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 ABSTRACT 

 The present problem deals with the propagation of Love-type 

surface waves in a bedded structure comprises of an 

inhomogeneous orthotropic layer and an elastic half-space. The 

upper boundary and the interface between two media are 

considered to be corrugated. An analytical method (separation of 

variables) is adapted to solve the second order PDEs, which 

governs the equations of motion. Equations for particle motion in 

the layer and half-space have been formulated and solved 

separately. Finally, the frequency relation has been established 

under suitable boundary conditions at the interface of the 

orthotropic layer and the elastic half-space. Obtained relation is 

found to be in good agreement with the classical case of Love wave 

propagation. Remarkable effects of heterogeneity and corrugation 

parameters on the phase velocity of the considered wave have been 

represented by the means of graphs. Moreover, the group velocity 

curves are also plotted to exhibit the profound effect of 

heterogeneity considered in the layer. Results may be useful in 

theoretical study of wave propagation through composite layered 

structure with irregular boundaries. 

                                  © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Love-type waves; Orthotropic layer; Corrugation; 

Heterogeneity; Elastic half-space. 

1    INTRODUCTION 

 HEAR waves propagation in a certain class of anisotropic medium with or without heterogeneity has long been 

a topic of interest. In the recent past, the elastodynamics response of anisotropic media has attracted many 

researchers. Orthotropic materials exhibit mechanical and thermal properties that differ along three mutually 

perpendicular directions. Many fiber-reinforced composites, wood, sheet metal comprises of orthotropic materials. 

These materials find their use in many engineering applications. As per Hooke’s law orthotropic materials involve 

nine elastic constants. Several attempts have been made to highlight the response of material anisotropy on the 

velocity profile of surface seismic waves. The wave propagation at the boundary of orthotropic thermoelastic 

materials with voids and isotropic elastic half-space has been studied by Kumar and Kumar [1]. Love waves 

propagation in an orthotropic granular layer under initial stress was studied by Ahmed [2]. Kundu et al. [3] 
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investigated the propagation of SH-type waves in sandwiched structure. As it is a well-known fact that earth has an 

irregular structure, so it is always not possible to deal with all the engineering problems taking the earth as a planar 

structure. It motivates us to study the impact of non-planar boundaries (corrugation) on different Earth models. 

Tomar and Kaur [4-5] adopted the Rayleigh’s method of approximation to obtain expressions for the scattering of 

SH-waves at a corrugated interface between two anisotropic heterogeneous elastic solid half spaces. They have also 

investigated the reflection and transmission of a plane SH-wave incident at a corrugated interface between a dry 

sandy half-space and an anisotropic elastic half-space. Chattopadhyay et al. [6] studied the propagation of 

horizontally polarized shear waves in a magneto-elastic monoclinic stratum having rectangular irregularity in lower 

interface, sandwiched between two semi-infinite isotropic elastic media. Propagation of Love-type waves in a 

heterogeneous medium was studied by Kundu et al. [7]. In this paper influences of heterogeneity and initial stress on 

the propagation behaviour of the considered wave have been marked. Moreover, a good amount of research works 

have been carried out to model the propagation of Stonley waves, Rayleigh waves and Torsional waves in different 

geometry. Ahmed [8] investigated the propagation of Stoneley waves in a non-homogeneous orthotropic elastic 

medium under the influence of gravity. An explicit secular equation has been derived for Rayleigh waves 

propagation in an orthotropic half-space lying over an orthotropic elastic layer by Vinh et al. [9]. Using the Fourier 

transform method Abd-Alla [10] studied the propagation of Love waves in a non-homogeneous orthotropic elastic 

medium under the influence of initial stress and magnetic field. Singh et al. [11] studied the propagation of Love-

type waves in a corrugated heterogeneous orthotropic layer lying over a fiber-reinforced half-space under a 

hydrostatic state of stress. Singh and Singh [12] investigated the effect of corrugation on the incident q-SV wave at 

the interface of two dissimilar elastic half-spaces. An explicit secular equation for Stoneley waves in a non-

homogeneous orthotropic elastic medium under the influence of gravity was established by Vinh and Seriani [13]. 

Ayatollahi et al. [14] studied the dynamic behavior of an orthotropic substrate weakened by moving cracks and 

reinforced by a non-homogenous coating.  Recently, Alam et al. [16-17] have investigated the nature of Love-type 

waves in different models. Singhal and Sahu [18] studied the Rayleigh wave propagation on corrugated orthotropic 

layer resting over a semi-infinite orthotropic medium. Behavior of surface seismic waves in piezo-composite 

structures has been marked distinctly by Singhal et al. [19-20]. Torsional wave propagation is dealt by Alam et al. 

[21-22]. They have considered the layer and half-space with heterogeneities. 

In the present paper, the propagation of Love-type waves in an orthotropic layer resting over elastic half-space 

has been studied. Influences of various parameters like corrugation and heterogeneities (considered in the layer as 

well as in the half-space) on the phase velocity of considered wave are shown graphically. Moreover, Group velocity 

curves have also been plotted to show the variation of group velocity with respect to the wave number. 

2    FORMULATION OF THE PROBLEM  

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

 

A layered model is taken into consideration which consists of an orthotropic layer resting over an elastic half-

space. The Cartesian coordinate system  x y z, ,  is chosen in such a way that the direction of propagation of the 

Love-type wave is taken along the x axis with z axis vertically downwards in the half-space and the origin is 

considered at the common interface of the layer and half space. The width of the layer is taken as H and the half 

space lies in the region x 0 . The upper surface of the layer is given as z x H1( )  and z x2 ( )  defines the 

common interface of the orthotropic layer and the elastic half-space. x1( ) and x2 ( )  are continuous periodic 
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functions of x and are independent of y. The heterogeneity in the orthotropic layer is due to the exponential variation 

of space variable which is pointing positively downwards. 

The Fourier expansions of the periodic function x1( )  and x2 ( )  may be given by 
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In view of these inequalities, the series in Eq. (1) may be written as: 
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In light of the above representation of m
r

( ) , the corrugated boundary surfaces in the considered problem may 

be expressed in cosine terms only i.e. 

 

a lx1 cos   and  b lx2 cos   (2) 

2.1 Governing equation for orthotropic layer 

For the orthotropic layer the stress components are related to the strain components as: 
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where
ij represents the stress components, 

ijS  are the strain components and the elastic constants are represented 

by 
ijM i j( , 1,2,3)  , N N1 , and N 2 . Now let us assume the displacement components along x, y and z directions 
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as u v1 1,  and w 1
respectively. We have considered the propagation of the Love-type wave in the x  direction which 

causes displacement along y  direction only, so we get 

 

u w v v x z t1 1 1 10, 0, ( , , )    (4) 

 

By Eq. (4) the strain displacement relation for upper layer becomes 
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In light of Eq. (5), Eq. (3) gives 
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Using Eq. (6) we get the equation of motion for the orthotropic layer, given by 

 

v

x z t

2

2321 1

2




 
 

  
 (7) 

 

where   is the density of the upper inhomogeneous corrugated orthotropic layer. 

We assume the elastic constants of the corrugated inhomogeneous orthotropic layer to vary exponentially with 

depth i.e. 
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where N N* *

1 2, and * are the values of N N1 2, and   at the upper surface i.e. at z H   and   is the 

heterogeneity parameter. Using Eqs. (6), (7), and (8) we have 
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2.2 Governing equation for half-space

 

For the elastic half-space the equation of motion in absence of body forces are taken as: 
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where 
ij  are the stress tensor components, iu  are the displacement vector components. The components along x, y 

and z directions are given as u v2 2,  and w 2 respectively and 2  represents the density of the medium. 

The stress-strain relations are described by 
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where   and   are the lame’s elastic coefficients and are functions of x, y, z with 
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For the propagation of Love-type wave we have 
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Using Eq. (13) in Eqs. (11) and (12) we get 
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By using Eq. (14) and Eq. (15), we get 
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3    ANALYTICAL SOLUTIONS  

3.1 Solution for orthotropic layer 

We consider the solution of Eq. (9) of the form   ik x ctv x z t V z e ( )

1 1, , ( )  . With this assumption Eq. (9) becomes 
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Therefore the expression for displacement in the upper layer is obtained as: 

 

 
z

ik x ctv z e A pz A pz e ( )2
1 1 2( ) cos sin


   (19) 

 

where A1
and A2

are arbitrary constants and 

 

Nc
p k

N

*2
2 2 2

2 *

1

1
= 4

2




 
   

 
 (20) 

3.2 Solution for half-space 

We assume the solution of Eq. (16) of the form 
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 and we take the inhomogeneity for the non-homogeneous elastic half-space in the form  



                                                                                                                                                              S.A.Sahu et.al.                    480 

 

© 2019 IAU, Arak Branch 

0
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where 
0  and 

0  are the constant values of shear modulus   and mass density 
2 at the interface 0z   and   is 

a constant (heterogeneity parameter). Using the Eqs. (21), (22) and (23), Eq. (16) becomes 
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Now considering the fact that displacement component vanishes ( i.e.,  2 0v z  ) as z  , we obtain 
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Therefore the expression for displacement in the lower half-space is obtained as: 

 

  z ik x ctv z A e e ( )

2 3

   (26) 

4    BOUNDARY CONDITIONS AND FREQUENCY RELATION  

 

The upper surface of the layer is stress free at  1z x H   
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Using the conditions given in Eqs. (27),(28) and (29) we get the following equations 
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On eliminating the arbitrary constants 
1 2,A A and

3A from Eqs. (30), (31) and (32) we get
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The Eq. (33) is referred as dispersion equation, which relates the phase velocity of propagation /c k   to the 

wave number.  

5    VALIDATION OF THE PROBLEM  

When the heterogeneity of the layer is neglected and the layer and the half-space is taken as isotropic, and also the 

corrugation is removed from the lower boundary surfaces i.e. * *

1 2 1 2 2 10, , 0, , 0, 0N N             . We 

have 
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where 1

*





 . The Eq. (34) is the classical Love wave equation. This expression also validates the condition  

2c    .   

6    NUMERICAL ILLUSTRATIONS  

We have taken the following values for our numerical calculation. For orthotropic medium (Kundu et al. [3]) 

 
* 10 25.82×10 /N N m , * 10 2

1 3.99×10 /N N m , 34500 /kg m    

 

For elastic half-space (Singh and Singh [12]) 
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11 2= 6.5 × 10 /N m , 34600 /kg m    

7    GRAPHICAL DISCUSSIONS   

To exhibit the influence of affecting parameters on phase and group velocity of Love-type wave in considered 

model, graphs are plotted and shown through Fig. 2 to Fig. 8. The general trend in variation of phase velocity is 

found to be decreasing with wave number (Figs. 2 to 7). In more contrast, Fig.2 shows the variation of phase 

velocity of Love-type wave with respect to dimensionless wave number for increasing value of height of the 

orthotropic layer. We observe that the phase velocity is favored by the height of the layer. Fig.3 exhibits the 

variation of phase velocity of the Love-type wave with respect to dimensionless wave number for increasing value 

of heterogeneity parameter (  ) of the layer. We observe that the phase velocity increases with increase in values of 

 . Figs. 4 and 5 illustrate the variation of phase velocity of Love-type wave with respect to dimensionless wave 

number for increasing corrugation parameter of the surface and for increasing corrugation parameter of the interface. 

A comparative study of the graphs in Figs. 4 and 5 declare that the two of corrugations have different effects on the 

velocity of considered surface wave, i.e. the phase velocity increases with increase in corrugation of the surface of 

the layer ( )aH  whereas the phase velocity decreases with the increase in corrugation of the interface ( )bH . Fig. 6 

shows the variation of phase velocity of Love-type wave with respect to dimensionless wave number for increasing 

value of heterogeneity parameter    of the half-space. It is observed that the phase velocity increases with the 

increase of the heterogeneity in the half-space   . Fig. 7 elucidates the variation of phase velocity of Love-type 

wave with respect to dimensionless wave number for different values of corrugation parameter. Fig. 8 depicts the 

variation of the group velocity of Love-type wave with respect to dimensionless wave number for different values of 

heterogeneity parameter of the surface of the orthotropic layer. The figure portrays that the group velocity decreases 

with the increase in heterogeneity parameter ( ) of the surface of the layer.  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH for different values of 

height ( )H of the orthotropic medium. 

  

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH  for different values of 

heterogeneity parameter (  ) of the layer. 
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Fig.4 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH for different values of 

corrugation of the surface of the layer ( )aH . 

  

 

 

 

 

 

 

 

Fig.5 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH for different values of 

corrugation at the interface  bH . 

  

 

 

 

 

 

 

 

Fig.6 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH for different values of 

heterogeneity parameter ( ) of the half-space. 

  

 

 

 

 

 

 

Fig.7 

Variation of dimensionless phase velocity ( / )c  against 

dimensionless wave number ( )kH for different values of 

corrugation parameter. 

 

  

 

 

 

 

 

 

 

Fig.8 

Variation of dimensionless group velocity ( )cg against 

dimensionless wave number ( )kH for different values of 

heterogeneity of the layer ( ) . 
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8    CONCLUSIONS 

The propagation of Love-type waves has been investigated by considering a structure where an orthotropic medium 

is lying over an elastic half-space. Dispersion relation has been derived in closed form and found in good agreement 

with the classical case of Love wave. Considerable effects of heterogeneity and corrugation parameters on the phase 

velocity of the considered wave have been observed. Also, the effect of heterogeneity of the layer on the group 

velocity has been shown by means of graphs. Finally, the following outcome can be drawn from the present study: 

1. Dimensionless phase velocity ( / )c  of the Love-type waves decreases with respect to the dimensionless 

wave number ( )kH in all the cases as shown in Fig. 2 to Fig. 8. 

2. As we increase the height of the layer ( )H , the phase velocity of the considered wave is found to be 

increasing. 

3. The corrugation parameter of the upper surface of orthotropic layer ( )aH favours the phase velocity 

whereas corrugation parameter at the interface  bH decreases the phase velocity of the considered waves. 

4. Both the heterogeneity associated with the layer   as well as heterogeneity considered in the half-space 

( )  favours the phase velocity of the Love-type waves. 

5. It can be depicted from Fig. 8 that the increase in heterogeneity parameter of the layer   decreases the 

group velocity of the Love-type waves. 

 From the above discussion, we can conclude that the heterogeneities in the layer and half-space have remarkably 

affected the velocity of Love-type waves. Moreover, corrugation also affects the velocity profile of considered 

waves significantly.  
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