
 

© 2019 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 11, No. 1 (2019) pp. 181-200 

DOI: 10.22034/JSM.2019.664228 

Study of the Effect of an Open Transverse Crack on 
the Vibratory Behavior of Rotors Using the h-p 
Version of the Finite Element Method 

F. Ahmed 
*
, H. Abdelhamid, B. Brahim, S. Ahmed

  

IS2M Laboratory, Faculty of Technology, University of Tlemcen, Algeria 

Received 5 December 2018; accepted 5 February 2019 

 ABSTRACT 

 In this paper, we use the hybrid h-p version of the finite element 

method to study the effect of an open transverse crack on the vibratory 

behavior of rotors, the one-dimensional finite element Euler-Bernoulli 

beam is used for modeling the rotor, the shape functions used are the 

Hermite cubic functions coupled to the special Legendre polynomials 

of Rodrigues. The global matrices of the equation of motion of the 

cracked rotor are derived by the application of the Lagrange equation 

taking into account the local variation in the shaft’s stiffness due to the 

presence of the crack, and the stiffness of the cracked element of the 

shaft are determined using the time-varying stiffness method. 

Numerical results generated by a program developed in MATLAB 

show the rapidity of the convergence of the h-p version of FEM 

compared to the classical version, after the validation of our results 

with theoretical and experimental results and other obtained with the 

simulator ANSYS Workbench, a parametric study was provided to 

show the influence of the depth and position of the crack on the 

vibratory behavior of a symmetrical and asymmetrical rotor. 

                                       © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE finite element method is the most method used for the numerical modeling of mechanical structures, the 

classical version calling h of this method was the first to be developed [1,2], it consists of discretizing the 

structure into a set of finite elements and its convergence is obtained by the increasing of the number of elements of 

the mesh with a fixed polynomials degree. During the 1970s, the hierarchical version calling p was developed [3-5], 

in this method we do not discretize the structure like the classical version, and the convergence of this method is 

obtained by the increasing of the degree of polynomials. The combination of these two versions leads to the hybrid 

h-p version of the FEM [6-8], the convergence of this method is obtained by the increasing of the number of 

elements of the mesh and by the increasing of the degree of polynomials of each element, and the rapidity of the 

convergence makes the efficiency of this method. The h-p version of the FEM is more used in the field of simple 
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structures such as beams, plates and shells, in the field of rotor vibration; this version is less used, we can mention 

the work of Boukhalfa, A, and Hadjoui, A [9], and the work of Saimi, A and Hadjoui, A [10]. The cracks are 

classified among the dangerous defects in rotating machinery that lead to destructive and catastrophic scenarios, 

they occur because of the continuous loads on these rotors, the knowledge of the dynamical behavior of cracked 

rotor has allowed to recognize the presence of the crack and to stop the rotor in time before catastrophic failures as 

well as assuring the safety of personnel. Over the past three decades, a large number of research papers on cracked 

rotor have been published; Comments on cracked rotors can be found in [11-13]. Gasch, R [14] and Edwards, S et al 

[15] presented excellent reviews in the field of dynamics of cracked rotors and the different procedures to diagnose 

fracture damages. Davies, W. G. R and Mayes, I. W [16] analyzed the response of a multi-rotor-bearing system 

containing a transverse crack. Chasalevris, A.C and Papadopoulos, C.A. [17] and Mazanoglu, K et al [18] are 

studied a multiple cracked shaft where the structure is cracked in at least two positions. The three different crack 

models, namely, open crack model, breathing crack model, switching crack model are studied in [19-21], these 

studies show that the breathing crack model is too similar to the reality then the other models. Huang S.C [22] and 

Sinou, J-J [23] and AL-Shudeifat, M.A et al [24,25] are studied the stability of the cracked rotor using the Floquet 

theory. The previous studies show that the crack causes a local variation in the stiffness of the cracked rotor’s shaft; 

the main techniques used to formulate this variation are the flexibility matrix method and the time-varying stiffness 

method. Using the classical version FEM, the flexibility matrix method is the most common technique used to 

formulate the stiffness matrix of a cracked element of the rotor [26,27]. The time-varying stiffness method is 

translated by a reduction in the moments of inertia of the cracked element around the axes of rotation, this method 

has been used in [25,28-29] to study the open crack model and in [23,30-32] to study the breathing crack model. 

In our work, we use the hybrid h-p version of the FEM and the time-varying stiffness method to model a rotor 

with an open transverse crack; this modeling makes it possible to determine the global matrices of the equation of 

motion. A program was developed in MATLAB to determine the natural and critical frequencies as well as the 

amplitudes of a cracked rotor. After showing the rapidity of the convergence of the h-p version compared to the 

classical version h of the FEM and the validation of our program results with experimental and theoretical results 

and other obtained by ANSYS Workbench; a parametric study was provided to show the influence of the depth and 

the position of the crack on the natural and critical frequencies as well as the amplitudes of a rotor. Finally, a case 

study of an asymmetric rotor is done to demonstrate that the detection of an open transverse crack in the complex 

structures of rotors is more difficult compared to simple structures. The remarks and the results of our study can help 

the maintenance engineers to predict the presence of cracks in rotors and repair them or avoid its failures. 

2    EQUATION OF MOTION 

In this paper, the Jeffcott rotor model is studied (rigid disk and flexible shaft); the equations of motion are obtained 

by the application of the Lagrange Eq. (1) on the kinetic and deformation energies of the rotor components (shaft, 

disk, bearings): 
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Fig.1 

Model of a Jeffcott rotor. 

2.1 Kinetic energy of the disk 

The expression of the kinetic energy of the disk is given by: 



                                                                                      Study of the Effect of an Open Transverse Crack ….                           183 

 

© 2019 IAU, Arak Branch 

 
2 2 2 2

21 1 1
2

2 2 2
X Z Xd d dX dY ZT m u w I I   

         
            

    
 (2) 

 

where 

 

2 2 2(3 3 )
12

d

dX dZ

m
I I r R e     (3) 

 

2 2( )
12

d

dY

m
I r R   (4) 

2.2 Kinetic and deformation energy of the shaft 

The expression of the kinetic energy of an element of the shaft with a length Le is given by: 
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The deformation energy of an element of the shaft is calculated by considering the case of an Euler-Bernoulli 

beam (deformation at the shear force is negligible), this latter is given by: 
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For a healthy element (uncracked element), the moments of inertia of the cross section along the fixed 

coordinates (o, X, Z) are equal to IX=IZ=πR
2
/4 and IXZ=0.  

In the case of a cracked element; where the cross section is not circular (Fig. 2); the crack causes an asymmetry 

during the rotation of the rotor (Fig. 2(b)). According to [31], the moments of inertia along the rotating coordinates 

(o, x, z) are given by: 
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where 0≤ μ=h/R ≤ 1 is the ratio between the crack depth and the radius of the shaft R (non-dimensional crack 

depth) and  (2 )    .  

According to [33], the moments of inertia along the rotating coordinates with respect to the moments of inertia 

along the fixed coordinates are: 
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From the Eqs. (6) and (8), we notice that the deformation energy of the cracked element is variable with respect 

to the element length Le and also with respect to the time t, therefore, the stiffness of the cracked element depends to 

the mesh refinement and depends to the time (time-varying stiffness). Consequently, the choice of the number of 

element of the mesh plays an important role in our study. 

 

 

 

 

 

 

 

 

 

Fig.2 

Cross-section of a cracked element. 

2.3 Virtual work of the bearings 

The components of the generalized forces of the bearings Fu and Fw along the fixed coordinates are given as: 
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2.4 Unbalance force 

The unbalance is characterized by its kinetic energy given by: 
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where: 

mb: is the mass of the unbalance.  

d: is the distance between the position of the unbalance mass and the center. 

3    MATRIX FORMULATION BY THE H-P VERSION OF THE FEM 

In our finite element modeling by the h-p version of the FEM; to develop the elementary matrices of the equation of 

motion (Appendix), the rotor was discretized into a set of finite elements Euler-Bernoulli beam (Fig. 3), we use the 
non-dimensional coordinate ξ given by:  

 
ξ=(2Y/Le)-1      ,        (-1 ≤  ξ ≤  1)   (11) 

 
The displacements (U, W) and the rotations (θX, θZ) were replaced by to the vectors of the generalized 

coordinates and the vectors of the shape functions as: 
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where q is the generalized coordinate vector and N is the vector that contains the shape functions and p is the 

number of degrees of polynomials of an element. 
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The first four functions of the vector N (f1,f2,f3,f4) are the standard Hermite cubic shape functions of the classical 
version h which represent the real displacements (U,W) and the rotations (θX, θZ) of each node of the element [34]. 
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The other components of the vector N where p> 4 are the hierarchical shape functions of the p version of the 

FEM, these shape functions represent the virtual internal displacement of the element, the functions used in this 

work are the special Legendre polynomials of Rodrigues [34], which are given by:  
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where p!!=p(p-2)(p-4) ........(2 or 1) ,   0!!=(-1)!!=1 and (p-1)/2 designates its own whole part. 

After the replacement of the displacements and the rotations by its vector of the shape functions and its 

generalized coordinates vector in the equation of Lagrange. The size of the elementary matrices of each element is p 

x p. These matrices are composed of four sub-matrices h, h-p, p-h and p, the assembly of these matrices makes it 

possible to determine the global matrices of the equation of motion [34]: 
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where: 

[M] is the global mass matrix which comprises the global mass matrix of the shaft and the disk. 

[G] is the global gyroscopic matrix that includes the gyroscopic matrix of the shaft and the disk. 

[K] is the global stiffness matrix of the shaft which comprises the stiffness matrix of the cracked element 

(Appendix) assembled with the matrices of other elements replacing the matrix of the uncracked element by the 

matrix of cracked element. 

[Cp] and [Kp] are the damping and stiffness matrices of the bearings. 

q is the vector of generalized coordinates. 

F is the vector of unbalance forces,  
Ω is the rotation speed in rd/s. 

The forward and backward natural and critical speeds are obtained from the eigen solution of the matrix S given 

as:  
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Fig.3 

Beam element with circular section. 

 

4    VALIDATION 

The rotor studied in our work is the one studied by AL-Shudeifat, M.A [25] (Figs. 4,5), the physical parameters of 

this rotor are given in Table 1: 
 

Table 1 

Physical parameters of the rotor studied. 

                  Young's Module (E)                                     2.1e11 N/m2 

                   Length of the shaft (L)                                     0.724 m 

                   Radius of the shaft (R)                                     7.95e-3 m 
                   Density of the shaft (ρa)                                     7800 kg/m3 (Steel) 

                   Number of disks                                     2 

                   Position of the disk 1                                     0.124 m (from the left bearings) 

                   Position of the disk 2                                     0.6 m (from the left bearings) 

                   Inner radius of the disks (R)                                     7.95e-3 m 

                   External radius of the disks (r)                                     76.2e-3 m 

                   Thickness of the disks (e)                                     11.72e-3 m 
                   Density of the disk (ρd)                                     2700 kg/m3(Aluminum) 

                   Stiffness of bearings (kxx,kzz)                                     7e7 N/m 

                   Damping of bearings (cxx,czz)                                     5e2 Ns/m 

                   Mass unbalance (mb)                                     10-6 kg.m 
                   Mass unbalance angle (ψ)                                     π /2 rd 

 

 

 

 

 

 

 

 

 

Fig.4 

Finite element model of the rotor studied. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

The studied rotor model in ANSYS Worbench. 
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4.1 Convergence study 

The convergence study is done to show the rapidity of the convergence of the h-p version compared to the classical 
version h. This study is done in the stationary state of the rotor (Ω=0). The characteristics of the rotor model studied 

are given in Table 1. 

4.1.1 Convergence of the h version of the FEM 

The convergence of the classical version h of the FEM is obtained by increasing the number of elements (refinement 

of mesh). The convergence of the first three modes is represented in Table 2., and the results of this table are 

illustrated in the Figs. 6, 7, 8. 

Table 2 

Convergence of the first three modes according to the number of elements - h version -. 

Mode Number of elements (n) 

n=6 n=12 n=18 n=24 n=36 n=48 

1 49.0161 49.0152 49.0151 49.0151 49.0151 49.0151 

2 150.1712 150.1556 150.1548 150.1546 150.1546 150.1545 

3 353.4762 353.1575 353.1397 353.1366 353.1355 353.1353 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Convergence curve of the first mode - h version -. 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Convergence curve of the second mode - h version -. 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Convergence curve of the third mode - h version -. 
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4.1.2 Convergence of the h-p version of the FEM 

Table 3., shows the convergence of the h-p version of the three first modes, the convergence is obtained by fixing 

the number of elements to 6 (Fig. 4) and by varying the number of degree of polynomials, the results of this table are 

illustrated in the Figs. 9, 10, 11. 

Table 2., and Figs. 6, 7, 8 show that, in the case of the classical version h of the FEM, the natural frequencies 

converge from 18 elements for the first mode and 24 elements for the second and third modes. 

In the case of the h-p version of the FEM, Table 3., and Figs. 9, 10, 11 show that for a rotor discretized into 6 

elements, the natural frequencies of the first three modes converge from 6 degrees of polynomials µ. 

The convergence study represents the rapidity of the convergence of the h-p version compared to the h version of 

FEM. The studied rotor will be discretized into 6 elements by taking a degree of polynomial p = 6 (Fig. 4). 
 

Table 3 

Convergence of the first three modes according to the number of degrees of polynomials - h-p version -. 

Mode Degree of polynomials (p) 

p=5 p=6 p=7 p=8 p=9 p=10 

1 49.0152 49.0151 49.0151 49.0151 49.0151 49.0151 

2  150.1547 150.1545 150.1545 150.1545 150.1545 150.1545 

3 353.1396 353.1353 353.1352 353.1352 353.1352 353.1352 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Convergence curve of the first mode - h-p version -. 

 

  

 

 

 

 

 

 

 

 

 

Fig.10 

Convergence curve of the second mode - h-p version -. 

  

 

 

 

 

 

 

 

 

 

Fig.11 

Convergence curve of the third mode - h-p version -. 
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4.2 Validation of results 

Table 4., represents the comparison between the first backward and forward critical speed determined by the h-p 

version of the FEM and the values of the critical speeds determined experimentally by AL-Shudeifat M.A [25] and 

by the classical version of the FEM and also with a results generated by the simulator ANSYS Workbench (Fig. 5), 

to approximate to the experimental, we decrease the influence of the stiffness of the cracked element by the increase 

of the number of element (n=12),  

The error percentage between the results obtained by the h-p version of the FEM and the other results do not 

exceed 3%, that prove the efficiency of the h-p version of the FEM and the time-varying stiffness method in the 

study of the cracked rotors, and also the reliability of our MATLAB program, with this program we can perform 

simulations for variable values of depths and positions of the crack. 
 

Table 4 

Comparison between the results of the h-p version of the FEM and other theoretical, numerical and experimental results. 

Mode  Backward  Forward 

Non-dimensional crack depth (μ)  0  0.15 0.3 0.45 0.6 0.75 1 

h-p version of FEM  2863.8  3029.3 3012 2990.8 2967 2940.7 2888.9 

Experimental   2870  3062 3050 3037 3015 2995 2970 

h version of FEM    2863.5  3013.7 2996.5 2975.5 2951.8 2925.6 2874 

ANSYS Workbench  2870.5  3018.7 3016.6 2992.5 2988.3 2989.2 2980.8 
ɛh-p/Exp (%)  0.21  1.06 1.24 1.52 1.59 1.81 2.73 
ɛh-p/h (%)  0.01  0.5 0.5 0.51 0.51 0.52 0.52 

ɛh-p/ANSYS Workbench (%)  0.23  0.35 0.15 0.05 0.71 1.62 3 

5    FREQUENCY ANALYSIS 

5.1 Study in the stationary state (Ω = 0) 

In this part, we study the influence of the depth and the position of the crack on the natural frequencies of the rotor; 

with varying the depth, as well as the position of the crack (Fig. 4). 

Tables 5, 6, 7 represent the variation of the natural frequencies of the first three modes with respect to the depth 

of the crack in the case where the crack is located in the first, second or third element, and the results of these tables 

are illustrated in Figs. 12 to 20. 

Tables 5, 6, 7 and Figs. 12-20 show that the natural frequencies of the backward and forward modes of a cracked 

rotor decrease with respect to that of an uncracked rotor, this decrease is slight in forward modes by that in 

backward modes, the diverge between the frequencies of the forward and backward modes is because of the 

asymmetry in the geometry of rotor caused by the crack. 

The natural frequencies decrease more the crack depth propagates, and in any crack position the natural 
frequencies decrease rapidly from the depth (μ = 0.4); this because of the decrease of the stiffness of the cracked 

element.  

For the frequencies of the first mode, more the crack approach to the middle of the shaft the frequencies decrease 

and the degree of severity of the crack become very important. In the case of the second mode, the natural 

frequencies take its minimum value when the crack located in the second element; consequently, the variation curve 

of the natural frequencies with respect to the position of the crack is similar to the mode of deformation of the rotor.   

 
Table 5 

Variation of the natural frequencies of first three modes with respect to the crack depth in the case where the crack is located in 

the first element.  

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 49.02 48.97 48.87 48.74 48.55 48.3 47.98 47.56 47.04 46.4 45.65 

forward 49.02 48.99 48.96 48.94 48.92 48.9 48.88 48.86 48.84 48.8 48.74 

2 
backward 150.2 149.7 148.8 147.4 145.6 143.3 140.5 137.1 133.1 128.6 124.1 

forward 150.2 149.9 149.6 149.4 149.2 149 148.9 148.7 148.4 148 147.5 

3 
backward 353.1 351.5 348.1 343.4 337.5 330.3 322.1 312.2 304 295.1 287.3 

forward 353.1 352.3 351.2 350.3 349.6 349 348.4 347.8 346.9 345.5 343.6 
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Table 6 

Variation of the natural frequencies of first three modes with respect to the crack depth in the case where the crack is located in 

the second element. 

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 49.02 48.8 48.37 47.75 46.94 45.91 44.64 43.11 41.35 39.41 37.39 

forward 49.02 48.9 48.77 48.65 48.56 48.49 48.41 48.32 48.2 48.03 47.78 

2 
backward 150.2 149.1 147 144.3 140.9 137.1 133 128.7 124.4 120.3 116.7 

forward 150.2 149.6 148.9 148.4 147.9 147.6 147.2 146.8 146.3 145.5 144.4 

3 
backward 353.1 352.1 350 347.3 343.9 339.9 335.3 330.2 324.5 318.3 311.6 

forward 353.1 352.6 351.9 351.4 350.9 350.6 350.2 349.8 349.3 348.5 347.4 

 

Table 7 

Variation of the natural frequencies of first three modes with respect to the crack depth in the case where the crack is located in 

the third element. 

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 49.02 48.7 48.08 47.2 46.08 44.7 43.07 41.19 39.11 36.91 34.71 

forward 49.02 48.85 48.65 48.49 48.35 48.24 48.14 48.01 47.84 47.59 47.24 

2 
backward 150.2 149.9 149.5 148.9 148.2 147.3 146.2 145 143.7 142.3 140.8 

forward 150.2 150 149.9 149.8 149.7 149.6 149.6 149.5 149.4 149.2 149 

3 
backward 353.1 351.8 349.2 345.7 341.3 336.4 330.8 324.9 318.8 312.7 307 

forward 353.1 352.4 351.6 350.9 350.3 349.9 349.4 348.9 348.2 347.2 345.8 

 

 

 

 

 

 

 

 

Fig.12 

Variation curve of the natural frequencies of the first mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the first element. 

  

 

 

 

 

 

 

Fig.13 

Variation curve of the natural frequencies of the second 

mode (backward –Blue- and forward –Red-) with respect to 

the non-dimensional crack depth in the case where the crack 

is located in the first element. 

  

 

 

 

 

 

 

Fig.14 

Variation curve of the natural frequencies of the third mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the first element. 
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Fig.15 

Variation curve of the natural frequencies of the first mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the second element. 

  

 

 

 

 

Fig.16 

Variation curve of the natural frequencies of the second 

mode(backward –Blue- and forward –Red-)  with respect to 

the non-dimensional crack depth in the case where the crack 

is located in the second element. 

  

 

 

 

 

 

 

 

Fig.17 

Variation curve of the natural frequencies of the third mode 

(backward –Blue- and forward –Red-)  with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the second element. 

  

 

 

 

 

Fig.18 

Variation curve of the natural frequencies of the first mode 

(backward –Blue- and forward –Red-)  with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the third element. 

  

 

 

 

 

 

Fig.19 

Variation curve of the natural frequencies of the second 

mode (backward –Blue- and forward –Red-) with respect to 

the non-dimensional crack depth in the case where the crack 

is located in the third element. 
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Fig.20 

Variation curve of the natural frequencies of the third mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the third element. 

5.2 Study in the rotational state (Ω ≠  0) 

In the rotational state, we study the effect of the depth and the position of the crack on the critical frequencies of the 

rotor.  

In Tables 8, 9, 10, we represent the values of the critical frequencies of the first three modes according to the 

non-dimensional crack depth in the case where the crack is located in the first, second or third element, and the 

results of these tables are illustrated in Figs. 21 to 29.  

The comments on the variation of the critical frequencies with respect to the depth and the position of the crack 

are the same comments of the variation of the natural frequencies in the stationary state.    

 
Table 8 

Variation of the critical frequencies of first three modes with respect to the crack depth in the case where the crack is located in 

the first element. 

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 47.73 47.7 47.65 47.57 47.47 47.32 47.13 46.87 46.48 45.98 45.33 

forward 50.4 50.37 50.3 50.2 50.08 49.95 49.82 49.65 49.47 49.28 49.12 

2 
backward 147.2 146.9 146.4 145.6 144.3 142.5 140 136.8 132.9 128.6 124.1 

forward 152.9 152.5 151.8 151 150.3 149.7 149.2 148.8 148.3 147.9 147.3 

3 
backward 345.3 343.6 340.5 336.1 330.3 322.9 314.4 304.9 295.3 286.1 277.6 

forward 358.4 357.4 355.8 354.1 352.8 351.6 350.6 349.8 348.8 347.2 345.8 

 

Table 9 

Variation of the critical frequencies of the first mode with respect to the crack depth in the case where the crack is located in the 

second element. 

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 47.73 47.55 47.27 46.83 46.25 45.4 44.27 42.85 41.17 39.25 37.32 

forward 50.4 50.25 49.97 49.67 49.37 49.1 48.9 48.7 48.48 48.3 48.02 

2 
backward 147.2 146.3 144.8 142.6 139.7 136.1 132.2 128.1 123.8 119.8 116.3 

forward 152.9 152.2 151 149.9 149 148.4 147.9 147.3 146.8 146 144.8 

3 
backward 345.3 344.7 343.7 342.3 340.2 337.4 333.7 329.2 323.8 317.8 311.3 

forward 358.4 357.4 355.8 354 352.3 350.9 349.8 348.9 348 347.1 345.9 

 

Table 10 

Variation of the critical frequencies of first three modes with respect to the crack depth in the case where the crack is located in 

the third element. 

Mode 
Non-dimensional crack depth (μ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
backward 47.73 47.48 47.05 46.45 45.53 44.33 42.83 41.02 38.98 36.78 34.68 

forward 50.4 50.15 49.77 49.37 48.98 48.72 48.5 48.28 48.05 47.8 47.42 

2 
backward 147.2 147 146.8 146.4 145.9 145.3 144.5 143.5 142.3 141.1 139.8 

forward 152.9 152.8 152.5 152.2 151.8 151.5 151.2 150.9 150.6 150.3 149.9 

3 
backward 345.3 344.4 342.8 340.6 337.6 333.7 328.9 323.5 317.8 311.9 306.4 

forward 358.4 357.3 355.5 353.6 351.9 350.5 349.5 348.5 347.4 346.2 344.9 
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Fig.21 

Variation curve of the critical frequencies of the first mode 

(backward –Blue- and forward –Red-)  with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the first element. 

  

 

 

 

 

 

 

 

Fig.22 

Variation curve of the critical frequencies of the second 

mode (backward –Blue- and forward –Red-) with respect to 

the crack non-dimensional depth in the case where the crack 

is located in the first element. 

  

 

 

 

 

 

 

 

Fig.23 

Variation curve of the critical frequencies of the third mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the first element. 

  

 

 

 

 

 

 

Fig.24 

Variation curve of the critical frequencies of the first mode 

(backward –Blue- and forward –Red-) with respect to the 

crack non-dimensional depth in the case where the crack is 

located the second element. 

  

 

 

 

 

 

 

Fig.25 

Variation curve of the critical frequencies of the second 

mode (backward –Blue- and forward –Red-) with respect to 

the non-dimensional crack depth in the case where the crack 

is located in the second element. 
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Fig.26 

Variation curve of the critical frequencies of the third mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the second element. 

  

 

 

 

 

 

Fig.27 

Variation curve of the critical frequencies of the first mode 

(backward –Blue- and forward –Red-)with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the third element. 

 

  

 

 

 

Fig.28 

Variation curve of the critical frequencies of the second 

mode (backward –Blue- and forward –Red-)  with respect to 

the non-dimensional crack depth in the case where the crack 

is located in the third element. 

  

 

 

 

 

 

 

 

Fig.29 

Variation curve of the critical frequencies of the third mode 

(backward –Blue- and forward –Red-) with respect to the 

non-dimensional crack depth in the case where the crack is 

located in the third element. 

6    SPECTRAL ANALYSIS 

In this analysis, we study the influence of the depth and position of the crack on the vertical displacement (along the 

Z axis) of the rotor in a given node.  

Fig. 30 shows the difference between the vertical amplitude at the third node from the left bearing of a healthy 
rotor (blue curve) and a cracked rotor (red curve) where the ratio of crack depth μ = 0.3 and the crack is located in 

the second element. 
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Figs. 31, 32, 33 represent the waterfall of variation of the vertical amplitudes at the fourth node with respect to 

the crack depth and the rotational speed in the case where the crack is located in the first, second and third element.  

The offset of the amplitudes of the cracked rotor relative to the healthy rotor involves a decrease in critical speeds 

which is caused by a decrease in the stiffness of the rotor. 

 

 

 

 

 

 

 

 

 

 

Fig.30 

Vertical amplitude of an uncracked rotor (blue) with cracked 

rotor (red) in the case where the crack is located in the 
second element and μ = 0.3. 

  

 

 

 

 

 

 

 

 

 

 

Fig.31 

Waterfall of the vertical amplitudes where the crack is 

located in the first element. 

  

 

 

 

 

 

 

 

 

 

Fig.32 

Waterfall of the vertical amplitudes where the crack is 

located in the second element. 

  

 

 

 

 

 

 

 

 

 

Fig.33 

Waterfall of the vertical amplitudes where the crack is 

located in the third element. 
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7    CASE STUDY OF AN ASYMMETRIC ROTOR 

In this part, we study an asymmetrical rotor where the crack detection is more difficult compared to symmetrical 

rotor. Because in the case of the symmetric, we can do the diagnosis on the half of the rotor and the results founded 

are identical for the two sides. 

The characteristics of the rotor studied in this case are the same as those of the rotor studied previously (Table 1); 

the difference is in the number, the radius and the positions of the disks. The first disc is located in the right of the 

first element and its outer radius is 1/3 of the outer radius of the third disk. The second disk is located in the middle 

of the shaft and its outer radius is 1/2 of outer radius of the third disk. The last disk is located in the left of the sixth 

element and its outer radius is 76.2e-3 m, the three disks are in aluminum, (Fig. 34). 

In Table 11., and Fig. 35, we respectively represent the variations of the critical frequencies of the first three 

modes and the vertical amplitudes with respect to the position of the crack. We notice a clear difference between the 

right side and the left side of the rotor; consequently, the detection of the crack in the case of asymmetric geometry 

of rotor is difficult more than the symmetric rotor.  
 

Table 11 

Variation of the critical frequencies modes with respect to the position of the crack in the case where μ=0.5. 

Mode 
Cracked element 

1 2 3 4 5 6 

1 
backward 47.88 45.5 44.18 44.55 46.53 48.12 

forward 49.37 48.7 48.33 48.42 48.88 49.57 

2 
backward 168.8 162.1 176.3 172.2 166.4 174.5 

forward 177.9 176.6 180.6 179.1 177.7 179.8 

3 
backward 355.8 376.4 362.4 373.5 363 365.8 

forward 389.5 388.4 384.9 388 384.3 385.6 

 

 

 

 

 

 

 

 

 

 

 

Fig.34 

Finite element model of an asymmetrical rotor. 

  

 

 

 

 

 

 

 

 

 

Fig.35 

Waterfall of vertical amplitudes at the third node from the 
left where μ =0.5. 

8    CONCLUSIONS 

In this work, we studied the effect of an open transverse crack on the vibratory behavior of a rotor, using the h-p 

version of the FEM; we used the time-varying stiffness method to determine the stiffness of the cracked element. A 
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program was developed in MATLAB to identify the natural and critical frequencies as well as the amplitudes of a 

cracked and uncracked rotor. After showing the rapidity of convergence of the h-p version compared to the classical 

version h of the FEM and the validation of our program results with numerical and experimental results, we are 

studied the effect of the position and the depth of the crack on the natural and critical frequencies and on the 

amplitudes of a symmetrical and asymmetrical rotor; we noticed that: 

 The h-p version of the FEM and the time-varying stiffness method are appropriate for the study of the 

cracked rotors especially in the case of continuous geometries. 

 The crack causes a decrease in stiffness of the cracked element of the shaft. 

 The stiffness of the cracked element depends to the length of the cracked rotor and depends to the mesh 

refinement. 

 The stiffness of the cracked element depends to the crack depth. 

 The natural and critical frequencies of a cracked and uncracked rotor have a gap that can be used to identify 

the presence and depth and position of the crack. 

 The natural and critical frequencies of the backward and forward modes of the cracked rotor decrease with 

respect to that of the uncracked rotor. 

 The crack causes an asymmetry in the geometry of the rotor. 

 The natural and critical frequencies decrease with the increase of the crack depth, this decrease becomes 
very rapid from the depth μ=0.4, this because of the decrease of the stiffness of the cracked element.   

 The variation curve of natural and critical frequencies with respect to the position of the crack is similar to 

the shape of deformation mode.  

 The results found show that the detection of the crack is difficult because we can find many theoretical 

results which have the same values, this because of the refinement of mesh. The h-p version makes it 

possible to reduce the number of mesh elements, which leads to the limitation of the possibilities of finding 

identical values for different positions and depths. 

 Spectral analysis is a complement to the frequency analysis; it can help to find the difference between 

several cases found by the frequency analysis.  

 The detection of the cracks in the case of symmetric rotors is easy then complex rotors. 

 The previous remarks can help the maintenance engineers to predict the presence of cracks in rotors and repair 

them or avoid its failures 

APPENDIX 

The elementary matrices of the rotor components (shaft-disk-bearing) are given as: 

1    SHAFT  

1.1 Mass matrix 

 

 

0

0

shaft

shaft U

e shaft

W

M
M

M

 
     

 
  

 

where 

 

 
 

22

0 0

Le Le
Wshaft

W a W a a

d N
M S N dy I dy

dy
 

 
      

 
 

 

 
 

22

0 0

Le Le
Ushaft

U a U a a

d N
M S N dy I dy

dy
 

 
      

 
   

X

W

y






  ,  Z

U

y





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1.2 Gyroscopic matrix 

 

0

0

shaft

shaft

e shaft

G
G

G

 
       

  

 

where 

 

   

0

2

Le
U Wshaft

a a

d N d N
G I dy

dy dy


    
        

     
   

1.3 Stiffness matrix 

1.1.3 The stiffness matrix of the uncracked element 

0

0

shaft

shaft U

e shaft

W

K
K

K

 
     

 
  

 

where 

 

 
2

2

2

0

Le
Ushaft

U a

d N
K EI dy

dy

 
     

  


 

 
2

2

2

0

Le
Wshaft

W a

d N
K EI dy

dy

 
     

  
  

 

   

 

1.2.3 The stiffness matrix of the cracked element 

 

crack crack

crack U UW

crack crack

WU W

K K
K

K K

 
     

 
  

 

where 

 

 
2

2

2

0

Le
Ucrack

U X

d N
K EI dy

dy

 
     

  


 

 
2

2

2

0

Le
Ucrack

W Z

d N
K EI dy

dy

 
     

  


 

   2 2

2 2

0

2

Le
U Wcrack crack

UW WU XZ

d N d N
K K EI dy

dy dy

    
             

        
  

 

 

2    DISK  

The disks are fixed between two element of the shaft where ξ=1 or ξ=-1. 
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2.1 Mass matrix 

0

0

disk

disk U

e disk

W

M
M

M

 
     

 
  

 

where 

 

 
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2 2 2(3 3 )
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dX dZ

m
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2.2 Gyroscopic matrix 
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0

disk

disk

e disk

G
G

G

 
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where 
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3    BEARING  

XX XZ

p

ZX ZZ

k k
K

k k

 
     

 
   ,   

XX XZ

p

ZX ZZ

c c
C

c c

 
     

 
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