
 

© 2019 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 11, No. 1 (2019) pp. 120-143 

DOI: 10.22034/JSM.2019.664224 

Effect of Thermal Environment on Vibration Analysis 
of Partially Cracked Thin Isotropic Plate Submerged 
in Fluid 

Shashank Soni
 1,*

, N.K. Jain
 1
 , P.V. Joshi

 2 

1
National Institute of Technology, Raipur, Chhattisgarh 492010, India 

2
Indian Institute of Information Technology, Nagpur, Maharashtra, 440006, India 

Received 3 November 2018; accepted 2 January 2019 

 ABSTRACT 

 Based on a non-classical plate theory, an analytical model is 

proposed for the first time to analyze free vibration problem of 

partially cracked thin isotropic submerged plate in the presence of 

thermal environment. The governing equation for the cracked plate is 

derived using the Kirchhoff‟s thin plate theory and the modified 

couple stress theory. The crack terms are formulated using simplified 

line spring model whereas the effect of thermal environment is 

introduced using thermal moments and in-plane forces. The influence 

of fluidic medium is incorporated in governing equation in form 

fluids forces associated with inertial effects of its surrounding fluids. 

Applying the Galerkin method, the derived governing equation of 

motion is reformulated into well-known Duffing equation. The 

governing equation for cracked isotropic plate has also been solved 

to get central deflection which shows an important phenomenon of 

shift in primary resonance due to crack, temperature rise and internal 

material length scale parameter. To demonstrate the accuracy of the 

present model, few comparison studies are carried out with the 

published literature. The variation in natural frequency of the cracked 

plate with uniform rise in temperature is studied considering various 

parameters such as crack length, fluid level and internal material 

length scale parameter. Furthermore, the variation of the natural 

frequency with plate thickness is also established. 

                                    © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 n recent decades thin plates or shells have been developed as important structural components in marine 

engineering applications which expose them to work under fluidic medium of varying temperature. Thus, the 

knowledge of dynamic characteristics of such thin structures under fluidic medium over a range of temperatures is 

essential for their designing purpose. It becomes more profound to understand the effect of temperature under fluidic 

medium when these structures contain various flaws in the form of cracks or holes. In literature a lot efforts have 
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been devoted on vibration analysis of plates in presence of thermal environment and fluidic medium individually. 

However, the study on vibration analysis of cracked plates in presence of both thermal environment and surrounding 

fluidic medium is insignificant. Concerning the effect of thermal environment on free vibration analysis of plates, it 

is well known that the presence of thermal stress decreases the stiffness of plate which results in decrease of natural 

frequency. Murphy et al. [1] studied the effect of uniform heating of the plate on its natural frequency. They 

considered fully clamped rectangular plates to perform a combined theoretical and experimental study. The results 

for free and forced vibration characteristics of initially stressed FGM plates in presence of thermal environment are 

given by Yang and Shen [2]. Using higher order shear deformation theory, they studied the effect of rise in 

temperature, initial stresses, volume fraction index and boundary conditions on vibration characteristics of plate. 

Jeyaraj et al. [3,4] presented the vibration characteristics and acoustic response of an isotropic plate using ANSYS 

and SYSNOISE [3] and also presented the both response for a composite plate using classical laminated plate theory 

[4]. Li et al. [5] used three dimensional theory of elasticity and studied the free vibration problems of functionally 

graded plates in presence of thermal environment. Kim [6] has formulated the governing equation for initially 

stressed FGM rectangular plates subjected to thermal environment using third order shear deformation theory. 

Natarajan et al. [7] studied the linear free flexural vibrations of a functionally graded plate containing a through 

crack using FEM and first-order shear deformation theory. Their obtained results showed that the natural frequency 

decreases with increase in temperature gradient and crack length. Viola et al. [8], applied finite element method for 

the vibration analysis of thick composite plate with crack and extended it to plates of arbitrary shapes. The static 

solutions for cracked plate under influence of thermal environment are mostly done by different numerical 

techniques in literature, but an approximate analytical solution is only possible by means of the Line Spring Model 

(LSM). This concept was first proposed by Rice and Levy[9], wherein the surface crack is represented as continuous 

line springs with stretching and bending compliances. Later on Delalae and Erdogan [10] introduced the transverse 

shear deformation in the line spring model to improve the effectiveness of model. Using the line spring model, Israr 

et al. [11] developed the first approximate analytical model for vibration analysis of thin isotropic plate with a part-

through surface crack located at its centre based on classical plate theory. Three different boundary conditions are 

considered for the study and the relationship between tensile and bending stress at far sides of the plate and at crack 

location is well expressed in their work. Ismail and Cartmell [12] extended the work of Israr et al. [11] and 

developed an analytical model for cracked plate considering various angular orientation of crack by establishing 

relations for moment and in-plane force due to orientation of the crack. It is concluded from their work that the 

natural frequencies of plate decreases with increase in length and angular orientation of crack. Joshi et al. [13] 

worked on vibration analysis of thin isotropic plate containing two perpendicular surface cracks located at its centre. 

Extending their work, they also studied the influence of thermal environment on vibration and buckling analysis of 

cracked isotropic [14] and orthotropic [15] plate. Recently, Soni et al. [16,17] performed an analytical study on non-

linear vibration problem of cracked isotropic [16] and magneto-electro-elastic (MEE) plate [17] submerged in fluid. 

They modified the previously developed models to accommodate the effect of fluidic medium. 

In recent literature on study of microstructures it has been found that it affects the vibration characteristics of 

plate structures [18]. Different theories which captures the size effect of the plate are developed in recent works [19–

24], among them, the modified couple stress theory (MCST) which was proposed by Yang et al. [24] is found to be 

efficient one. They (Ref. [24]) considered a single internal material length scale parameter to capture size effect of 

plate in their developed theory. Tsiatas [18] proposed a new analytical model for an isotropic micro plates using the 

modified couple stress theory. In their study they analyzed several plates having various shapes, dimensions and 

Poisson‟s ratios to see applicability of the developed model and also to analyze the difference between the proposed 

model (MCST) and the Kirchhoff‟s plate model. Yin et al. [22] studied the vibration characteristics of micro-plate 

based on the modified couple stress theory. They find the variation response of the micro-plate between two 

different theories (MCST and CPT) and concluded that the results obtained from Classical plate model for natural 

frequency are always lower when compared to modified couple stress theory.  Chen et al. [25] proposed an 

analytical model for a cross-ply laminated composite plate based a simplified couple stress theory. In their theory 

they used only one material scale constant to demonstrate the size effect. Gao and Zhang [26] employed Hamilton‟s 

principle to derive the governing equation of motion in which they used a material length scale parameter to capture  

the microstructure effect. They found the natural frequency predicted by the non-classical plate model (MCST) is 

higher than that of the classical plate model for very thin plates.  Most recently Gupta et al. [27] used the LSM and 

developed an analytical model for vibration problem of partially cracked isotropic and FGM micro plate. They used 

classical plate theory in conjunction with modified couple stress theory and concluded that results are higher for 

fundamental frequencies are always higher for modified couple stress theory. Further, they showed the effect of 

fibre orientation  on vibration characteristics of cracked orthotropic micro-plate [28]. The effect of fluid-structure 

interaction on vibration characteristics has received much attention due to their importance in various engineering 
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applications. It is well known that the presence of fluidic medium significantly decreases the natural frequencies of 

plate in comparison with those calculated in vacuum. This decrease in natural frequency is due to the existence of 

the fluid around the plate which causes increase in the kinetic energy of whole system without a corresponding 

increase in strain energy. Using the Rayleigh‟s method Lamb [29] determined the natural frequencies of a thin 

clamped circular plate in contact with water. The developed method was theoretical and based on calculation of 

increase in kinetic energy of fluid. Lindholm et al. [30] and Muthuveerappan et al. [31] reported the natural 

frequencies of free vibrating cantilever plate in air and water. The natural frequencies of plate as affected by plate 

aspect ratio and thickness ratio are obtained using experimental approach. Kwak [32] studied the effect of virtual 

added mass on natural frequencies and mode shapes of rectangular plate coupled with water. They employed 

Rayleigh-Ritz method to calculate added virtual mass incremental (AVMI) factor for rectangular plate. The dry and 

wet dynamic characteristics of cantilever plates partially or totally immerged in water are studied by Fu and Price 

[33]. They employed finite element method and singularity distribution function approach to analyze the vibration 

response of cantilever plate in air and water. Kwak and Kim [34] determined the added virtual mass incremental 

(AVMI) factor which shows the increase in inertia due to presence of fluid. They studied the effect of fluidic 

medium on axisymmetric vibration of floating circular plate on liquid. The natural frequencies of annular plate 

coupled with fluid are determined using added mass approach by Amabali [35]. Haddara and Cao [36] studied the 

dynamic behavior of rectangular plates vibrating under water. The effect of boundary conditions and depth of 

submergence has been investigated experimentally and analytically in their study. Soedel and Soedel [37] found the 

coupled equations of motion of plates carrying fluids. They developed a closed form solution for natural frequencies 

of fluid-plate coupled system. Kerboua et al. [38] developed a mathematical model for free vibrating plate in contact 

with water using the combination of the finite element method and Sander‟s shell theory. Recently, Hosseini 

Hashemi et al. [39] worked on free vibration analysis of horizontal rectangular plates partially and totally submerged 

in fluid. They developed a mathematical model for moderately thick rectangular plate based on the Mindlin plate 

theory for six different boundary conditions. Vibration analysis of plates considering the influence of both crack and 

fluidic medium are found in few investigations. Liu et al. [40] employed a finite element method (FEM) for hydro 

elastic natural vibration of perforated plates. They investigated the influence of crack on the vibration analysis of a 

circular plate submerged in fluid. Recently, Si et al. [41,42] proposed a computational method for dynamic analysis 

of free vibrating cracked circular plate in contact with water on one side. The influences of water and crack on 

different modes of vibration are investigated using Rayleigh–Ritz method and finite element method.  

The literature lacks in the results for free vibration analysis of cracked plates considering the effect of thermal 

environment and fluidic medium. Thus in order to develop theoretical understanding of influence of crack on 

vibration problem of submerged plate subjected to thermal environment become significant. The present work fills 

this gap by proposing an analytical model which addresses the following: 

1. Modeling of free vibrations of partially cracked-submerged isotropic plate considering the effect of thermal 

environment. 

2. The classical relation for central deflection of cracked isotropic plate which shows an important 

phenomenon of shift in primary resonance due to crack, internal material scale parameter and temperature 

rise. 

3. New results are presented for fundamental frequencies of cracked isotropic plate as affected by crack 

length, internal material scale parameter, plate thickness and rise in temperature. 

4. The analytical model has the obvious advantage of having efficient computation time, ease of parametric 

study and improved physical understanding of the problem when compared to Finite Element Models. 

The present work references the analytical model proposed by Israr et al. [11], extended in the recent work of 

joshi et al. [14,15] and extends it to the case of partially cracked isotropic plate in the presence of thermal 

environment and fluidic medium. The governing equation is derived using equilibrium principle of non-classical 

plate theory and potential flow theory. The effect of crack is considered in the form of additional bending moment 

and membrane force using line spring model. Galerkin method is employed for the solution of derived governing 

equation. The plate configuration is shown in Fig. 1 in which the dimensions of the plate taken along x and y 

directions are L1 and L2 respectively. The thickness of the plate is denoted by h. 2a is the length of crack at plate 

centre which is parallel to the x axis and the depth of the crack is assumed to be constant.  

1.1 Modified couple stress theory 

The behavior of micro-plates has been proven to be size dependent and hence implementation of strain gradient 

theories (containing internal material length scale parameters) is essential due to inadequacy of the classical plate 
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theory. From literature review it is seen that many of researchers used strain gradient (higher order) theories [19–24] 

to capture the size effect of microstructures in form of internal material length scale parameter. It is seen that in their 

work, the scale factor used in form of internal material length scale parameter is accompanied by a second order 

derivative operator. However, the main drawback of their models are that the presence of the micro structural effect 

raises the order of the resulting partial differential equation from four (classical case) to six (gradient case) [19]- 

[23]. As well as the classical boundary conditions are supplemented by additional (non-classical) ones containing 

higher order traction and higher order moments. Hence, the employed analytical solutions are restricted only to 

simple geometric shapes. To resolve this problem of handling plates with complex geometries and boundary 

conditions Tsiatas [18] and Yin et al. [22] proposed a new non classical Kirchhoff‟s plate model for the static and 

dynamic analysis of isotropic micro-plates with arbitrary shape based on the simplified couple stress theory of Yang 

et al. [24]. 

In the simplified couple stress theory, the strain energy density (U) in three-dimensional body occupying a 

volume V bounded by the surface G is given by Yang et al. [24] as: 
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The strain tensor (
ij ) and the symmetric part of the curvature tensor (

ijN ), respectively, 
iju  is the displacement 

vector and 
ij  is the rotation vector which can defined as: 
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where 
ijk  is the permutation symbol. As per modified couple stress theory, the stress tensor ( ij ) and the 

deviatoric part of the couple stress tensor ( ijm ) can be expressed as (Ref.[18]), 
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where,    and 
0  are the Lamé constants,  ij  is the Kronecker delta and l is a material length scale parameter. 

This Eqs. (5) and (6) described the two dimensional state of stress. From Eq. (6) it is observed that the couple stress 

tensor ijm  is symmetric and from Eq. (3) the curvature tensor ijN  is also symmetric. That is, only the symmetric 

part of the rotation gradient and the symmetric part of displacement gradient contribute to the deformation energy 

(Ref.[24]) which is different from that in the classical couple stress theory. 

In the work of Tsiatas [18], after the appropriate replacement of the Lamé constants by the modulus of elasticity 

E and the Poisson‟s ratio v , the stress tensor ( ij ) and the couple stress tensor ( ijm ) can be expressed as: 
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22m Gl N   (8) 

 

where  / 2 1G E v   are the shear modulus, l is a material length scale parameter and 
ijN  is the curvature tensor. 

From Eq. (7) and (8) the expression for the bending moment and couple moment tensors can be written as [18], 
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Expressing the strain and curvature tensors in form of  lateral deflection of plate we have (Ref. [18]), 
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 shows the bending rigidity due to couple 

stress of micro plate and l is a material length scale parameter. This lD  also shows the contribution of rotation 

gradients to the bending rigidity. 

Tsiatas [18] employed the Gauss divergence theorem to the total potential energy of a deformable body and 

arrived at the expression of  bending moment which shows two components of bending; (i) the bending due to 

microstructure and (ii) pure plate bending. This expression for moment can be written as: 
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From the above expression, it is seen that the effect of microstructure in the form of a single material length scale 

parameter “l”, contributing to the bending moment and increasing the flexural rigidity by 

2

2(1 )

l El h
D

v
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
 . The 

advantage of the modified couple stress theory developed by Tsiatas [18] is that a single parameter can capture the 

microstructure effect and its contribution to the flexural rigidity can be easily coupled with the rigidity used in 

classical plate theory. It is important here to note that Yin et al. [22] employed the additional rigidity ( lD ) due to 

microstructure in their analysis of dynamics of micro-plate. The present work employs the additional flexural 

rigidity established by Tsiatas [18] and applies it to the case of cracked-submerged plate in the presence of thermal 

environment. 

2    GOVERNING EQUATION  

Based on the equilibrium principle of Kirchhoff‟s thin plate theory, Joshi et al. [14] showed the governing equation 

of motion for a partially cracked isotropic plate in presence of thermal environment as: 
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deflection of the plate.  
ym  and 

yn  are the additional bending moment and in-plane force due to effect of crack.  

TM  denotes the thermal bending moment.  
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TyN  represents the in-plane forces per unit length due to the 

thermal environment. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Plate configuration showing a surface crack at the centre of 

plate. 

 

In this section the new governing equation for a partially cracked isotropic plate (as shown in Fig. 1) considering 

the effects of thermal environment and surrounding fluid medium is derived based on the Kirchhoff‟s thin plate 

theory and modified couple stress theory (MCST). The assumptions involved in the modeling are: (1) The plate is 

assumed as thin, impeccably elastic and homogenous composed of isotropic material and has a uniform thickness „h‟ 

which is minutely diminutive as compared to its other dimensions. (2) The mid-plane stays unstrained consequent to 

bending, therefore the normal strain 
z , resulting from transverse loading, may be omitted. (3) The normal stress 

z acting in the transverse direction of plate is considered to be diminutive compared to the other stress components 

and therefore, it can be neglected from stress-strain relationship in the modelling. (4) Effects of shear deformation 

and rotary inertia are neglected. (5) The fluid flow is potential (i.e., homogeneous, incompressible, inviscid and its 

motion is irrotational). (6) The temperature variation is thought to be linear all through the thickness of the plate;  

 ( ) ( ) / 2avgT z T T z   , where  t bT T T    is the temperature difference between the top and the bottom 

surface of the plate and  ( ) / 2avg t bT T T   is average temperature. 

Consider a plate element containing a part through crack of length 2a at its centre as shown in Fig. 2. The 

bending moments and internal forces acting on mid plane of the plate are considered as per classical thin plate 

theory. On resolving the forces along z direction and taking moment equilibrium about x and y axis we get the 

following equilibrium equations.  

 
2

2
0;

yx

z z

QQ w
F h P P

x y t


 
    

  
  (12) 

 

where, xQ and yQ  are the forces per unit length in the transverse direction,  P  is the fluid dynamic pressure 

difference between the top and bottom surface of the plate. 
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 represents the inertia force in which   is the 

density of plate and h is the thickness of the plate and  zP  is the lateral load per unit area. 
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Fig.2 

Plate element showing bending moments and transverse 

forces on middle surface. 

 

 

Taking moment equilibrium about the x and y axis, we get 
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On substituting Eq.(13) and (14) into Eq.(12) one obtains 
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ligament (intact portion) which represents the effect of line crack as deduced in line spring model. The bending 

moments can be expressed in terms of transverse deflection as: 
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On expressing the moments in terms of transverse deflection from Eq. (16) in Eq.(15) we get 
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where 
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l El h
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
 is the additional bending rigidity due to couple stress for micro plates (Refs.[22][27][28]).           

l represents the internal material scale parameter. With the in-plane displacements in both x and y direction being 

restricted, the uniform or non-uniform heating of the cracked plate causes membrane or in-plane forces[27]. The 

membrane forces considered for the cracked plate due to thermal environment are shown in Fig. 3. According to 

Berger‟s formulation the stretching effect produced by the lateral deflection introduces nonlinearity to the governing 

equation but does not affect the stiffness of plate Ref. [11,13–15]. In this work these stretching effects are neglected 

and only the membrane forces induced due to temperature variation are considered. The shear force is neglected in 

Fig. 3 as the temperature does not affect the shear components [43]. The equilibrium in the z direction is considered 

by assuming the two adjacent edges as fixed as shown in Fig. 3. Other boundary conditions are equally possible. The 

projection of the in-plane forces along z axis leads to: 
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After neglecting the higher order terms (containing 2dx and 2dy ), the transverse in-plane forces due to thermal 

stress can be given by  

 
2 2 2

2 2 2z Tx Ty y

w w w
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where 
TxN  and TyN  are the in-plane forces per unit length due to the thermal environment and 

yn is the additional 

membrane force per unit length due to the crack [14]. On adding of the lateral force given by Eq. (19) to the moment 

equilibrium (Eq. (17)) yields the governing equation of cracked isotropic submerged plate subjected to thermal 

environment and can be stated as: 
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 (20) 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

In-plane forces on a plate element due to thermal environment 

and crack of length 2a. 

 

The crack terms ( ym  and  yn ) are obtained using simplified line spring model (LSM) given by Rice and Levy 

[9]. According to the LSM, the three-dimensional problem can be reduced to quasi-two-dimensional by reducing the 

net ligament stresses to the neutral plane of the plate as an unknown membrane and bending load. It gives the 

relationship between the constraining effect produced by the net ligament stresses and the tensile and bending 

moments at far sides of the plate. Israr et al. [11] used the relationship of bending and tensile stresses at crack tips 

and far edges of plate given by Rice and Levy [9] and transformed it for force effects. They give a new relationship 

between tensile and bending loads at far sides of the plate with those at crack surface. Recently, Joshi et al. [14,15] 

derived the above relationship of the tensile and bending loads at the far sides of the plate and at the crack location 

in presence of thermal environment for the isotropic and orthotropic plates. Thus the relations for resultant in-plane 

forces ,y Tyn N  and bending moments ,y ym M can be written as [14], 
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where, the terms , ,tt bb bt tb     are crack compliance coefficients for stretching, bending and tensile-bending 

respectively. These crack compliance coefficients depend on crack depth (d) to thickness (h) ratio and vanish when 

0d  . The required expressions for compliance coefficients as a function of the ratio of crack depth to plate 

thickness  /d h   can be written as (Ref. [11]), 
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It is noted that these above expressions for compliance coefficients are valid only for  /d h   values within 

the range 0.1– 0.7 and in the present model these   is taken 0.6. 

On employing Eq. (21) and (22) in Eq. (20) and expressing the moment yM  and l

yM  in terms of lateral 

deflection from Eq. (16) we get the required governing equation of cracked plate as: 
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 (23) 

 

where,  
4 4 4

4

4 2 2 4
 2   

x x y y

   
    

    
 is the laplacian operator.  

3    FLUID MODELING  

The fluid pressure acting upon the plate surface is expressed as a function acceleration which helps to form the 

required governing equation of a coupled fluid-plate structure system. The following assumptions are taken to 

express the dynamic behavior of fluid as the mathematical formulations: 

1. The fluid flow is potential (i.e., homogeneous, incompressible, inviscid and its motion is irrotational). 

2. Small amplitude of bending vibrations is considered (i.e., fluid motion is small). 

3. The fluid pressure acting on plate is purely normal to the plate surface and there is no shear since the fluid 

flow is inviscid. 

4. Effect of boundary conditions on the plane wave number is neglected. 

5. Interaction between the crack and fluid if any is neglected. 

Based on above mentioned hypothesis, the velocity potential function  (x, y, z, t) satisfying the Laplace‟s 

equation can be expressed in the Cartesian coordinate system as: 
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Using Bernoulli's equation, the fluid pressure at any point of fluid-plate interface can be expressed by 
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where 
f  is fluid density per unit volume. 

Assuming the velocity potential function   be the function of two separate variables. 

 

   , , , ( , , )x y z t F z S x y t   (27) 

 

where   F z  and  ( , , )S x y t  are the two separate functions which is to be determined. For a permanent contact 

between the plate surface and peripheral fluid layer, the impermeability condition of the plate surface requires that 

the out-of-plane velocity component of the fluid on the plate surface should match the instantaneous rate of change 

of the plate displacement in the transversal direction. So, at the fluid-plate interfaces the kinematic boundary 

conditions can be expressed as: 
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On introducing Eq. (27) to Eq. (28) and Eq. (29) we get 
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(31) 

 

By substituting Eq. (30) and (31) in Eq. (27) the velocity potential on fluid-plate interfaces (i.e., upper and lower 

surface of plate) can be expressed as: 
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The following differential equation of second order is obtained by substituting above Eq. (32) or (33) into Eq. 

(24). 
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d F z
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where   is plane wave number, which can be determined by  
2 2

1 2

1 1

l l
     (Ref.[38]). The general solution for 

Eq. (34) can be defined as: 
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On substituting Eq. (35) into Eq. (32) and (33) we get following expression for velocity potential function on 

fluid-plate interface. 
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(37) 

 

where A  and B are the two unknown constants and can be determined using two extreme boundary conditions fluid-

plate interface and at fluid extremity surfaces 
1z h  and 

2( )z h h  . 

3.1 Plate-fluid model with free surface 

Assuming the disturbance due to free surface motion of the fluid is insignificant, the following boundary condition 

may be applied for velocity potential at the free surface of fluid  [38], see Fig. 4. 
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where, „g‟ is the acceleration due to gravity. Substitution of Eq. (36) into the above Eq. (38) and (28) gives 

following expression for velocity potential function: 
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  and    is the frequency of wave motion at free surface of fluid.  

The fluid dynamic pressure acting on the upper surface of plate can be obtained by substituting above Eq. (39) of 

velocity potential into Eq. (25) as: 
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Fig.4 

Plate-fluid model with free surface. 

3.2 Plate-fluid model bounded by a rigid wall (Floating plate) 

The boundary condition at the rigid base of tank represented in Fig. 5 is referred as null-frequency condition and can 

be expressed as: 
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On substituting Eq. (37) into Eq. (41) and (29), the following expression for velocity potential is obtained as: 
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From Eq. (42) and Eq. (26), the fluid dynamic pressure at lower surface of plate can be expressed as: 
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Fig.5 

Plate-fluid model bounded by a rigid wall (A floating plate). 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Plate-fluid model bounded by a rigid wall (A submerged plate). 
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In case of totally submerged plate (Fig. 6.) the net fluid dynamic pressure can be determined using above two 

fluid boundary conditions. The resulting fluid dynamic pressure difference  ( )P  for the horizontally submerged 

plate can expressed as: 
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where,  
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 is the virtual added mass of submerged plate due to surrounding fluid. 

When a plate vibrates under a fluid medium then its mass is increased by the mass of the virtual layer of vibrating 

fluid and this phenomenon is called the added virtual mass effect. On substituting Eq. (45) into Eq. (23) the required 

governing equation for cracked-submerged plate subjected to thermal environment can be expressed as: 
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(46) 

4    GENERAL SOLUTION OF GOVERNING EQUATION   

The presence of external environment like rise in temperature has been included in the governing equation of 

cracked plate in the form of thermal bending moments and in-plane compressive forces. Three significant solution 

cases arise by the presence of thermal environment: (1) The plate is heated throughout its volume uniformly 

( 0Tx TyM M  ) with in-plane deflections restricted. (2) Unrestricted in-plane deflections ( 0Tx TyN N  ) and 

only thermal moment. (3) The third solution can be found for presence of both thermal bending and in-plane 

compressive thermal forces. The present work restricts itself to the formulation of governing equation for all the 

above three cases and give results for case (1). Since, in majority of engineering applications thin plate structures 

having good thermal conductivity are used, there is little temperature gradient along the thickness of the plate and 

they can be considered as uniformly heated plates. The constant in-plane compressive forces induced due to 

temperature are only considered making the model geometrically linear. The modal functions, depending on the 

boundary conditions can be selected for general solution of governing equation as: 
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where, 
  mX and nY  are the characteristic or modal functions satisfying the boundary conditions of the cracked plate 

in the fluidic medium,  mnA is an arbitrary amplitude and  ( )mn t  is time dependent modal term. On introducing the 

expression for lateral deflection from Eq. (47) in the governing equation (Eq. (46)) we get 
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(48) 
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In case of a uniform heated isotropic plate, the constant in-plane compressive forces  can be expressed as 

(Refs.[14]) 
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where,  
cT  is the rise in temperature above which the plate is stress free. For free vibration ( 0zP  ), integrating 

over plate area and by multiplying both sides by  
 , nmX Y   Eq. (48) can be expressed in the form of Duffing 

equation. 
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where, 
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From Eq. (50) the natural frequency for the cracked-submerged isotropic plate in presence of thermal 

environment can be calculated as: 
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5    RELATION FOR CENTRAL DEFLECTION OF PLATE  

Consider an isotropic cracked plate with all edges simply supported, subjected to a lateral uniformly distributed 

dynamic load (Pz) harmonically varying with time. For a plate in the absence of thermal bending ( 0Tx TyM M  ) 

and the presence of constant in-plane forces (
1

c

Tx Ty

E hT
N N

v


 


) due to uniform rise in temperature, the 

governing equation (Eq. (46)) becomes: 
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 (54) 

 

Assuming the solution for lateral deflection as: 
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 
1 2

( , , ) sin   sin sinmn

m x n y
w x y t W t

l l

 


   
    

   
 (55) 

 

where,   is the vibrational frequency. Now for the case of forced flexural vibrations, the applied dynamic lateral 

load   , ,z zP P x y t  can be expressed as: 

 

 
1 2

( , , ) sin   sin sinz mn

m x n y
P x y t P t

l l

    
    

   
 (56) 

 

with   being the operational frequency of the load. Substituting the general solution of lateral deflection ( )w  from 

Eq. (55) with   being replaced by     and the lateral dynamic load (
zP ) form Eq. (56) into the governing equation 

(Eq. (54)) results in an expression for 
mnW . Thus the classical relation for central deflection of cracked isotropic 

submerged plate in the presence of thermal environment can be proposed as: 
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(57) 

   

where,   2  3   3 )(1 2
6

bt

bbH h a


  
 

     
 

  and    2

1   6   1 2bt ttH h a      .  

For a special case of a square plate with side of 
1l   and  1m n   , the central deflection 

11W   takes the form 

which clearly shows the presence of crack and temperature terms. 
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(58) 

 

The result for central deflection of a cracked isotropic submerged plate without influence of thermal environment 

( 0cT  ) can be expressed as: 
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(59) 

 

Similarly, the central deflection of a uniformly heated isotropic submerged plate without any crack ( 0a  ) can 

be expressed as: 
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(60) 

 

The central deflection of an intact isotropic submerged plate ( 0, 0ca T  ). 
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(61) 
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The corresponding expression for central deflection of an intact isotropic submerged plate ( 0, 0ca T  ) based 

on classical plate can be represented as: 

 

   
11 4
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CPT mn
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(62) 

 

The central deflection ratio 
11 11/cracked intactW W  can be obtained by dividing Eq. (59) and Eq. (61) as: 
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or 
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where,  
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 is the natural frequency of intact isotropic submerged plate based on modified 

couple stress theory. 

Similarly, the central deflection ratio 
11 11/heated intactW W  can be obtained by dividing Eq. (60) and Eq. (61) as: 
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(65) 

 

The central deflection ratio 
11 11/MCST CPTW W  can be obtained by dividing Eq. (61) and Eq. (62) as: 
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or 
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where,  
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 is the natural frequency of intact isotropic submerged plate based on classical plate 

theory. 
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6    RESULTS AND DISCUSSION  

In this section, the numerical results obtained for fundamental mode of vibration ( 1m n  ) of partially cracked 

plate submerged in fluid subjected to thermal environment are presented and discussed to verify the accuracy of 

present model. Since the literature lacks in results for partially cracked plate with influence of both the thermal 

environment and fluidic medium, the new results for natural frequencies of cracked plate are presented as a function 

half crack length (a), internal material scale parameter (
1/l l ), fluid level 

1 1( / )h l  and uniform rise in temperature 

(
cT ). For the purpose of validation of present model, the numerical results obtained are compared with the existing 

results of literature. Table 1., shows the comparison of frequency parameter of an intact and cracked isotropic plate, 

for different crack length, material scale parameter and boundary conditions. The material properties of plate for this 

validation table are taken from Ref. [27]. From Table 1., it can be seen that the present results are in good agreement 

with the published results which verifies the validity of our proposed model. Validation of results obtained for 

frequency parameter of intact and cracked isotropic plate subjected to thermal environment is shown in Table 2. 

Again the good agreement of the results shows that the present model reduces to the model proposed in Ref [14] 

when the effect of fluidic medium is neglected.  

As seen in literature, a few or no work has been done on vibration analysis of cracked plates under influence of 

fluidic medium and hence the validation of present model is carried out for intact isotropic plate coupled with fluid. 

Table 3., shows the comparison of results obtained for dimensionless frequency parameter of an intact plate 

partially/fully immersed in fluid in absence of thermal environment. The comparison is made for two different 

boundary conditions (SFSF and SSSS). The mechanical and geometrical properties of plate for validation Table 3., 

are taken from Ref. [39]. The fluid density is taken 1000 kg m
-3

. The dimension of reservoir tank on which plate is 

submerged has taken as 5 m    5 m    5 m. In Table 3., the results of frequency parameters for different fluid levels 

1 1/h l  obtained by present theory are slightly higher than the results of existing (MPT) theory it is because of 

ignoring the effects of shear deformation in present model as the model is based on Classical plate theory. 

Considering these fact, the present results are in agreement with the available results.   
 

 

Table 1  

Frequency parameter 2

1( )/mnF l h D  for intact plate and cracked isotropic plate in absence of thermal environment.  

B.C. 

Crack  

length 

Classical plate theory 

 l = 0 

Modified couple stress theory 

l = 0.0005  l = 0.001  

a (m) Present Ref. [27] Present Ref. [27] Present Ref. [27] 

SSSS 

0 19.739 19.736 19.838 19.835 20.132 20.129 

0.01 19.153 19.151 19.249 19.247 19.535 19.532 

0.05 17.965 17.963 18.055 18.053 18.324 18.321 

CCFF 

0 5.119 5.118 5.144 5.143 5.221 5.220 

0.01 4.897 4.896 4.922 4.921 4.995 4.994 

0.05 4.438 4.437 4.460 4.459 4.526 4.525 

CCSS 

0 28.348 28.344 28.489 28.486 28.912 28.908 

0.01 25.472 25.469 27.540 27.536 27.947 27.944 

0.05 24.485 24.481 25.602 25.597 25.980 25.976 
SSSS- All edges simply supported, CCFF- Two adjacent edges clamped and other two free, CCSS- Two adjacent edges clamped and other two simply supported. 

 

Table 2  

Comparison of non dimensional frequency parameter 2

1( )/mn Dl h for CCSS plate, 1 2/ 1, 0l l l  . 

T* 
Intact plate 

Cracked plate 

a = 0.01 m a = 0.05 m a = 0.1m 

Present Ref. [14] Present Ref. [14] Present Ref. [14] Present Ref. [14] 

0 28.35 28.35 27.50 27.50 25.47 25.47 24.48 24.48 

0.1 26.89 26.89 26.00 26.00 24.17 24.17 23.23 23.23 

0.2 25.35 25.35 24.51 24.51 22.78 22.78 21.90 21.90 

0.3 23.72 23.72 22.93 22.93 21.31 21.31 20.48 20.48 

0.4 21.96 21.96 21.23 21.23 19.73 19.73 18.97 18.97 

0.5 20.05 20.05 19.38 19.38 18.01 18.01 17.31 17.31 
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Table 3  

Comparison of non-dimensional frequency parameter 2

1( )/mn Dl h  of intact plate submerged in water as a function of fluid 

level. 
1 2/ 1, 0l l l  .  

B.C. 
In vacuum 

In water 

2 2/ 0h l   
2 2/ 0.1h l   

2 2/ 0.3h l   

Present MPT [39] Present MPT [39] Present MPT [39] Present MPT [39] 

SFSF 9.869 9.458 7.334 6.718 6.881 6.333 6.360 5.843 

SSSS 49.348 48.301 42.274 41.429 39.229 38.463 37.685 36.958 

 

 

The new results for dimensionless frequency parameter for cracked isotropic plate with combined effect of 

thermal environment and fluidic medium are presented in this work. The material and geometrical properties for the 

plate are taken as; Young‟s modulus 207E GPa , material density   7850 kgm
-3

, Poisson‟s ratio v  0.3, 

coefficient of thermal expansion 1.2 05 /e C   , 
1 1l  m, 

2 1l  m and thickness 0.01h  m. The fluid density is 

1000 kg m
-3

. The reservoir tank on which plate is submerged has taken as 5 m   5 m   5 m in size. The depth of 

crack is taken 6mm and thickness of plate is taken 10 mm throughout the work. It is assumed that the material and 

fluid properties are independent of temperature. The influence of fluidic medium on fundamental frequencies of the 

plate is analyzed by placing the plate horizontally in a fluid tank with various level of submergence
1 1( / )h l .  

The results obtained for natural frequency of plate as a function of crack length ( 0a   to 0.1m), fluid level 

1 1/ 0.1h l  to 0.5) and temperature ( 0cT  to 3 
o
C) are shown in Tables 4 and 5 for two different boundary 

conditions SSSS and CCSS respectively. It is seen from both the tables, for a given crack length and temperature, as 

the plate‟s submergence level goes increased form (
1 1/ 0.1h l  to 0.5) the frequency of plate is decreased. This is 

because of increase in virtual added mass of plate due to its surrounding fluid. Such phenomenon of variation in 

frequency is also found in literature Ref. [39] for intact plate. Similarly it is also observed from tables that for a 

given level of submergence, as the length of crack and temperature of plate is increased from 0a  to 0.1m and 

0cT  to 3
o
C respectively, the frequency parameter is decreased for both the boundary conditions. This is due to 

reduction in stiffness of plate and this reduction is clearly shown by the second and third term on expression of 

resultant plate‟s stiffness (Eq. (52)) which is due to line crack and temperature respectively. Thus it can be 

concluded that the presence of thermal environment and crack in submerged plate decreases its natural frequency. 

Comparing the results of cracked plate for the two different boundary conditions, it is also observed that the CCSS 

submerged plate is more pronounced by crack length than the SSSS submerged plate. 
 

 

Table 4  

Frequency parameters of SSSS plate as a function fluid level, crack length and temperature 
2( / 0.001).l l   

cT  

Half 

Crack length (a) 

(m) 

In 

vacuum 

In water 

2

2

0.1
h

l
  2

2

0.2
h

l
  2

2

0.3
h

l
  2

2

0.4
h

l
  2

2

0.5
h

l
  

0 a = 0.00 20.132 8.948 8.285 7.982 7.851 7.796 

 
a = 0.01 19.535 8.682 8.039 7.745 7.618 7.565 

 
a = 0.05 18.323 8.144 7.541 7.265 7.146 7.096 

 
a = 0.10 17.707 7.870 7.287 7.021 6.906 6.857 

1 a = 0.00 19.170 8.520 7.889 7.601 7.476 7.424 

 
a = 0.01 18.476 8.212 7.604 7.325 7.205 7.155 

 
a = 0.05 17.026 7.568 7.007 6.751 6.640 6.594 

 
a = 0.10 16.262 7.228 6.693 6.448 6.342 6.298 

2 a = 0.00 18.157 8.070 7.473 7.199 7.081 7.032 

 
a = 0.01 17.353 7.713 7.141 6.880 6.767 6.720 

 
a = 0.05 15.622 6.944 6.429 6.194 6.092 6.050 

 
a = 0.10 14.675 6.523 6.040 5.819 5.723 5.683 

3 a = 0.00 17.085 7.594 7.031 6.774 6.663 6.616 

 a = 0.01 16.151 7.179 6.647 6.404 6.299 6.255 

 a = 0.05 14.078 6.258 5.794 5.582 5.490 5.452 

 a = 0.10 12.894 5.732 5.307 5.113 5.029 4.994 
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Table 5  

Frequency parameters of CCSS plate as a function fluid level, crack length and temperature (
2( / 0.001).l l    

cT  

Half 

Crack length (a) 

(m) 

In 

vacuum 

In water 

2

2

0.1
h

l
  2

2

0.2
h

l
  2

2

0.3
h

l
  2

2

0.4
h

l
  2

2

0.5
h

l
  

0 a = 0.00 28.913 12.849 11.898 11.463 11.276 11.197 

 
a = 0.01 27.948 12.421 11.501 11.081 10.899 10.823 

 
a = 0.05 25.980 11.546 10.691 10.300 10.132 10.061 

 
a = 0.10 24.971 11.098 10.277 9.901 9.739 9.671 

1 a = 0.00 28.083 12.481 11.557 11.135 10.952 10.876 

 
a = 0.01 27.033 12.014 11.125 10.718 10.543 10.469 

 
a = 0.05 24.852 11.045 10.227 9.853 9.692 9.624 

 
a = 0.10 23.711 10.538 9.758 9.401 9.247 9.182 

2 a = 0.00 27.229 12.101 11.206 10.796 10.619 10.545 

 
a = 0.01 26.086 11.593 10.735 10.343 10.173 10.102 

 
a = 0.05 23.671 10.520 9.741 9.385 9.231 9.167 

 
a = 0.10 22.379 9.946 9.210 8.873 8.728 8.667 

3 a = 0.00 26.347 11.709 10.843 10.446 10.275 10.203 

 a = 0.01 25.103 11.157 10.331 9.953 9.790 9.722 

 a = 0.05 22.428 9.968 9.230 8.892 8.747 8.685 

 a = 0.10 20.964 9.317 8.627 8.312 8.176 8.118 

 

By employing the modified couple stress theory, new results for frequency parameter of submerged plate as 

affected by crack length, internal material scale parameter and rise in temperature are presented in Table 6 and 7 for 

SSSS and CCSS boundary conditions respectively. Comparing the results obtained from CPT ( 0l  ) and MCST 

( 0l  ), it is seen that as the material scale parameter increases from 
1/ 0.0005l l   to 0.003, the fundamental 

frequency of plate is increased as a result of variation in couple stresses. This type of variation is observed in 

literature Ref. [27] for cracked plate in the absence of surrounding fluidic medium. Tables 6 and 7 show such 

variation found to be true in case of submerged plate also. Fig. 7 shows the variation of frequency parameter of plate 

for various fluid levels 
1 1( / )h l  and various internal material scale parameters (

1/l l ) for two different boundary 

conditions (SSSS and CCSS). Is it seen from Fig. 7(a) and (b) that for all values of 
1 1/h l , the increase in material 

scale parameter increases the natural frequency of plate which signifies the contribution of couple stress to the 

bending rigidity. Similarly it is also observed that for all values of 
1/l l , the increase in level of submergence 

decreases the frequency as a result of increase in effective mass of plate due to inertia of fluid. 
 

 

Table 6  

Frequency parameters of SSSS plate as a function crack length, internal material scale parameter and temperature 
1 1( / 0.1).h l   

cT  

Half  

Crack length (a) 

(m) 

Classical  

plate theory (CPT) 

1/l l  = 0 

Modified couple stress theory (MCST) 

1/l l  = 0.0005 
1/l l  = 0.001 

1/l l  = 0.002 
1/l l  = 0.003 

0 a = 0.00 8.773 8.817 8.948 9.452 10.238 

 
a = 0.01 8.513 8.556 8.682 9.172 9.934 

 
a = 0.05 7.985 8.025 8.144 8.603 9.318 

 
a = 0.10 7.717 7.755 7.870 8.314 9.005 

1 a = 0.00 8.337 8.383 8.520 9.048 9.866 

 
a = 0.01 8.032 8.078 8.212 8.728 9.525 

 
a = 0.05 7.396 7.439 7.568 8.059 8.819 

 
a = 0.10 7.060 7.103 7.228 7.709 8.449 

2 a = 0.00 7.876 7.925 8.070 8.626 9.480 

 
a = 0.01 7.521 7.570 7.713 8.260 9.099 

 
a = 0.05 6.756 6.804 6.944 7.477 8.289 

 
a = 0.10 6.337 6.384 6.523 7.052 7.854 

3 a = 0.00 7.387 7.439 7.594 8.182 9.078 

 a = 0.01 6.973 7.025 7.179 7.764 8.651 

 a = 0.05 6.049 6.102 6.258 6.844 7.724 

 a = 0.10 5.519 5.573 5.732 6.327 7.211 
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Table 7  

Frequency parameters of CCSS plate as a function crack length, internal material scale parameter and temperature 
1 1( / 0.1).h l   

cT  

Half  

Crack length (a) 

(m) 

Classical  

plate theory (CPT) 

1/l l  = 0 

Modified couple stress theory (MCST) 

1/l l  = 0.0005 
1/l l  = 0.001 

1/l l  = 0.002 
1/l l  = 0.003 

0 a = 0.00 12.599 12.662 12.849 13.574 14.702 

 
a = 0.01 12.178 12.239 12.421 13.121 14.212 

 
a = 0.05 11.321 11.378 11.546 12.197 13.211 

 
a = 0.10 10.882 10.936 11.098 11.724 12.698 

1 a = 0.00 12.223 12.288 12.481 13.226 14.381 

 
a = 0.01 11.763 11.827 12.014 12.737 13.858 

 
a = 0.05 10.809 10.869 11.045 11.724 12.775 

 
a = 0.10 10.310 10.367 10.538 11.195 12.212 

2 a = 0.00 11.835 11.902 12.101 12.868 14.053 

 
a = 0.01 11.333 11.399 11.593 12.341 13.494 

 
a = 0.05 10.272 10.335 10.520 11.231 12.324 

 
a = 0.10 9.704 9.765 9.946 10.640 11.705 

3 a = 0.00 11.434 11.503 11.709 12.500 13.717 

 a = 0.01 10.886 10.954 11.157 11.931 13.121 

 a = 0.05 9.706 9.772 9.968 10.715 11.856 

 a = 0.10 9.058 9.124 9.317 10.054 11.175 

 

 

 
(a) 

 
(b) 

Fig.7 

Frequency parameter ( 2

1 /mnF l h D  ) as a function of fluid level (
1 1/h l ) and internal material scale parameter (

1/l l )  

for 
cT  = 1, a = 0.01m (a) SSSS (b)CCSS. 

 

In order to compare the results obtained using modified couple stress theory and classical plate theory, the 

variation of natural frequency with plate thickness is shown in Fig. 8 for two different boundary conditions. For a 

cracked isotropic plate, the results for natural frequency as affected by plate thickness are shown in literature Ref. 

[27]. The present model when applied for a cracked plate in absence of fluid medium and thermal environment 

reduces to the model proposed by Gupta et al. [27]. Therefore, such a validation is omitted here. It is established in 

literature (Ref. [27]) that the effect of internal material scale parameter is more significant for very thin plates and as 

the thickness of plate increases this effect reduces, this variation is further augmented by presence of fluidic medium 

and thermal environment in Figs. 8(a) to 8(d). It is seen from figures that for all values of plate thickness and 

material scale parameter the increase in fluid level and temperature decreases the frequency of cracked plate. Thus it 

is concluded that the presence of surrounding fluid medium and thermal environment also affects the natural 

frequency of plate with varying thickness.  

Fig. 9 shows the variation of ratio of deflection of cracked plate to intact isotropic plate. In order to investigate 

the primary resonance, the ratio of forcing frequency to fundamental frequency of intact plate is varied from 0.6 to 

1.3. It is interesting to note that the presence of crack shifts the primary resonance and it takes place well below 

11/ 1intact  . This is due to decrease in stiffness of plate due to centrally located crack. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.8 

Natural frequency ( ) as a function of plate thickness (h), fluid level (
1 1/h l ), Temperature (

cT ) and internal material scale 

parameter (l) for 
1 /l h =100 and 

1/a l = 0.01m. 

  

 

 
2

11/ intact  

 

 

 

Fig.9 

Central deflection ratio 11 11/cracked intactW W versus the 

normalized operational frequency  
2

11/ intact  for various 

values of crack length (a). 

 

The results for variation of deflection ratio of heated intact plate to intact plate with respect to ratio of forcing 

frequency and fundamental frequency are shown in Fig. 10. With the rise in temperature of plate, it is known that the 

fundamental frequencies decreases, such a fact seen in literature is validated from the results in Fig. 10. As expected 

the rise of temperature decreases fundamental frequency of plate thereby increasing the deflection. The shift in 

primary resonance can be attributed to the decrease in stiffness due to temperature rise. Fig. 11 shows the ratio of 

deflections 
11 11/MCST CPTW W  versus  

2

11/ CPT  for various values of internal material scale parameter (
1/l l ). It is 

seen that increasing values of 1/l l  result in shifting the primary resonance position of the classical case 

( CPT

11/ω 1  ) to higher values of ( CPT

11( /ω ) ). Thus it can be concluded that the primary resonance occurs at 

higher values of operational frequency ( ). To the best of author‟s knowledge Figs. 9, 10 and 11 along with Eqs. 
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(57) to (67) presents first time the effect of crack length, rise in temperature and internal material scale parameter on 

deflection and primary resonance of isotropic cracked plate.  

 

 

 
2

11/ intact  

 

 

 

Fig.10 

Central deflection ratio 
11 11/heated intactW W  versus the 

normalized operational frequency  
2

11/ intact  for various 

values of temperature (
cT ). 

 

  

 

 
2

11/ CPT  

 

 

 

 

Fig.11 

Central deflection ratio
11 11/MC PTST CW W   versus the 

normalized operational frequency  
2

11/ CPT  for various 

values of internal material scale parameter (
1/l l ). 

7    CONCLUSIONS 

In present work, an analytical model is presented for free vibration analysis of a uniformly heated partially cracked 

isotropic plate subjected to fluidic medium. It is established that the fundamental frequency is decreased by the 

presence of crack and uniform rise in temperature of plate and this decrease in frequency is further augmented by 

presence of surrounding fluid medium in present study. The influence of the fluid medium is incorporated in 

governing equation in the form of surrounding fluid dynamic pressure. The velocity potential and Bernoulli‟s 

equation are employed to express the fluid dynamic pressure acting on plate element. The effect of centrally located 

part through crack is deduced using appropriate crack compliance coefficients based on the LSM. A classical 

relation for central deflection of cracked isotropic plate is also proposed. The effect of varying forcing frequency, 

crack length, temperature rise and material scale parameter on deflection has been established. The results obtained 

from present study showing the influence of fluid levels, crack length, material scale parameter and uniform rise in 

temperature on fundamental frequencies is presented for isotropic plate with two different boundary conditions. The 

fact that the natural frequency for an intact plate decreases with increase in temperature and fluid level is established 

to be true for cracked plate also.  To the best of the authors' knowledge, this is the first attempt to model vibrations 

of a cracked isotropic plate subjected to temperature rise in presence of fluidic medium and hence it would be 

instructive to formulate the analytical model for any curved structures subjected to random fluid dynamic pressures.  
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