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 ABSTRACT 

 In this paper, a Green’s function is developed for bending analysis of 

micro plates under an asymmetric load. In order to consider the length 

scale effect, the modified couple stress theory is used. This theory can 

accurately predict the behavior of micro structures. A thin micro plate is 

considered and therefore the classical plate theory is utilized. The size 

dependent governing equilibrium equation of a circular micro plate under 

an eccentric load is obtained by using the minimum total potential energy 

principle. This equation is a partial differential equation and it is hard to 

solve it for an arbitrary loading. A transformation of the coordinate 

system is introduced to obtain the asymmetric exact solution for 

deflection of circular micro-plates. By using the obtained size dependent 

Green’s function, the bending behavior of micro plates under arbitrary 

loads can be easily defined. The results are presented for different 

asymmetric loads. Also, it is concluded that the length scale has a 

significant effect on bending of micro plates.                        
                                           © 2019 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE micro and nano structures have a wide applications in recent years. The micro and nano-structures have a 

wide use in recent years. The thin films in these scales can be used in electrical, lenses of glasses and corrosion 

resistance parts. They can be used in different shapes with different loading and the obtaining their deflection is 

important in order to an optimum design [1].  In the modern industries, micro structures have played an essential 

role technology. The behavior of material in the micro-scale depends on the length parameter [2]. Since in the 

micro/nano scale size the classical theory of plate cannot predict the behavior of the plate, some nonclassical 

continuum mechanics theories like the first strain gradient theory, the second strain gradient theory and modified 

couple stress theory can be used to consider the effect of size. The second strain gradient theory is developed by 

Mindlin [3]. This theory states that the strain energy density for material is considered by dependency of both the 

first and second derivatives of the strain tensor, along with the strain tensor itself. This theory has ten constants more 

than the classical theory in the strain tensor. By eliminating the second derivatives of the strain tensor, the first strain 

gradient theory will be achieved with five more constants than the classical theory. Based on this fact that in micro 
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scale the material properties depend to the size, the modified couple stress theory introduced a parameter called 

length scale parameter. This parameter can be used in relations. In fact in the modified couple stress theory, both 

strain and gradient of rotation are considered. Yang et al. [2] modified the couple stress theory by dictating a new 

equilibrium equation. Jomehzadeh et al. [4] studied a new model for vibration analysis of rectangular and circular 

micro plates using a modified couple stress theory. Reddy and Berry [5] derived the governing equations of motion 

for a circular micro plate under axisymmetric force using the modified couple stress theory. Kumar et al. [6] studied 

two-dimensional axisymmetric behavior of a circular plate with a heat source by using modified couple stress 

theory. Gholami et al. [7] investigated the size dependent nonlinear post-buckling of circular cylindrical micro and 

nano-scale shells. Ansari et al. [8] studied about the effect of Surface stress and surface inertia on mechanical 

behavior of nano-plates with a high surface to volume ratio based on Gurtin–Murdoch theory and Hamilton 

principle. By using the couple stress theory, Gholami et al. [9] developed a nonclassical first-order shear 

deformation shell model for análisis of the axial buckling and dynamic stability of micro shells made of functionally 

graded materials. Ansari et al. [10] investigated the size-depended free vibration of magneto-electro-thermo-elastic 

(METE) rectangular nano plates based on. The Mindlin plate theory, von Kármán hypothesis and the nonlocal 

theory. Wang et al. [11] studied the deflection of circular microplates under uniform load based on nonclassical 

Kirchhoff plate by using the couple stress theory. Stolken and Evans [12] found a versatile micro bend test method 

to determine the length scale parameter. In this method, after bending of a thin annealed foil around a small diameter 

cylindrical mandril, the radius of curvature will measure. This method is fully characterized so it is independent 

from the elastic modulus of the foil material. By having different radius of mandrills and different thickness of foil, 

the length scale parameter can be found. Circular plates under various loading are widely used in many applications. 

Saidi et al. [13] presented a closed-form solution for static analysis of FG circular plate under asymmetric loading 

according to the Kirchhoff plate theory. Liang et al. [14] studied the bending, buckling and vibration of size-

dependent functionally graded annular micro-plates. Zhang et al. [15] developed an efficient size-dependent plate 

model based on the strain gradient elasticity theory and a refined shear deformation theory. Ansari et al. [16] 

developed Mindlin micro-plate model based on the modified strain gradient elasticity theory to predict axisymmetric 

bending, buckling, and free vibration characteristics of circular/annular micro-plates made of functionally graded 

materials. Park and Gao [17] developed a model for bending of a Bernoulli-Euler beam by using a modified couple 

stress theory. The dynamic behaviors of simply supported Bernoulli-Euler beams were investigated by Kong et al. 

[18] on the basis of the modified couple stress theory. Bending of a functionally graded micro-scale Timoshenko 

beam was studied by Simsek et al. [19]. They analytically solved governing equations of a simply supported micro-

beam subjected to a point and uniformly distributed loads. Nateghi et al. [20] studied the buckling analysis of 

functionally graded micro-beams by considering classical, first and third order shear deformation beam theories. 

Roque et al. [21] employed modified couple stress theory to study the bending of simply supported laminated 

composite micro-beams subjected to transverse loads by using meshless numerical method. Ke et al. [22] 

investigated nonlinear free vibration of micro-beams made of functionally graded materials using von Karman 

geometric nonlinearity. Ansari et al. [23] developed a size-dependent micro model for bending, buckling and free 

vibration behaviors of micro-plates made of functionally graded materials. Baghani et al. [24] presented an 

analytical size-dependent solution for large-amplitude vibrations of functionally graded tapered-Nano beams. 

Karimipour et al. [25] investigated the electromechanical response and instability of the clamped microplate 

immersed in ionic electrolyte media. The strain gradient elasticity is employed to model the size-dependent 

structural behavior of the clamped microplate. Karimipour et al. [26] used modified strain gradient theory to 

investigate the size-dependent nonlinear pull-in instability and conduct a stress analysis of thin microplates. 

In this paper, a size-dependent closed form solution is obtained for a circular micro-plate under eccentric force 

according to the couple stress theory. A new coordinate system is utilized to reformulate the equilibrium equations 

of micro-plate. The Green’s function for deflection of circular micro-plate under eccentric load is obtained based on 

this reformulation. The novelty of this paper is to find the deflection of a micro-plate under asymmetric load by 

using a new coordinate system also the deflection of the micro-plate under any arbitrary load can be easily obtained 

as well. 

2    DISPLACEMENT FIELD  

Let us consider a circular micro-plate with radius R and thin thickness h. The displacement components according to 

the classical theory of plates are given by [11]: 
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where 
ru , u and w are displacement components of middle surface of the micro-plate in the cylindrical coordinate 

system. Based on this field, the strain components can be written as [11]: 
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Strain components are zero. 

3    EQUATIONS OF MODIFIED COUPLE STRESS THEORY  

The modified couple stress theory is a popular theory for considering the length scale effect in micro-structures. This 

theory introduces just one parameter, so its equations just have a little change in compare with the classic theory and 

it makes the comparison easier. By considering the couple stress theory just the stiffness of micro-plates will change. 

Also, by length scale parameter, the behavior of structure in micro-scales can be predicted [11]. The experimental 

works on Cu wires show that thin (15 µm) wires required substantially higher torsions than thicker wires to cause 

equivalent rotations. Also for measurement of the crack growth in metal-oxide interfaces it is needed to have and 

consider the length scale [12]. 

In the classical theory both stress and strain energy depend on the strain tensor, but in the modified couple stress 

theory besides the strain tensor, gradient of the rotation vector has effect on the strain energy [4]. In compare with 

the higher order stress theory, the effects of the dilatation gradient and the deviatoric stretch gradient are assumed to 

be zero [1]. 

According to the modified couple stress theory, the strain energy of the micro-plate is written as [4]: 

 

( )SEU m dV    (3) 

                                                                                       

where   is the Cauchy stress tensor,   is the Green strain tensor, m is the deviatoric part of the symmetric couple 

stress tensor and χ is the symmetric curvature tensor as [4]: 

 
22m l   (4a) 

 

1
[ ]

2

T      (4b) 

 

where   is the Lame`s coefficient and   is the rotation vector that can be written in term of displacement vector 

(U) as: 
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1

2
U    (5) 

 

The parameter l in Eq. (4a) is the length scale parameter and can capture the size dependency of the system.  By 

replacing Eq. (5) into Eq. (4b) and using Eq. (1), the components of the curvature tensor for a linear case are 

obtained as follows: 
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In order to derive the equilibrium equations, the principle of minimum total potential energy is used as: 

 

0SEU W    (7) 

                                                                                                      

In which, W is the potential energy as:  

 

W pwd   (8) 

 

where p is the external pressure in transverse direction. By introducing the resulting parameters as [13]: 
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The equilibrium equations of a micro-plate can be obtained as follows: 
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The corresponding boundary conditions can also be obtained as: 
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Since the proposed micro-plate is homogeneous, the in-plane and transverse equations are decoupled. By 

obtaining the stress resultant in terms of displacement components and substituting them into Eq. (10c), the 

governing bending equilibrium equations of a circular micro-plate can be obtained as: 
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The parameter 2D hl  is the equivalent stiffness of a micro-plate by considering the length scale effect. As it 

can be concluded the modified couple stress theory increases the stiffness of micro-plates in comparison to the 

classical theory ( 0  ). 

4    TRANSFORMATION OF THE COORDINATE SYSTEM  

The general solution for micro-structures under an arbitrary concentrated load is one of the fundamental problems in 

micro-mechanics. This solution can be used as a Green’s function for determining deflections of the problems 

caused by any arbitrary loading. 
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Since the Green’s function of a micro-plate is the solution of a partial differential equation with asymmetric 

conditions, it is worth to use a different coordinate system in order to find the solution.   

Consider a circular micro-plate under the concentrated load F on 
1O  as shown in Fig. 1. The points 

1O  and 
2O  

are two fixed points on the Cartesian coordinate system. Let point 0A be any point on the circumference, and 0

1r and 

0

2r  are distances from the point 0A  to points 
1O  and 

2O  as shown in Fig.1. It can be shown that if 

2

1 2( )( )OO OO R .  

 

 

 

 

 

 

 

 

 

Fig.1 

The new coordinate system. 

 

For an arbitrary point on the circumference boundary of the micro-plate, the following relation is satisfied [13]: 
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where  is a constant. Locate an arbitrary point by coordinate 
1r  and 

2r  on the surface of the micro-plate (Fig.2). 

The coordinates 
1r  and 

2r  related to polar coordinate by the following expression [13]: 
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Fig.2 

The coordinates of a point on the new coordinate system. 

 

 In order to obtain the governing equation of micro-plate in the new coordinate system, the Laplace operation 

should be obtained in terms of 
1r  and 

2r . To this end, the derivative with respect to x can be written as: 
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Also, the second derivative with respect to x can be obtained in new coordinate system as: 
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Similarly, the second derivative with respect to y can be determined in terms of derivative of 1r  and 2r  as: 
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Hence the Laplace operator can be obtained by adding Eqs. (16) and (17) as: 
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This expression can be rewritten in the following form: 
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Also biharmonic operator can be obtained by the square of Laplacian equation as [13]: 
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Therefore, both Laplacian and biharmonic operators are expressed in the new coordinate system. 

5    THE GREEN’S FUNCTION  

The Green’s function is the solution of the differential equation to a concentrated load 1F  . This method is a 

powerful method to find the responses of plates under asymmetric distributed loads. By using the Green’s function, 

the deflection of micro-plate under arbitrary load can be defined. In order to obtain the Green’s function of a 

circular micro-plate, let us express the governing Eq. (12) in the new coordinate system, i.e.  
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By considering the above equation in two parts, the solution can be found by the help of axisymmetric state. A 

solution of the following equation for a circular micro-plate loaded by a concentrated force F is: 
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The first term on the right-hand side of the equation represents the deflection surface of the plate symmetrical 

about point 1O  and having a singularity at that point. The constants of integration 1C , 2C  and 3C  can be determined 

from the boundary conditions. 

Consider the clamped edge for the circular micro-plate. Since on the boundary 0
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Therefore, the deflection is simplified as: 
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The constant 
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Finally, the deflection of the micro-plate under eccentric concentrated load is defined as: 

 

2 2 2 21

1 2 12

2

1
[ ln ( )]

28 ( )

rF
w r r r

rD hl


 
  


 (26) 

 

By the help of Eqs. (14a) and (14b), the deflection can be transformed in the polar coordinate system as: 

 
2 2 2

2 2 2 2 2 2

2 2 2 2

2 cos
( , ) [( 2 cos ) ln( ) ( 1)( )]

16 ( ) 2 cos

F r rR R
w r r rR R r R

D hl R rR r

  
    

    

 
     

  
 (27) 

 

In fact, Eq. (27) is the size-dependent transverse deflection of micro-plates and this equation is agreed with Ref. 

[13] with difference in the stiffness. Using this equation, the deflection of micro-plates under arbitrary loads can be 

defined. 

In order to obtain the Green’s function and consider the variation of parameters in the circumferential direction, 

Eq. (27) is rewritten in the following form by substituting 1F  : 

 
2 2 2

2 2 2 2 2 20

0 02 2 2 2

0

2 cos( )1
( , ) [( 2 cos( ) ) ln( ) ( 1)( )]

16 ( ) 2 cos( )

r rR R
G r r rR R r R

D hl R rR r

   
      

     

  
       

   
 (28) 

                                                                                                               

which 
0  is the position of a concentrated force from axis x. The above equation is the Green’s function for 

transverse deflection of circular micro-plates.   
By using Eq. (28) as a Green’s function, the transverse deflection of a circular micro-plate under arbitrary 

distributed load 
0 0( , )F r   can be obtain as [13]: 

 

0 0 0 0 0 0
0 0

( , ) ( , ) ( , )
R

w r F r G r r d dr


        (29) 

 

Since 0r R , Eq. (29) can be rewritten as [13]: 

 
1

2

0 0 0
0 0

( , ) ( , ) ( , )w r F G r R d d


           (30) 

6    NUMERICAL RESULTS  

At the first, the validation of work will be discussed by comparing the result with previous papers. To this end, in 

Table 1., the maximum deflection of plate, under a line load distributed along a circle is compared with Ref. [13]. It 

can be seen that the results are in good agreement with related reference. 
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Table 1  

Comparison of the maximum deflection of plate under line load with related reference 420E GPa , 0.3  , / 0.05h R   and 

5 /F KN m . 

 4

max ( 10 )w   

  Present Ref. [13] 

0.1 0.1227 0.1227 

0.2 0.2161 0.2161 

0.3 0.2703 0.2703 

.04 0.2843 0.2843 

0.5 0.2622 0.2622 

0.6 0.2123 0.2123 

0.7 0.1460 0.1460 

0.8 0.0773 0.0773 

0.9 0.0225 0.0225 

 

Main result: Assuming a circular micro-plate with the following physical properties: 

 
3200 , 0.3, 70 , 20 , 1.25 10E GPa GPa R m F N          (31) 

 

The center non-dimensional deflection of a micro-plate under an eccentric force on 𝜆 =0.5 versus dimensionless 

length scale is given in Fig.3. It can be seen that the length scale effect causes the decreasing of the deflection. The 

length scale parameter can be found by some experimental methods for example micro-bend test method can be 

used for determined this parameter. The result of this test is applicable for wide rang of materials [12]. The length 

scale parameter is 17.6 𝜇m [1]. The length scale parameter is one of material properties that can shows the difference 

between classical and couple stress elasticity theory. In comparison with the dimension of circular micro-plate, this 

parameter is small but by diminish the dimensions of plate to micro size the influences of this parameter might be 

larger [4].  

The center non-dimensional deflection of a micro-plate under an eccentric force on 𝜆 =0.5 and three length 

scales are shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Central non-dimensional deflection of the micro-plate 

versus the dimensionless length scale. 

  

 

 

 

 

 

 

 

Fig.4 

Center deflection of the micro-plate for various length 

scales. 

 

It can be seen that as the thickness of the micro-plate increases, the size effect decreases, it means that as the 

thickness of micro-plate become higher, the value of the length scale has lower influence on the deflection. Also, 
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length scale effect causes an additional hardening stiffness. The non-dimensional radial stress versus the radial 

direction is shown in Fig. 5. 

 

 

 

 

 

 

Fig.5 

The variation of non-dimensional stress (
2r

P


  ) in 

radial direction (l=0, 𝜆=0.5).  

 

It can be seen that the stress under the load point is infinite in this theory. Variation of deflection versus the 

radial direction for various loading conditions is given in the Figs. 6-8. From these figures, it is obvious that as the 

parameter l/h increases, the deflection decreases, it is caused by increasing the stiffness of micro-plate 2( )D hl . 

 

 

 

 

 

 

 

 

Fig.6 

The variation of non-dimensional deflection in radial 

direction for a point load.      

  

 

 

 

 

 

 

 

 

 

Fig.7 

The variation of non-dimensional deflection in radial 

direction for a quarter loading. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

The variation of non- dimensional deflection in radial 

direction for two lines loading. 
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Fig. 9 shows the three-dimensional deflection of circular micro-plate with two different loads. It can be seen that 

the maximum deflection of the micro-plate with a concentrated force is the point of loading whereas it is at the 

center for four concentrated loads. 

 

 

 
 

 

 

Fig.9 

The 3D deflection of micro-plates for two kinds of loading. 

 

7    CONCLUSIONS 

In this article, the Green’s function for bending of circular micro-plate has been developed by using a new 

coordinate system. Since the experimental researches show that mechanical properties are depended to the size, the 

modified couple stress theory has been utilized to consider the length scale effect. The deflection of the micro-plate 

under eccentric force has been defined by solving the equilibrium equation in the new coordinate system. Using this 

Green’ function the transverse deflection of a micro-plates under arbitrary load can be easily obtained. It is 

concluded that the length scale has a significant effect on bending of micro plate. The result shows that the length 

scale has a considerable effect. According to the results, existence of the length scale parameter causes increasing in 

the stiffness and finally decreasing the deflection. Also it is found that when parameter (l) increases the deflection 

decreases. This trend is in agreement with the results of couple stress in other cases.  
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