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 ABSTRACT 

 This paper studies the propagation of shear waves in a composite 

structure consisting of a piezoelectric layer perfectly bonded over a 

micro polar elastic half space. The general dispersion equations for the 

existence of shear waves are obtained analytically in the closed form. 

Some particular cases have been discussed and in one special case the 

relation obtained is in agreement with existing results of the classical –

Love wave equation. The micro polar and piezoelectric effects on the 

phase velocity are obtained for electrically open and mechanically free 

structure. To illustrate the utility of the problem numerical 

computations are carried out by considering PZT-4 as a piezoelectric 

and aluminum epoxy as micro polar elastic material. It is observed that 

the micro polarity present in the half space influence the phase velocity 

significantly in a particular region.  The micro polar effects on the 

phase velocity in the piezoelectric coupled structure can be used to 

design high performance acoustic wave devices.  

                                       © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords : Shear wave, Micro polar, Piezoelectric, Dispersion, Phase 
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1    INTRODUCTION 

 piezoelectric material has the property to generate an electric field when subjected to strain fields and it 

deforms under an electric field. Due to this electromechanical property, these materials are widely used in many 

devices like sensors, actuators and transducers. The combination of a piezoelectric member with another material is 

the study of interest nowadays, because effective control of electromechanical coupling can be achieved by optimal 

combination of control elements in piezoelectric structure. The use of transducer consisting of thin piezoelectric 

layer coupled with an elastic substrate is more prevalent in signal processing, low cost and low energy consumption 

technology. The micro-sensors constituted of piezoelectric composite based upon surface acoustic waves (SAW) 

have numerous applications in many fields due to their high sensitivity and enhanced electromechanical responses. 

The dynamic response of these sensors is evaluated by analyzing vibration and wave propagation pattern in the 

composite structure based on piezoelectric material. Numerous researchers have investigated the propagation 
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behavior of shear waves in piezoelectric layered structure in combination with elastic material based on classical 

models. Keeping in view the micro structure of modern sensing devices this paper tries to present the propagation 

behavior of shear waves by using micro polar theory instead of classical model.         

Many investigations related to surface waves in piezoelectric material are available in literature due to their vast 

applications in sensing devices. Bleustein [1] investigated that there exist a new type surface waves in piezoelectric 

materials with no counterpart in purely elastic homogeneous material and derived the expression for velocity of 

these waves. Mindlin [2] and Tiersten [3] worked on pure piezoelectric materials and studied about the thickness 

vibrations in these materials. Curtis and Redwood [4] developed the general conditions for the existence of various 

modes for both Love waves and Bleustein-Gulyaev waves in a piezoelectric composite material. Wang, Quek and 

Varadan [5] investigated the propagation of Love waves in piezoelectric layer bonded onto a semi-infinite solid 

medium. The publications Qian et al. [6] and Qian et al. [7] studied the surface wave propagation in piezoelectric 

material in combination with different type of media. Qian, Jin and Hirose [8] presented the study of transverse 

surface waves in piezoelectric material with multiple hard metal interlayers. Liu and Wang [9] discussed the 

propagation of Love waves in a functionally graded piezoelectric layered structure. Liu, Cao and Wang [10] used 

functionally graded piezoelectric layer to analyze the shear wave propagation in the composite structure. Son and 

Kang [11] studied surface wave propagation in a piezoelectric coupled plate perfectly bonded with elastic material. 

Saroj and Sahu  [12] investigated reflection of  plane waves at traction free surface of pre stressed functionally 

graded piezoelectric material half space. Arefi [13-14] discussed the wave propagation in a functionally graded 

piezoelectric nano-rod loaded under electric potential and electro-magnetic potential using non local elasticity 

model. Arefi and Zenkour recently used piezo materials in sandwich structure to study wave propagation under 

electric and magnetic effects in the articles [15-20].        

The micropolar theory is preferred for describing the behavior of complex media due to its ability to explain size 

effects on small length scale by taking into consideration the additional degree of freedoms. This theory successfully 

explains the behavior of materials such as cellular solids, platelet composites, aluminum epoxy, bones, masonry, 

granular materials, polymers, crystals and many other have complex microstructures. The classical theory of 

elasticity found to be inadequate to explain the behavior such materials as it considered the material to be continuum 

in the mathematical sense. In particular, the classical theory does not explain some discrepancies that take place in 

the case of elastic vibration of high frequency and small wavelength. Voigt [21] tried to remove these shortcomings 

by introducing additional couple vector to describe the interaction between two particles in a body, which introduced 

the concept of couple stresses in elasticity. Eringen and Suhubi [22] initiated the general theory linear and nonlinear 

micro polar elastic continua and Eringen’s [23] generalized the classical theory of elasticity by considering three 

extra rotational degrees of freedom in addition to classical displacement degrees of freedom. In the micro polar 

theory of elasticity, each element or grain of microstructure is not only translated but also rotated about its center of 

gravity.  

A comprehensive study is available on the phenomenon of wave propagation in micro polar solid due to their 

practical applicability in the various fields of science and technology such as, seismology, acoustics, aerospace and 

submarine structures. Eringen  [24] discussed about the existence of Rayleigh waves in homogeneous micro polar 

medium. Singh and Kumar [25] considered an interface between a micro polar elastic and viscoelastic solid and 

evaluated the amplitude ratio for reflection and refraction of plane waves. Tomar [26] derived the frequency 

equations for Rayleigh–Lamb wave propagation in a plate of micro polar elastic material with voids. Kumar and 

Deswal [27] have studied some problems on wave propagation in micro polar media with voids. Midya [28] 

discussed about the propagation of Love waves in homogeneous micro polar isotropic elastic media consisting of a 

layer of finite thickness lying over a semi-infinite medium. Kumar, Kaur and Rajvanshi [29] investigated the 

propagation of Lamb waves in micro polar-generalized thermoelastic solid with two temperatures bordered with 

layer of inviscid liquid. Kaur, Sharma and Singh [30] investigate the shear wave propagation in vertically 

heterogeneous viscoelastic layer over a micro polar elastic half-space. Singh, Kumar, Dharmender and Mahto [31] 

investigated the propagation behavior of transverse waves in the presence of parabolic and rectangular irregularity 

on the surface of a piezoelectric layer. Kumar and Kaur [32] studied the problem of reflection and transmission of 

Plane Waves at Micro polar Piezothermoelastic Solids. Recently Kundu et al. [33] studied the propagation of Love 

waves in heterogeneous micro polar layer over an elastic inhomogeneous media.  

In the present article, the composite structure consisting of a homogeneous micro polar elastic material and a 

piezoelectric layer is considered for surface wave propagation problem. The effects of various parameters of both 

the materials on the phase velocity of shear waves are studied. The dispersion relation of shear waves in closed form 

is obtained analytically. Numerical computation for phase velocity is carried out and the results are illustrated 

graphically. 
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2    FORMULATION AND SOLUTION OF THE PROBLEM  

Consider a layer of piezoelectric material of thickness h lying over a micro polar elastic half space as shown in 

Fig.1. The rectangular Cartesian coordinate system is considered such that the piezoelectric material is polarized 

along 
3x  direction perpendicular to 

1 2x x  plane. It is assumed that the shear wave propagates in the  
1x  direction 

and  
2x - axis is positive vertically downward. For Shear wave propagating in the 

1 2x x  plane, the displacement 

components will be independent of  
3x  coordinate.  

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

2.1 Dynamics of Piezoelectric layer 

Following Qian et al. [6], the governing constitutive relations and equations of motion for a piezoelectric medium are 

given as: 
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where ij  is the stress tensor, jD  represents electric displacement,  ijklc , kije  and jk are the elastic, piezoelectric 

and dielectric constants respectively.  is the density of the piezoelectric material and iu  is the mechanical 

displacement. klS  and kE represents the strain tensor and electric field intensity respectively which can be expressed 

in terms mechanical displacement and electric field potential   as: 
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As expressed by Bleustein [1], shear waves propagates in the 
1x  direction and causing displacement in 

3x  

direction, the components of mechanical displacement  1 2 3, ,u u u  and electrical field potential  in the upper 

piezoelectric layer can be written as: 

 

1 3 0u u  , 3 3 1 2( , , )u u x x t , 1 2( , , )x x t   (4) 

 

Using of Eqs.(1)-(4) , we obtained the following equations of motion and constitutive relation for  propagation of 

shear waves in piezoelectric layer  
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where, 
44c  ,  

15e  and  
11  are the elastic , piezoelectric and dielectric coefficients for the piezoelectric medium 

respectively. The solution of equations for the wave propagation in the 
1x  direction can be taken as: 
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where k is the wave number and kc   is the circular frequency. Substituting the values of 
3u  and   from Eq. (9) 

into Eqs. (5) and (6), we obtain  
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 is consider as  bulk shear wave velocity in the piezoelectric 

layer.
1 2 1, ,A A B  and

2B are arbitrary constants. The solution (10) of Eqs. (5) and (6) is obtained under the assumption 

that shc c .   

2.2 Dynamics of micro polar elastic half space  

The micro polar theory of elasticity is one of the simplest extension of classical theory of elasticity to analyses the 

behavior of materials with microstructure. It includes a local rotation of points in addition to translation assumed in 

classical elasticity.  Following Eringen  [23] the equation of motion and constitutive relation for a micro polar elastic 

space are given by  
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where 
1 2 3( , , )m m mu u u u



 is the components mechanical displacement in the micro polar elastic medium,  m  is the 

density of the micro polar elastic material, j is the micro inertia, 
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

 is the micro rotation vector, ,   are 

Lame’s constants. , , ,     are the additional micro polar material constants, ij and 
ijm  are the stress tensor and 

couple stress tensor respectively.  ijl is the permutation tensor and 
ij is the Kronecker delta. 

The components of displacement and micro rotation of shear wave propagation in 
1x -direction, causing 

displacement in 
3x -direction for micro polar elastic half space can be expressed as: 
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Let us introduced the potential functions   and   as: 
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with the aid of Eqs. (15)- (16) and Eqs. (11) -(12), we obtain wave equations of shear waves in micro polar elastic half 

space as follows: 
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The solutions of Eqs. (17)- (19) are taken as: 
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Putting the values ,   and 
3

mu  from (20) in the Eqs. (17)-(19), we get  
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Using Eq. (20) and the radiation conditions 
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2x  on the general solutions of the 

Eqs. (21) and (22), we obtain 
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The components of micro rotation obtained from Eq. (16) and Eqs. (23) -(24) are given by 
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The derivations in Eqs. (23)-(28) are valid under the assumption that 
2c c  and 

3c c . The wave corresponding to 

2c c represents refracted waves carrying energy away from the layer. These types of waves are not significant as they 

lose their energy very quickly. 

3    BOUNDARY CONDITIONS    

For the propagation of shear waves in piezoelectric layer with its surface bonded with a micro polar half space, 

following boundary conditions should be satisfied  

The upper most surface of piezoelectric layer is considered mechanically free and electrically open i.e. at 
2x h   

 

23 20, 0D    (29) 

 

Continuity condition at the common interface 
2 0x   between the layer and half space can be written as: 

 

3 3 23 23,mu u     (30) 

 

At the common interface 2 0x   between piezoelectric layer and micro polar elastic half space, piezoelectric 

layered medium does not exhibit micro polar property so couple stress must vanishes and consider the piezoelectric 

layer is electrically shorted at the common interface. 

 

21 220, 0, 0m m     (31) 

 

Using Eqs. (10), (13)-(14) and (23)-(29) in the boundary conditions (30)–(31), we obtain the following equations 

with seven unknown constants 1 2 1 2, , , , , ,A A B B D E F . 
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For the nontrivial solutions of system of Eqs. (32), determinant of the coefficient matrix must be equal to zero, so 

we obtained the following dispersive relation  
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4    PARTICULAR CASE  
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Eq. (34) is the dispersion equation for the propagation of shear waves in piezoelectric layer bonded over an elastic 

half space.  

In the absence of piezoelectric parameter
15e , 44 44c c  and let 
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Eq. (35) is the well-known classical equation given by Love [34] 
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5    NUMERICAL CALCULATIONS AND DISCUSSIONS   

To study the behavior of shear wave based upon the dispersion relation (33) numerical computations have been carried 

out and results are depicted graphically. Values of relevant physical constants used in numerical calculations are listed 

below, where aluminum epoxy is taken as a micro polar solid and PZT-4 is the piezoelectric material. 

For micro polar elastic half space following Gauthier [35] the material properties are given in Table1.  
 

Table1 

The physical data for micropolar elastic material. 

 
3( / )m kg m  2( / )N m  2( / )N m  2( / )N m   

Aluminium Epoxy 

32.19 10  37.59 10  31.89 10  100.0149 10  

 ( )N  ( )N  ( )N  2( )j m  

60.01 10  60.015 10  60.268 10  40.196 10  

 

The material constant for piezoelectric material (PZT-4) are taken from Liu, Wang and Wang  [36] as 

Table 2 

The physical data for piezoelectric material.  

  3( / )kg m  
2

15( / )e C m  2

44( / )c N m  11( / )F m   

PZT-4 37.5 10  12.7 102.56 10  96.46 10  

 

Fig.2 compares the non-dimensional phase velocity in piezo-micro polar elastic structure with piezo-elastic 

(without micro polar effects). The non-dimensional phase velocity is taken as  / shc c  and it has been plotted against 

non-dimensional wave number
1 / 2K kh  .  The piezoelectric layer is considering to be of fixed thickness h =5m. 

The first three modes of phase velocity have been compared and it is readily seen from the plot that the micro polarity 

has a significant effect on the dispersion curve on first and second mode. In the first mode as clear from the figure, the  

phase velocity (curve-1) is on higher side due the presence the micro polarity effect as compared to the phase velocity 

in Piezo-elastic system (curve-2)  for  
1 0.2K  and it slowly approach to the phase velocity in piezo-elastic structure 

with increasing wave number. Similarly, as visible from the plot, the micro polarity effect is quite pertinent on the 

second mode (curve-3 and curve- 4), while this effect is not observed on third mode in the given range. From the plot, 

we can say that the internal micro structure of the material as consider in micro polar theory is dominate in a certain 

range of wave number which is due extra couple stress and rotation of the particle at microscale level. The micro 

polarity effect favored the phase velocity is in good agreement with reference [30], where the micro polar half space is 

investigated for shear wave propagation bonded with a viscoelastic layer.   
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Fig.2 

Dispersive curves of different mode for piezoelectric layer 

and half space with micro polar and without micro polar 

effects. 

 

Fig. 3 and Fig. 4 represent the effects of non-dimensional micro polar parameter    /  on the non-dimensional 

phase velocity in piezo-micro polar elastic structure. In order to show the effect of micro polarity clearly, the 

fundamental and higher modes are drawn separately in Fig. 3 and Fig. 4 respectively. As obvious from Fig. 3, the first 

mode phase velocity increases even with small increment in non-dimensional parameter value.  As wave number rises, 
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the phase velocity approaches to the bulk shear wave velocity of piezoelectric material. The same effect is observed on 

second and third mode phase velocity as shown in Fig. 4. Fig.3 and Fig.4 validate that micropolarity plays important 

role in guiding the behavior of shear waves and this result is also accordance with the obtained results of the reference 

[30]   
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Fig.3 

Dimensionless phase velocity / shc c  of first mode against 

the dimensionless wave number / 2kh    in Piezo-Micro 

polar elastic system for selected values of non-dimensional 

micropolar parameter  /  . 
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Fig.4 

Dimensionless phase velocity / shc c  of second and third 

mode against the dimensionless wave number / 2kh    in 

Piezo-Micro polar elastic system for selected values of non-

dimensional micro polar parameter  /  . 

 

Fig. 5 present the piezoelectric parameter effects on the non-dimensional phase velocity in piezo-micro polar elastic 

and piezo-elastic structure. The difference in phase velocities due to different piezoelectric parameter values is quite 

visible for initial small wave number as shown in Fig. 5. For small wave number the first mode phase velocity is on 

higher side with increasing piezoelectric parameter values in both piezo-elastic as well as piezo-micro polar structure 

but opposite behavior is observed as wave number increases (curve-3 and curve-4) in case of piezo-micro polar 

structure and this effect die out with further increment in wave number. The phase velocity in piezo-micro polar 

structure is on higher side as compared to piezo-elastic structure up to a certain wave number. Similar effects of 

piezoelectric coefficient are noticed on second mode but this influence decreases successively on higher modes. Fig.6 

represents the effects of dielectric coefficient on phase velocity in piezo-elastic and piezo-micro polar elastic structure. 

As clear from plot, the phase velocity of first and second mode decreases with increase in the values of dielectric 

coefficient for initial small wave number and then increases with increase in wave number values. The change in 

dielectric coefficient values affects phase velocity in second modes in the same way as in case of first mode phase 

velocity. The effects of piezoelectric and dielectric parameters on phase velocity are also explored in the reference [31], 

which are quite similar for higher wave number values.  
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Fig.5 

Phase velocity / shc c  of first mode against  / 2kh   in 

Piezo-Micro polar elastic and Piezo-Elastic system for 

different values of piezoelectric parameter 15e . 
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Fig.6 

Phase velocity / shc c  of first and second mode against 

/ 2kh    in Piezo-Micro polar and Piezo-Elastic system for 

different values of dielectric coefficient 
11 . 

6    CONCLUSIONS 

This paper presents the study of SH wave propagation in piezoelectric layer lying over a micro polar elastic solid. A 

general dispersion equation of the wave is derived and the relation obtained as a particular case is in agreement with the 

classical equation given by Love. Numerical computations are performed to evaluate the phase velocity as a function of 

wave number and it is observed that the micro polar and piezoelectric effects influence the phase velocity. From the 

graphical analysis, we conclude that 

 Shear waves exists in the composite structure consisting of a piezoelectric layer perfectly bonded over a micro 

polar elastic material and there is significant effect of micro polarity on the propagation of shear waves.  

 The presence of micro polarity in the piezo-elastic structure increases the phase velocity in certain range when 

calculated as a function of non-dimensional wave number. It is observed that the micro polarity effects 

dominated in a particular region and then vanishes with increasing wave number.  

 The phase velocity is appreciably depending upon the layer of piezoelectric material in the assumed model as 

significant variations in non-dimensional wave speed is observed for different values of piezoelectric and 

dielectric coefficient.  

The micro polar materials find its applications in modern engineering smart material structures. The results obtained 

in this study may be useful for developing the new class of sensors with higher sensitivity and improved response under 

certain boundary conditions and suitably selection of micro polar and piezoelectric parameters. 
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