 - 

 1D [16] 6.2693 5.4122 -  5.9401 5.1006 - 

 2D [29] 6.2098 5.3612 -  5.9364 5.0975 - 

 Present 6.3011 5.0341 6.8424  5.9561 5.3415 6.4978 

2 1D [14] 8.0074 6.4056 -  8.0074 6.4056 - 

 1D [15] 8.4582 6.8003 -  8.0356 6.4302 - 

 1D [16] 8.3893 6.7579 -  8.0313 6.4276 - 

 2D [29] 8.3893 6.6913 -  8.0262 6.4235 - 

 Present 8.2734 6.3359 9.5104  7.9201 6.6697 9.1626 

5 1D [14] 10.8117 8.1409 -  10.8117 8.1409 - 

 1D [15] 11.3372 8.5762 -  10.8445 8.1681 - 

 1D [16] 11.2274 8.5137 -  10.8376 8.1642 - 

 2D [29] 11.1175 8.4276 -  10.8309 8.1589 - 

 Present 11.0708 8.0576 13.0323  10.6766 8.4045 12.5898 

10 1D [14] 12.1322 9.0232 -  12.1322 9.0232 - 

 1D [15] 12.1322 9.4800 -  12.1677 9.0518 - 

 1D [16] 12.5659 9.4050 -  12.1593 9.0471 - 

 2D [29] 12.4453 9.3099 -  12.1519 9.0413 - 

 Present 12.3910 8.9290 14.4346  11.9795 9.2824 13.9531 

 

 

 

Table 2 

Non-dimensional axial stress of simply-supported FG sandwich beams. 

p Theory  L/h=5    L/h=20  

  1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

0 1D [15] 3.7500 3.7500 -  15.0000 15.0000 - 

 1D [16] 3.8020 3.8020 -  15.0129 15.0129 - 

 2D [29] 3.8005 3.8005 -  15.0125 15.0125 - 

 Present 3.8025 3.8025 3.8025  15.0136 15.0136 15.0136 

1 1D [15] 1.4203 1.2192 -  5.6814 4.8766 - 

 1D [16] 1.4349 1.2339 -  5.6850 4.8801 - 

 2D [29] 1.4330 1.2315 -  5.6845 4.8797 - 

 Present 1.4614 1.2331 1.5900  5.7370 4.8802 6.3020 

2 1D [15] 1.9218 1.5373 -  7.6871 6.1493 - 

 1D [16] 1.9382 1.5527 -  7.6912 6.1532 - 

 2D [29] 1.9352 1.5505 -  7.6904 6.1526 - 

 Present 1.9369 1.5530 2.2384  7.6154 6.1534 8.8940 

5 1D [15] 2.5948 1.9538 -  10.3792 7.8152 - 

 1D [16] 2.6123 1.9705 -  10.3835 7.8194 - 

 2D [29] 2.6079 1.9672 -  10.3824 7.8185 - 

 Present 2.6101 1.9707 3.0733  10.2712 7.8196 12.2223 

10 1D [15] 2.9117 2.1656 -  11.6469 8.6623 - 

 1D [16] 2.9293 2.1826 -  11.6513 8.6665 - 

 2D [29] 2.9245 2.1788 -  11.6500 8.6655 - 

 Present 2.9268 2.1829 3.4047  11.5237 8.6667 13.5459 
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Table 3 

Non-dimensional shear stress of simply-supported FG sandwich beams. 

P Theory  L/h=5    L/h=20  

  1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

0 1D [15] 0.5976 0.5976 -  0.5976 0.5976 - 

 1D [16] 0.7332 0.7332 -  0.7451 0.7451 - 

 2D [29] 0.7233 0.7233 -  0.7432 0.7432 - 

 Present 0.7285 0.7285 0.7285  0.7355 0.7355 0.7355 

1 1D [15] 0.8208 0.7507 -  0.8208 0.7507 - 

 1D [16] 0.8586 0.8123 -  0.8681 0.8215 - 

 2D [29] 0.8444 0.7993 -  0.8657 0.8193 - 

 Present 0.8767 0.8056 0.9050  0.8726 0.8106 0.9107 

2 1D [15] 0.9375 0.8208 -  0.9375 0.8208 - 

 1D [16] 0.9249 0.8493 -  0.9344 0.8581 - 

 2D [29] 0.9084 0.8349 -  0.9316 0.8556 - 

 Present 0.9170 0.8424 0.9103  0.9222 0.8486 0.9149 

5 1D [15] 1.0929 0.9053 -  1.0929 0.9053 - 

 1D [16] 1.0125 0.8925 -  1.0227 0.9014 - 

 2D [29] 0.9931 0.8763 -  1.0194 0.8986 - 

 Present 1.0048 0.8851 1.1766  1.0101 0.8897 1.1835 

10 1D [15] 1.1819 0.9497 -  1.1819 0.9497 - 

 1D [16] 1.0665 0.9151 -  1.0773 0.9243 - 

 2D [29] 1.0458 0.8980 -  1.0736 0.9214 - 

 Present 1.0586 0.9083 1.2982  1.0642 0.9128 1.3055 

 

 

 

 

  

 

 

 

 

 

Fig.3 
Through the thickness distribution of non-dimensional 
axial displacement (u ) in FG sandwich beams subjected 

to uniform load at L/h = 5. 

 

  

  

 

 

 

 

Fig.4 
Through the thickness distribution of non-dimensional 

axial stress in FG sandwich beams subjected to uniform 

load at L/h = 5. 
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Fig.5 
Through the thickness distribution of non-dimensional 

shear stress in FG sandwich beams subjected to uniform 

load at L/h =5. 

5.2 Elastic buckling analysis  

Tables 4., shows the comparison of non-dimensional critical buckling loads of FG sandwich beams for different 

values of the power law index and skin–core–skin thickness ratio. The critical buckling loads are obtained for L/h = 

5 and 20. The present results are compared with those obtained from other higher order 1D and 2D beam theories 

available in the literature. It can be observed from Table 4., that the present results agree very well with the existing 

1D beam theories [20, 31] and 2D beam theories [19, 30]. It is worthy of note that the increase in thickness of FG 

skin results in a decrease in the critical buckling loads. The maximum critical buckling load is observed for 

configuration 1-2-1 where thickness of skin is 0.25h whereas the minimum is observed for configuration 2-1-2 

where thickness of skin is 0.4h. It is also important to note that the critical buckling load decreases with the increase 

in the power law index. This is in fact due to an increase in the power law index results in a decrease in the modulus 

of elasticity. The beam therefore becomes more flexible and buckles at a much lower load. As expected, when p = 0 

i.e. for fully ceramic beam, critical buckling loads are the same irrespective of the beam configuration. Fig. 6 shows 

the effect of power law index on the critical buckling loads and natural frequencies for varying L/h values. It can be 

seen that increase in L/h results in an increase in the critical buckling loads. 
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Fig.6 
Variation of natural frequencies and critical buckling loads with respect to power law index for FG sandwich beams. 

 

 

Table 4 

Nondimensional critical buckling load  crN  of simply-supported FG sandwich beams. 

p Theory  L/h=5    L/h=20  

  1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

0 2D [19] 49.5970 49.5970 49.5970  53.3175 53.3175 53.3175 

 1D [20] 48.5964 48.5964 48.5964  53.2364 53.2364 53.2364 

 1D [31]  48.5959 48.5959 48.5959  53.2364 53.2364 53.2364 

 2D [30] 49.5906 49.5906 49.5906  53.3145 53.3145 53.3145 

 Present 48.5960 48.5960 48.5960  53.2367 53.2367 53.2367 

1 2D [19] 25.1060 29.0723 22.7061  26.0001 30.2785 23.4584 

 1D [20] 24.5602 28.4440 22.2121  25.9588 30.2706 23.4212 

 1D [31]  24.5596 28.4447 22.2108  25.9588 30.2307 23.4212 

 2D [30] 25.1075 29.0755 22.7065  25.9989 30.2374 23.4572 

 Present 24.5116 28.4451 22.2112  25.9517 30.2550 23.4211 

2 2D [19] 18.7750 23.3002 16.2761  19.2309 24.0284 16.6317 

 1D [20] 18.3596 22.7859 15.9167  19.2000 23.9899 16.6051 

 1D [31]  18.3587 22.7863 15.9152  19.3116 23.9900 16.6050 

 2D [30] 18.7772 23.3042 16.2761  19.2299 24.0276 16.6307 

 Present 18.3733 22.7870 15.9860  19.2160 23.9900 16.6100 

5 2D [19] 14.0358 18.5058 11.9320  14.2515 18.9180 12.1078 

 1D [20] 13.7226 18.0915 11.6697  14.2285 18.8874 12.0886 

 1D [31]  13.7212 18.0914 11.6676  14.2284 18.8874 12.0883 

 2D [30] 14.0353 18.5092 11.9301  14.2505 18.9172 12.1086 

 Present 13.7340 18.0921 11.6671  14.2421 18.8880 12.088 

10 2D [19] 12.5402 16.7550 10.7715  12.7023 17.0723 10.9246 

 1D [20] 12.2621 16.3789 105370  12.6820 17.0445 10.9075 

 1D [31]  12.2605 16.3783 10.5348  12.6819 17.0443 10.9075 

 2D [30] 12.5393 16.7574 10.7689  12.7014 17.0712 10.9239 

 Present 12.2710 16.3787 10.5345  12.6940 17.0455 10.9075 

5.3 Free vibration analysis  

Table 5., presents the comparison of the fundamental frequencies of simply-supported FG sandwich beams 

calculated for various values of the power law index and skin-core-skin thickness ratios. The present results are 

compared with the 1D [20, 31] and 2D [19, 30] beam theories. It is seen that the solutions obtained from the 

proposed theory are in excellent agreement with those obtained from other 1D and 2D beam theories. It can be seen 

from the table that the fundamental frequencies decrease with the increase of the power law index. The lowest 

values of the fundamental frequency are observed for configuration 2-1-2 whereas the highest values of frequency 

are observed for configuration 1-2-1. It is due to the fact that these beams correspond to the lowest and highest 

volume fractions of the ceramic phase. Furthermore, it can be seen that fundamental frequencies are decrease with 

increase in power law index. As expected, it is observed that when p = 0, fundamental frequencies are same for all 
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configurations. Table 6 shows natural frequencies of simply-supported FG sandwich beams calculated for first two 

modes at L/h = (5, 20) and p = (0, 1, 2, 5, 10). These frequencies are presented for the first time in literature. 
 

Table 5 

Non-dimensional fundamental frequencies of simply-supported FG sandwich beams. 

p Theory  L/h=5    L/h=20  

  1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

0 2D [19] 5.1620 5.1620 5.1620  5.4611 5.4611 5.4611 

 1D [20] 5.1528 5.1528 5.1528  5.4603 5.4603 5.4603 

 1D [31]  5.1528 5.1528 5.1528  5.4603 5.4603 5.4603 

 2D [30] 5.1618 5.1618 5.1618  5.4610 5.4610 5.4610 

 Present 5.1527 5.1527 5.1527  5.4603 5.4603 5.4603 

1 2D [19] 3.8830 4.1185 3.7369  40334 4.2896 3.1753 

 1D [20] 3.8756 4.1105 3.7298  4.0328 4.2889 3.7147 

 1D [31]  3.8755 4.1105 3.7298  4.0328 4.2889 3.7147 

 2D [30] 3.8830 4.0005 3.7369  4.033 4.2895 3.7152 

 Present 3.8763 4.1105 3.7297  4.0336 4.2889 3.8767 

2 2D [19] 3.4258 3.7410 3.2428  3.5395 3.8775 3.1769 

 1D [20] 3.4190 3.7334 3.2366  3.5389 3.8769 3.1764 

 1D [31]  3.4190 3.7334 3.2365  3.5389 3.8769 3.1764 

 2D [30] 3.4257 3.7410 3.2427  3.5394 3.8774 3.1768 

 Present 3.4200 3.7334 3.2433  3.5400 3.8769 3.3470 

5 2D [19] 3.0239 3.3840 2.8491  3.1116 3.4927 2.8444 

 1D [20] 3.0182 3.3771 2.8441  3.1111 3.4921 2.8440 

 1D [31]  3.0181 3.3771 2.8439  3.1111 3.4921 2.8439 

 2D [30] 3.0238 3.3840 2.8489  3.1115 3.4926 2.8443 

 Present 3.0191 3.3770 2.8438  3.1122 3.4921 2.9310 

10 2D [19] 2.8862 3.2423 2.7402  2.99666 3.3412 2.8046 

 1D [20] 2.8810 3.2357 2.7357  2.9662 3.3406 2.8042 

 1D [31]  2.8808 3.2356 2.7355  2.9662 3.3406 2.8041 

 2D [30] 2.8860 3.2422 2.7400  2.9786 3.3411 2.8045 

 Present 2.8817 3.2356 2.7353  2.9672 3.3406 2.8188 

 

Table 6  

Non-dimensional frequencies of simply-supported FG sandwich beams. 

   Mode 1    Mode 2  

L/h p 1-1-1 1-2-1 2-1-2  1-1-1 1-2-1 2-1-2 

5 0 17.8818 17.8818 17.8818  34.2018 34.2018 34.2018 

 1 13.9691 14.7252 13.4749  27.6430 28.9711 26.7339 

 2 12.4725 13.5151 11.9127  25.2792 26.8563 24.0305 

 5 11.1175 12.3431 10.4775  22.4844 24.7642 21.2090 

 10 10.6411 11.8692 10.0825  21.5866 23.9034 20.4234 

20 0 21.5333 21.5333 21.5733  47.5933 47.5933 47.5933 

 1 16.0011 17.0036 15.3823  35.5215 37.7124 34.1611 

 2 14.0589 15.3861 13.3010  31.2654 34.1806 29.6114 

 5 12.3710 13.8717 11.6510  27.5512 30.8606 25.9491 

 10 11.9338 13.2743 11.2051  26.2840 29.5472 24.9574 

6    CONCLUSIONS 

Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of simply supported 

functionally graded sandwich beams using a hyperbolic shear deformation theory is proposed in this paper. The 
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proposed theory accounts for hyperbolic variation of axial displacement and transverse shear strains. Hamilton’s 

principle is employed to derive the equations of motion. Effects of power law index, span-to-depth ratio and skin-

core-skin thickness ratios on the displacements, stresses, critical buckling loads and natural frequencies are 

discussed. It is concluded that the displacements, stresses, critical buckling loads and natural frequencies obtained 

by using the present theory are accurate as compared to those obtained by using other 1D and 2D refined shear 

deformation theories. Increasing the power law index reduces the stiffness of FG sandwich beam and consequently 

leads to an increase in displacements and a reduction of frequencies and buckling loads. The proposed theory is 

accurate and efficient in solving the static bending, elastic buckling and free vibration problems of the FG sandwich 

beams. 
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