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 ABSTRACT 

 The Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and 

pyromagnetic effects under thermal environment. The effects of such 

pyroelectric and pyromagnetic behavior on vibration, buckling and 

deflection analysis of partially cracked thin MEE plate is presented and 

discussed in this paper. The aim of the study is to develop an analytical 

model for the vibration and geometrically linear thermal buckling 

analysis of cracked MEE plate based on the classical plate theory (CPT). 

The line spring model (LSM) is modified for the crack terms to 

accommodate the effect of electric and magnetic field rigidities, whereas 

the effect of thermal environment is accommodated in the form of 

thermal moment and in-plane forces. A classical relation for thermal 

buckling phenomenon of cracked MEE plate is also proposed. The 

governing equation for cracked MEE plate has also been solved to get 

central deflection which shows an important phenomenon of shift in 

primary resonance due to crack and temperature rise. The results 

evaluated for natural frequencies as affected by crack length, plate aspect 

ratio and critical buckling temperature are presented for first four modes 

of vibration. The obtained results reveal that the fundamental frequency 

of the cracked plate decreases with increase in temperature and crack 

length. Furthermore the variation of the critical buckling temperature 

with plate aspect ratio and crack length is also established for different 

modes of vibration. 

                                        © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Vibration; Buckling; Temperature; Crack; Magneto-electro-
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1    INTRODUCTION 

 AGNETO-ELECTRO-ELASTIC materials belong to the family of smart materials; they exhibit 

interaction between elastic, electro-magnetic effects and have ability to convert energy among electricity, 

elasticity and magnetism. Such behavior of MEE material has widespread opportunities to devise efficient sensors 

and actuators for smart structures [1]. MEE thin plates are widely used in electric packaging, electromagnetic 
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probes, ultrasonic imaging, acoustics, actuators and sensors [1–3]. In the past decade, various analytical and 

numerical approaches have been proposed for the vibration analysis of smart structures. Among them, the systematic 

investigations for determining dynamic characteristics and material properties of the MEE plates have drawn 

significant attention of researches by different authors. Chen et al. [4] determined the effective properties of 

BaTiO3–CoFe2O4 layered composite and established a model for the linear coupling effect between electricity, 

elasticity and magnetism of the MEE composite. The effective magneto-electro-elastic moduli of fiber reinforced 

and laminated BaTiO3–CoFe2O4 composite is determined by Li [5]. They concluded for both fibrous and laminated 

composite the variation in the volume fraction of BaTiO3 affects the magneto-electro coefficients. Xue and Pan [6] 

calculated the effective Poisson’s ratio and Young’s modulus of the MEE composite rod made of different volume 

fraction of BaTiO3 material in BaTiO3 - CoFe2O4 composite. Wu and Huang [7] presented an analytical approach for 

investigating the effective material properties of fibrous MEE composite using and the Mori-Tanaka theory. In 

absence of thermal environment, Pan [8] derived a three dimensional exact solution for anisotropic MEE rectangular 

plate with all edges simply supported, under both surface and internal loads. Then, extending their previous work 

Pan and Heyliger [9] derived an analytical solution for free vibration analysis of the multilayered MEE composite 

plate under simply supported boundary condition. Ramirez et al., [10,11] presented an analytical solution  for free 

vibration problem of MEE plates and determined vibration characteristics of laminated MEE plates [10] and 

Functionally graded MEE composite plates [11]. Moita et al., [12] presented a higher order FEM model for the static 

and free vibration analysis of laminated MEE plate. Liu and Chang [3] proposed a closed form expression for the 

vibration analysis of thin MEE composite plate. They evaluated the natural frequency analytically for different 

volume fraction of piezoelectric material BaTiO3 using the classical plate theory. Similarly, the studies vibration 

problems of laminated MEE intact plates using single-layer approach has also been proposed by different 

researchers [13–16]. Li and Zhang [17] used Mindlin plate theory to derive the equation of motion for vibration 

problem of a magneto-electro-elastic plate resting on a Pasternak foundation. Liu [2] determined the exact solution 

for deformation analysis for fiber reinforced MEE composite plate and derived a closed form expression for the 

vibration problem of MEE plate using Kirchhoff thin-plate theory. Similarly, many researchers (Ref. [18–20]) 

investigated vibration of multilayered MEE plates using the FSDT and classical theory. Phoenix et al. [21] proposed 

mathematical formulation for the static and dynamic analysis of coupled magneto-electro-elastic problems using 

finite element method. They worked on the coupled magneto-electro-elastic problems using extended RMVT 

theorem. Guan and He [22] obtained the analytical solution of governing equation for 2D problem of transversely 

isotropic MEE plate by simplifying the physical quantities in form of four harmonic functions using Almansi’s 

theorem. Recently, Shooshtari and Razavi [23] used higher-order theory (HSDT) for vibration problems of intact 

MEE plates and they also proposed a mathematical model for it. With the thermal effects considered, Rao and Sunar 

[24] studied the influence of temperature variation on overall performance of a distributed control system made of 

piezoelectric material. Li and Dunn [25] and Li [26] also included the thermal effects in their proposed formulation 

to study the effective behavior of MEE composite under thermal environment. Using the displacement and stress 

functions. Chen et al., [27] proposed an analytical solution for free vibration problem of  transversely isotropic 

magneto-electro-thermo-elastic plate using the potential theory method. Recently, Hou et al. [28,29] investigated  a 

3-D Green’s function for a steady point heat source on the surface of a semi-infinite and two-phase transversely 

isotropic magneto-electro-thermo-elastic material by Chen’s general solution. Ke [30] studied the  vibration 

response of MEE nano-plates using the nonlocal and Kirchhoff plate theory under influence of thermal environment.  

It is known that the cracks or holes in a plate make its dynamic behavior drastically different from that of an intact 

plate. Mostly numerical techniques are used for static solutions for cracked plate, but an approximate analytical 

solution has been proposed by the simplified Line Spring Model (LSM). This concept was first introduced by Rice 

and Levy [31], for investigating the analytical solution of cracked plates based on Kirchhoff's thin plate theory. They 

represented the surface crack as persistent line spring with stretching, bending and twisting compliances. Later on 

the effect of transverse shear deformation is also introduced in the model by Delalae and Erdogan [32] to improve 

the effectiveness of model. Zheng and Dai [33] determined the stress intensity factors at the crack tips by employing 

this simplified LSM of cracked isotopic plate. Khadem and Rezaee [34] were introduced the modified comparison 

functions for analysis of a simply supported cracked rectangular plate. Using the LSM, an approximate analytical 

model for an isotropic thin rectangular plate with a part-through surface crack located at its centre was first time 

developed by Israr et al. [35]. They were expressed the relationship between tensile and bending force effects at far 

sides of the plate and at crack location in their work. By extending the work of Israr et al. [35], Ismail and Cartmell 

[36] developed an analytical model for cracked rectangular plate with various angular orientation of crack and they 

validated their results with experimentation also. It is concluded from their work that the increase in length of crack 

and its angular orientation decreases the natural frequencies of plate. Recently, Joshi et al. [37,38] and Gupta et al. 

[39,40] have also extended the work of Israr et al. [35] for multiple line cracks located at the centre of the cracked 
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isotropic [37,39] and orthotropic plates [38,40]. They modified the developed model of Israr et al. [35] to 

incorporate the influence of internal cracks in it. Extending their work, the analysis on vibration and buckling 

problems of partially cracked isotropic [41] and orthotropic plates [42] under influence of thermal environment has 

been also presented by them. Soni et al. [43] performed an analytical study on non linear vibration problem of 

cracked MEE plate submerged in fluid. They modified the previously developed models to accommodate the effect 

of fluidic medium. The literature shows that the vibration of intact plates is affected by the presence of thermal 

environment and the work of researchers (Refs.[37,38,41,42]) show that the vibration of plates is affected by the 

presence of crack. Thus the study of influence of crack on the vibration behavior of magneto-electro-thermo-elastic 

plates becomes significant. As per the author’s knowledge, there seems no study dealing with the modeling of the 

vibration problem of partially cracked magneto-electro-elastic plates in thermal environment. The difficulty in 

coupling the elasticity, electricity, magnetism and pyroeffects under thermal environment may be the reason. The 

present study fills this gap by proposing an analytical model which addresses the following: 

1. Modeling of free vibrations of partially cracked magneto-electro-elastic plates considering the effect of 

thermal environment. 

2. A unique classical relation for critical buckling temperature of cracked magneto-electro-elastic plate is 

presented considering the pyroelectric and pyromagnetic behavior of the plate. 

3. The classical relation for central deflection of cracked MEE plate which shows an important phenomenon 

of shift in primary resonance due to crack and temperature rise. 

4. New results are presented for fundamental frequencies of cracked magneto-electro-elastic plate as affected 

by crack length, plate aspect ratio and rise in temperature. 

5. The coupling effect of elasticity, electricity, temperature and magnetism has been incorporated in the 

constitutive relations. 

The present work extends the analytical model proposed by Joshi et al. [41,42] and applies it to the case of a 

transversely isotropic cracked MEE plate in the presence of thermal environment, The MEE plate material is made 

of fiber-reinforced BaTiO3–CoFe2O4 composite, contains a partial crack at the centre of plate. The simplified LSM 

for elasticity is modified to accommodate the pyroelectric and pyromagnetic behavior of MEE plate. The influence 

of thermal environment is incorporated by considering thermal moments and in-plane forces due to temperature. The 

in-plane deflections are assumed to be restricted either by boundary conditions or by adjacent structures in both x 

and y directions. The plate configuration is shown in Fig. 1 in which the dimensions of the plate taken along x and y 

directions are l1 and l2 respectively. The thickness of the plate is represented by h. 2a is the crack length at plate 

centre which is parallel to the x axis and the depth of the crack is assumed to be constant. The simply supported 

boundary condition (SSSS) shown in Fig. 2 is considered to study the effect of crack length, plate aspect ratio and 

critical buckling temperature on the vibration response of magneto-electro-thermo-elastic plate. 
 

 

 

 

 

 

Fig.1 

Plate configuration showing a part through surface crack at 

the center of plate. 
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Fig.2 

Cracked MEE plate with all edges simply supported and 

in-plane displacements restricted. 

2    GOVERNING EQUATION  

For the MEE plate, it is known that the equation of motion based on the Kirchhoff’s classical plate hypothesis 

represents the effect of electricity and magnetism in plate by the electrical and magnetic field rigidities. To 
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incorporate the effect of thermal environment for a thin MEE rectangular plate, the pyroelectric and pyromagnetic 

coefficients are considered in the stress-strain relations. To derive such a governing equation of motion for partially 

cracked magneto-electro-thermo-elastic plate as shown in Fig. 1, the following assumptions are adopted for 

modeling; 

1. The plate is presumed as thin, homogenous and impeccably elastic composed of Magneto-electro-elastic 

material.  

2. The mid-plane stays unstrained consequent to bending, for that reason the normal strain (
z ), resulting 

from transverse loading, might be discarded. The normal stress  
z  is neglected from constitutive relations 

in the modeling because of small magnitude as compared to the other stress components. 

3. Effects of rotary inertia and shear deformation are neglected.  

4. The temperature variation is thought to be linear all through the thickness of the plate; 

   ( T z) / 2avgT z T   , where 
t bT T T    is the temperature difference between the top and the 

bottom surface of the plate and   / 2avg t bT T T   is average temperature. 

Consider a transversely isotropic magneto-electro-thermo-elastic plate in Cartesian coordinates with z direction 

along the plate thickness and perpendicular to the plane of isotropy. Based on the above classical assumptions, the 

constitutive relations for magneto-electro-thermo-elastic plate can be obtained [3,44–46],[43]as: 

 

 
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,x y  , and ,x y   are the normal stresses and normal strains in x and y direction respectively. Similarly,  xy  

and xy  are the strain and shear stress of x-y plane.  ,      and  ( )T z  are the magnetic potential, electric potential 

and temperature increment respectively.  
iB  and  

iD  are magnetic induction and electric displacement 

components. ,    ,   ,   ,   ,   ,   ,    ij ij ij ij ij ij i ic e E d q P   and 
i  are the elastic, piezoelectric, dielectric, magnetoelectric, 

piezomagnetic, magnetic, thermal modulus,  pyroelectric and pyromagnetic constants respectively. In present work, 

all type material constants are assumed to be constant. In the absence of the electric charge, body force and current, 

the equilibrium equations can be expressed as: 

 

0

0

0

xyx xz

xy y yz

yzxz z

x y z

x y z

x y z

 

  

 

 
  

  

  
  

  

 
  

  

 (4) 
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0
yx z

DD D
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 (5) 

 

0
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On substituting Eqs.(2) and (3) into Eqs.(5) and (6) respectively, one can express the two equations (Eqs. (5) and 

(6)) as: 
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which also implies, 
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On solving Eq. (9) and Eq. (10) using crammer’s rule of determinants, one obtains; 
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Integration of Eqs.(11) and (12) yields, 
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where, 
0  and 

0  are the integration constants also can be treated as the variation of electric and magnetic field in 

the transverse direction of plate. In present work closed-circuit magneto-electric boundary condition is considered 

implying that, these constants, 0  and 0  can be taken as zero [23]. Hence the above two expressions of electric 

and magnetic potential can be simplified to, 
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 2 4

,   ( )z x y T z
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Eq.(13) and Eq.(14) represents the variation of electric and magnetic potential along the plate thickness direction 

in terms of normal strains in plane directions. On representing the mid surface strains ( , x y  and 
xy ) in terms of 

lateral deflection as: 

 
2 2 2

2 2
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  

  
 (15) 

                                                                                                

On substituting Eqs. (13) – (15) in Eq.(1), one can obtain the bending moments in terms of lateral deflection as: 

 

2

2

 

h

x x xe xele xm Tx

h

M zdz M M M M





      (16) 

 

2

2

h

y y ye yele ym Ty

h

M zdz M M M M





      (17) 

 

3 22

66

2

   2
12

h

xy xy

h

h w
M zdz c

x y






 
    

  
  (18) 

 

where, 
3 2 2

11 12
2 212

xe

h w w
M c c

x y

  
   

  
 and 

3 2 2

12 11
2 212

ye

h w w
M c c

x y

  
   

  
 are the moments due to elasticity. 

3
21

31

12
xele yele

h
M M e w

 
     

 are the moments due to electric field. 
3

22

31
12

xm ym

h
M M q w

 
     

 are the 

moments due to magnetic field. 
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  
 are the resultant thermal moment 

due to thermal environment. 

Consider a cracked MEE plate element having all the bending moments and transverse forces acting on the mid-

plane as shown in Fig. 3. Apart from the elastic bending moments, the bending moments due to electric field 

(   ,  )xele yeleM M , magnetic field  (  ,  )xm ymM M  and temperature (  ,  )Tx TyM M is also shown in Fig. 3. my  is the 

additional bending moment due to the crack of length 2a which represents the effect of  crack as deduced in line 

spring model (LSM). Use of such additional bending moment (my) for a surface crack of length 2a is also evident in 

the published work of Israr et al. [35]. 

On taking the equilibrium of all the forces along z direction, one obtains, 
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where, xQ  and yQ  are the transverse forces per unit length in the plate thickness direction,  
2

2

w
h

t





 represents the 

inertia force of vibrating plate in which   is the density and h is the thickness of plate and  zP  is the transverse 

load per unit area. 
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Fig.3 

Plate element showing bending moments and 

transverse forces on middle plane. 

 

On taking moment about the x and y axes, the equilibrium equations can be written as: 
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Employing Eq.(20) and (21) in Eq.(19) one obtains, 
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On substituting the bending moments in terms of lateral deflection from Eqs. (16) – (18) into Eq.(22),  the 

governing equation for cracked MEE plate can be given as: 
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Since the relation 11 12 66 2c c c   holds [3] for any transversely isotropic material therefore Eq.(23) can be 

simplified as: 
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Fig.4 

In-plane forces on a plate element due to thermal 

environment and crack of length 2a. 
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with the in-plane displacements in both x and y direction being restricted, the uniform or non uniform heating of the 

cracked plate causes membrane or in-plane forces [35,37,41,42,47]. Literature (Refs. [35,37,38]) show the addition 

of such in-plane forces to the governing differential equation of motion. The application of magneto-electro-thermo-

elastic thin plates in actuators and sensors are generally subjected to in-plane forces either by plate boundary 

conditions or adjacent structures or temperature variation. In the present study for magneto-electro-thermo-elastic 

plates, the in-plane forces only due to temperature variation (
TxN  and 

TyN ) are considered and in-plane forces due 

to stretching ( ,x yN N and  
xyN ) are neglected as they do not affect the stiffness of plate. To consider these thermal 

in-plane forces for the cracked MEE plate, it is arbitrarily assumed in CCFF boundary condition which means the 

two adjacent edges of the plate are fixed and the other two free. Other boundary conditions are equally treatable. 

Fig. 4 shows the equilibrium of in-plane forces on the cracked plate.  
yn  is the additional in-plane force due to 

crack. Taking equilibrium of in-plane forces along z axis leads to, 
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w w w
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where 
TxN  and TyN  are the in-plane forces per unit length due to the temperature variation and 

yn is the additional 

in-plane force per unit length due to the crack of length 2a (Ref. [41]). The shear force TxyN  is neglected in Fig. 4 as 

temperature does not affect the shear component [48][49]. On adding the in-plane forces of Eq.(25) to Eq. (24), the 

final governing equation of a cracked MEE plate becomes; 
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where, 
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
 denotes the effective 

rigidities due to electricity and magnetism respectively.  

Literature on the study of cracked plates shows that many of the researchers used the line spring model to 

formulate the crack terms for additional bending moment ( ym ) and in-plane force ( yn ). It gives the relationship 

between the bending and tensile stresses at the crack location and at far sides of the plate. Recently, Joshi et al. [41] 

and Soni et al. [43] derived the above relationship of the tensile and bending loads at the far sides of the plate and at 

the crack location in presence of thermal environment for the isotropic and MEE plates. Thus the relations for 

resultant in-plane forces 
yn  and bending moments 

ym  can be written as [41] [43], 

 

  2

2
 

6   1 2
y Ty

bt tt

a
n N

h a  


  
 (27) 

 

 
 

  

2
 

3   3 )(1 2
6

y ye yele ym Ty

bt
bb

a
m M M M M

h a


  

   
 

    
 

 
(28) 

 



Vibration, Buckling and Deflection Analysis….                             462 
 

© 2019 IAU, Arak Branch 

where, the terms    ,   , bb tt bt tb     are crack compliance coefficients for bending, stretching and tensile-bending 

respectively. The crack compliance coefficients depend on crack depth (d) to thickness (h) ratio and vanish when 

0d  . The required expressions for compliance coefficients as a function of the ratio of crack depth to plate 

thickness  /d h   can be written as (Ref. [35]), 
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It is noted that these above expressions for compliance coefficients are valid only for  /d h   values within 

the range 0.1– 0.7 and in the present model these   is taken 0.6. v is the effective Poisson’s ratio of MEE plate and 

it can be expressed as (Ref. [6]), 
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On employing Eq. (27) and (28) in Eq. (26) and expressing the moment  
yM  in terms of transverse deflection 

( )w  from Eq. (17) we get the required governing equation of cracked MEE plate as: 
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Similarly, on expressing the moments ( ,  ,  )ye yele ymM M M  in terms of transverse deflection ( )w   from Eq.(17) 

one obtains, 
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(30) 

3    RELATION FOR NATURAL FREQUANCY  

The presence of external environment like rise in temperature has been included in the governing equation of 

cracked plate in the form of thermal bending moments and in-plane compressive forces. Three significant solution 

cases arise by the presence of thermal environment; (1) the plate is heated throughout its volume uniformly 

( 0)Tx TyM M  with in-plane deflections restricted (2) Unrestricted in-plane deflections ( 0Tx TyN N  ) and 

only thermal moment (3) The third solution can be found for presence of both thermal bending and in-plane 

compressive thermal forces. The present work restricts itself to the formulation of governing equation for all the 

above three cases and give results for case (1). Since, in majority of engineering applications thin plate structures 
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having good thermal conductivity are used, there is little temperature gradient along the thickness of the plate and 

they can be considered as uniformly heated plates. The constant in-plane compressive forces induced due to 

temperature are only considered making the model geometrically linear. So, for a plate in the absence of thermal 

moments ( 0)Tx TyM M  and the presence of constant in-plane compressive forces (
TxN and 

TyN ) due to uniform 

rise in temperature, the governing equation (Eq. (30)) becomes 
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On substituting the Eq.(13) and (14) into Eq.(1), integrating them with respect to z-direction over the plate 

thickness and neglecting the in-plane forces due to lateral deflection of plate. The required expression for in-plane 

forces due to thermal environment only can be proposed as: 
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For a uniform heated plate, the constant in-plane forces given in Eq. (32) can be reduced as: 
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where 
cT  is the temperature rise above the temperature at which the plate is stress free. On substituting Eq. (33) into 

Eq. (31) one obtains 
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Assuming the solution for lateral deflection as: 
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where,   is the vibrational frequency. On substituting the expression of lateral deflection from Eq. (35) into Eq. 

(34), one can obtain the natural frequencies  mn  of cracked MEE plate in presence of thermal environment as: 
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plate with side of 
1l   and  1m n   , the natural frequency 

11   takes the form which clearly shows the presence of 

crack  and temperature terms. 
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On neglecting the crack ( 0a  ) and the temperature ( 0cT  ) terms from Eq. (37), one can find the natural 

frequencies of intact MEE plate as: 
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4    RELATION FOR CRITICAL BUCKLING TEMOERATURE   

Like the mechanical buckling, thermal buckling implies the out of plane deformation due to in-plane compressive 

forces produced by the rise in temperature. Thermal buckling is an equilibrium position between stiffness and in-

plane temperature forces satisfying the boundary conditions.  When a restrained plate is uniformly heated then due 

to developed thermal stresses, it buckles at a specific temperature [49]. Literature Ref. [49] and [41] shows the 

classical relation for buckling temperature for an intact and cracked isotropic plate respectively. A unique classical 

relation for buckling temperature for cracked MEE plate is derived in this section. The material properties are 

assumed to be independent of temperature. For geometrically linear i.e. 0Tx Ty M  M   and constant in-plane 

forces due to uniform rise in temperature
TxN  and TyN ; only the static and no kinematic boundary conditions have 

to be satisfied (Ref. [50]). 

Consider the cracked MEE plate element with all edges simply supported with in-plane displacement restricted, 

shown in Fig. 2. It is known that at buckling temperature, the fundamental frequency for an intact plate becomes 

zero (Ref. [51]) there by making the stiffness of the plate as zero. This is equally true for the cracked plate also. So, 

in the absence of thermal bending and the presence of constant in-plane forces due to uniform rise in temperature; 

the equation of equilibrium (Eq. (39)) for cracked MEE plate can be obtained by equating the stiffness to zero. 
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Assuming the solution as: 
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    . Using Eq. (39) the expression for buckling temperature of a cracked MEE plate can 

be simplified as: 
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From Eq. (41), the critical buckling temperature 
bcrT  can be evaluated for 1m n  , as for other values of m 

and n, the buckling temperature obtained is higher. For an un-cracked (intact) MEE plate (2a = 0) Eq. (41) can be 

written as: 
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It is important here to mention that the literature lacks in classical thermal buckling relation for MEE intact and 

cracked plate. The present work proposes such relations given by Eq.(41) and Eq.(42) respectively. These relations 

clearly show the effect of electric, magnetic and thermal fields on critical buckling temperature. 

5    RELATION FOR CENTRAL DEFLECTION OF PLATE  

Consider a transversely isotropic magneto-electro-thermo-elastic cracked plate with all edges simply supported, 

subjected to a lateral uniformly distributed dynamic load (
zP ) harmonically varying with time. For a plate in the 

absence of thermal bending ( 0Tx TyM  M  ) and the presence of constant in-plane forces (
Tx N  and Ty N ) due to 

uniform rise in temperature, the governing equation (Eq. (30)) becomes 
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 (43) 

 

Assuming the solution for lateral deflection as: 

 

 
1 2

( , , ) sin   sin sinmn

m x n y
w x y t W t

l l

 


   
    

   
 (44) 

 

where,   is the vibrational frequency. Now for the case of forced flexural vibrations, the applied dynamic lateral 

load   ( , , )z zP P x y t  can be expressed as: [68] 

 

 
1 2

( , , ) sin   sin sinz mn

m x n y
P x y t P t

l l

    
    

   
 (45) 

 

with   being the operational frequency of the load. Substituting the general solution of lateral deflection  w  from 

Eq. (44) with   being replaced by     and the lateral dynamic load ( zP ) form Eq. (45) into the governing equation 



Vibration, Buckling and Deflection Analysis….                             466 
 

© 2019 IAU, Arak Branch 

(Eq. (43)) results in an expression for 
mnW . Thus the classical relation for central deflection of cracked MEE plate in 

the presence of thermal environment can be proposed as: 
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(46) 

 

For a special case of a square plate with side of 
1l  and  1m n  , the central deflection 

11W  takes the form 

which clearly shows the presence of crack term and temperature terms. 
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(47) 

 

The result for central deflection of a cracked MEE plate without influence of thermal environment can be 

expressed as: 
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(48) 

 

Similarly, the central deflection of a uniformly heated MEE plate without any crack can be expressed as: 
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(49) 

 

The central deflection of an intact MEE plate ( 0, 0ca T  ) 
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(50) 

 

The central deflection ratio 
11 11/cracked intactW W  can be obtained by dividing Eq. (48) and Eq. (50) as: 
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or 
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where,  
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  is the natural frequency of intact MEE plate. Similarly, the central deflection 

ratio 
11 11/heated intactW W  can be obtained by dividing Eq. (49) and Eq. (50) as: 
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(53) 

6    RESULTS AND DISCUSSION   

In this section, the analytical results for free vibration and buckling of partially cracked MEE plate in presence of 

thermal environment are presented. Since the literature lacks in results for cracked MEE plate under influence of the 

thermal environment, new results for frequencies of plate are presented as a function half crack length (a), plate 

aspect ratio 1

2

l

l

 
 
 

 and uniform rise in non-dimensional temperature *

( ) ( )( / )c bcrT T T . The MEE plate specimen 

considered is made up of a fiber reinforced BaTiO3–CoFe2O4 composite for the analysis with material properties 

listed in Table 1. The volume fraction of BaTiO3 and CoFe2O4 for this MEE composite is assumed to be fixed at 

50% for the analysis. 

 
 

Table 1 

Material constant for thin MEE BaTiO3 - CoFe2O4 composite plates. [3], [30] 

Properties BaTiO3–CoFe2O4 

Elastic (109 N/m2) c11 = 226, c12 = 125, c13 = 124, c33 = 216, c44 = 44, c66 = 50 

Piezoelectric (C/m2) e31 = -2.2, e33 = 9.3, e15 = 5.8 

Piezomagnetic (N/Am2) q31 = 290.1, q33 = 349.9, q15 = 275 

Dielectric (10−9 C2 /N m2) E11 = 5.64, E33 = 6.35 

Magnetic (10−6 N s2 /C2) μ11 = -2.97, μ33 = 83.5 

Magnetoelectric (10−12 N s/VC) d11 = 5.367, d33 = 2737.5 

Thermal moduli (105 NK−1m−2) β1 = 4.74, β3 = 4.53 

Pyroelectric  (10−6 CN−1) P3 = 25 

Pyromagnetic (10−6 NA−1m−1K−1) 3 = 5.19 

Mass density (kgm−3) ρ = 5550 

 

For aiming to validate the present model the analytical solution obtained using present study is first applied to 

the case of pure thin elastic plate in absence of thermal environment. For a purely thin elastic plate, it is known that 

the piezomagnetic and piezoelectric effects will vanish i.e., 0M   and 0E  . The non-dimensional frequency 

parameter  2

1 /mn L h D   for a thin elastic plate having in-plane dimensions 1 2 1l l m  and thickness 

0.01h m  are recorded along with the existing results from literature (Ref. [23] [41] [52]) in Table 2. It is seen that 

the listed results show good agreement which verifies the validity of the present model. 

 
 

Table 2 

Non dimensional frequency parameter  2

1 /mnL h D   for intact thin elastic plate. (E = M = 0, T = 0)   

Boundary condition Present Ref. [52] Ref. [41] Ref. [23] 

SSSS 19.739 19.739 - 19.739 

CCSS 28.348 28.350 28.350 - 
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Since most of the research work on analysis of intact magneto-electro-elastic (MEE) plates has been performed 

using the higher order theories, the obtained results of present study are compared with those offered by the higher 

order theories in order to show the efficacy of the present model. Such comparison of results for frequency 

parameter  1 /mn maxl c  of intact MEE plate obtained using the present theory (CPT) and the higher order theory 

(HSDT) is shown in Table 3.  The material properties for the plate are taken from Ref. [23] for comparing the results 

of Table 3. The obtained results from the present theory are slightly higher than the existing results of Ref. [23] 

because of ignoring the rotary inertia and effect of shear deformation in the present model. Regardless of the 

overestimate on the results caused by imposing the plate theory to MEE plate, the present model has obvious 

advantage of being fast, efficient, ease of parametric study and conservative prediction for the vibration 

characteristics. 
 

 

Table 3 

Non dimensional frequency parameter  1 /mn maxl c   for intact MEE plate. (h= 1mm, 
1 / 10l h  ) 

Boundary condition Aspect ratio (
1 2/L L ) Present (CPT) Ref. [23] (HSDT) 

SSSS 

0.5 0.366 0.343 

1    0.585 0.535 

2    1.463 1.233 

CCCC 

0.5 0.730 0.675 

1    1.070 0.962 

2     2.923 2.342 

 

The literature on vibration analysis of plate lacks in the results for cracked MEE plate due to coupling of electro-

elasto-magnetic effects. These effects are further complicated in the presence of thermal environment which induces 

pyroeffects. Thus no work has been done on vibration analysis of cracked magneto-electro-thermo-elastic plates and 

hence the validation of present model is carried out for cracked isotropic plate under influence of thermal 

environment. Table 4., shows the validation of results for dimensionless frequency parameter of cracked isotropic 

plate under CCSS boundary condition. The plate dimensions and mechanical properties are: 
1 2 1l l m  , thickness 

0.01h m , Young’s modulus 70.3E GPa , material density 32660 /kg m  and Poisson’s ratio 0.33v  . 

From Table 4., it can be concluded that the results for intact and cracked isotropic plate can be computed with good 

precision when compared to the results of Ref. [41]. 
 

 

Table 4 

Non dimensional frequency parameter  2

1 /mnL h D   of intact and cracked isotropic plate for CCSS boundary condition. 

( 0E M  ) 

Half Crack Length 

(
1/a l ) 

 *   /c bcrT T T  

*T  = 0.1 *T  = 0.2 *T  = 0.3 

Present Ref [41] Present Ref [41] Present Ref [41] 

0      26.89 26.89 25.35 25.35 23.72 23.72 

0.01 25.95 26.00 24.45 24.51 22.85 22.93 

0.05 23.91 24.17 22.49 22.78 20.96 21.31 

 

The results for natural frequencies of the cracked magneto-electro-thermo-elastic plate as affected by length of 

crack (a), uniform rise in temperature ( *T ) and mode number (m, n) are given next. To study the effect of thermal 

environment on cracked MEE plate, the results for natural frequency are listed in Table 5., for simply supported 

boundary condition. The material constants of the plate are taken from Table 1. The plate dimensions are assumed as 

1 2 1l l m  and 0.01h m . The effective Poisson’s (v) ratio of MEE plate specimen is assumed to be constant at 

0.3 in the present work. The crack depth to plate thickness ratio is taken as 0.6 and the length of the crack 2a is 

located at the centre of plate. The uniform rise in temperature is represented as non-dimensional temperature 

 *   /c bcrT T T  where cT  and bcrT  are the rise in temperature and critical buckling temperature respectively.  
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The influence of temperature variation on natural frequencies of cracked isotropic plate is well established in 

literature; Table 5., shows such results for cracked magneto-electro-thermo-elastic plate for a given crack length and 

mode number. It is seen that for all the different modes of vibration, for a given crack length, as the plate’s 

temperature ( *T ) is increased, the frequencies go on decreasing as result of decrease in stiffness of plate due to the 

thermal stresses. Similarly, for a given rise in temperature ( *T ) of plate when the length of crack increases, the 

natural frequencies decrease as a result of reduction in stiffness of MEE plate. Such lower values of frequencies are 

evident for cracked isotropic plates in absence of thermal effects from the works of Refs. [35–37]. It is interesting to 

see that with increase in crack length (a), the natural frequency decreases significantly for 2
nd

 mode of vibration. It is 

because in the 2
nd

 mode of vibration when plate vibrates symmetric with respect to x axis, one nodal line overlaps 

and no nodal line intersects the crack which decreases frequency more with increase in crack length (a). Such lower 

values of frequencies for second mode are also evident for cracked plates in vacuum from the works of Refs. [53]. 

Thus it is concluded that effect of crack on second mode is more pronounced than the other three modes of 

vibration.  
 

 

Table 5 

Fundamental frequencies 
mn (Rad/sec) for SSSS MEE plate. 

*T  Half crack length a (m) 
Mode (m, n) 

(1, 1) (1, 2) (2, 1) (2, 2) 

0 

0      310.56 776.41 776.41 1242.26 

0.05 284.27 635.45 757.86 1137.07 

 0.1    274.21 576.48 751.09 1096.84 

0.15 268.89 543.64 747.58 1075.55 

0.1 

0      294.63 736.57 736.57 1178.51 

0.05 269.68 602.84 718.97 1078.72 

0.1   260.14 546.90 712.55 1040.55 

0.15 255.09 515.75 709.22 1020.35 

0.2 

0 277.78 694.44 694.44 1111.11 

0.05 254.26 568.36 677.85 1017.03 

0.1 245.26 515.62 671.80 981.04 

0.15 240.50 486.25 668.66 962.00 

0.3 

0      259.84 649.59 649.59 1039.35 

0.05 237.84 531.65 634.07 951.34 

0.1   229.42 482.32 628.41 917.68 

0.15 224.97 454.85 625.47 899.87 

0.4 

0      240.56 601.41 601.41 962.25 

0.05 220.19 492.22 587.04 880.77 

0.1   212.40 446.54 581.79 849.61 

0.15 208.28 421.11 579.08 833.11 

0.5 

0      219.60 549.01 549.01 878.41 

0.05 201.01 449.33 535.89 804.03 

0.1   193.90 407.63 531.10 775.58 

0.15 190.13 384.41 528.62 760.53 

0.6 

0      196.42 491.05 491.05 785.67 

0.05 179.79 401.89 479.32 719.15 

0.1   173.43 364.60 475.03 693.70 

0.15 170.06 343.83 472.81 680.24 

0.7 

0      170.10 425.26 425.26 680.41 

0.05 155.70 348.05 415.10 622.80 

0.1   150.19 315.75 411.39 600.76 

0.15 147.28 297.77 409.47 589.10 

0.8 

0      138.89 347.22 347.22 555.56 

0.05 127.13 284.18 338.93 508.51 

0.1   122.63 257.81 335.90 490.52 

0.15 120.25 243.13 334.33 481.00 

0.9 

0      98.21 245.52 245.52 392.84 

0.05 89.89 200.95 239.66 359.57 

0.1   86.71 182.30 237.52 346.85 

0.15 85.03 171.92 236.41 340.12 
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(a) Mode 1 

 
(b) Mode 2 

  

 
(c) Mode 3 

 
(d) Mode 4 

 

Fig.5 

Variation of fundamental frequencies with *T  for various plate aspect ratio, 
1/ 0.01.a l   

 

The variations in fundamental frequencies with rise in temperature ( *T ) and plate aspect ratio  1 2/l l , for fixed 

crack length (
1/ 0.01a l  ) is shown in Fig. 5. It is seen that for all values of plate aspect ratio, the uniform rise in 

temperature decreases the fundamental frequencies of the cracked plate which satisfies one’s intuition. Thus the 

presence of thermal environment decreases the fundamental frequencies of the plate. Also comparing the decrease in 

Fig. 5(a) to (d), it is seen that effect of the rise in temperature is more pronounced for the second mode of vibration 

as compare to other modes. Similarly, for all values of *T , the fundamental frequency decreases with increase in 

plate aspect ratio. 

Fig. 6 shows the variation of fundamental frequency with plate aspect ratio  1 2/l l  and crack length 1( / )a l , for 

fixed temperature ( * 0.1T  ). Comparing the variation in Fig. 6(a) to (d), it is observed that for all plate aspect ratio 

the fundamental frequency decreases with increase in length of crack and this decrease in more significant for 

second mode of vibration. Similarly, for a given crack length, the fundamental frequency decreases with increase in 

plate aspect ratio. Also comparing the difference in fundamental frequencies in Fig. 6(a) to (d), it is seen that this 

difference increases with the increase in length of crack and plate aspect ratio. 

 

 
(a) Mode 1 

 
(b) Mode 2 
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(c) Mode 3 

 
(d) Mode 4 

 

Fig.6 

Variation of fundamental frequencies with 
1 2/l l  for various crack length, * 0.1.T   

 

The variation in dimensionless critical buckling temperature  . /bcr cra bcr intactT T   of cracked MEE plate with plate 

aspect ratio  1 2/l l  and crack length ratio, for four different modes of vibration is shown in Fig. 7(a) to (d).  It is 

seen that for all values of plate aspect ratio, the increase in length of crack from 
1 5/ 0.0a l   to 0.2, decreases the 

buckling temperature. Thus it is concluded that the presence of crack diminishes the buckling temperature of MEE 

plate which satisfies one’s physical understanding. Similarly, with increase in plate aspect ratio the critical buckling 

temperature decreases for given crack length ratio. Fig. 8 shows the variation of critical buckling temperature with 

thickness for first mode of vibration. It is observed that for a given plate thickness the buckling temperature 

decreases in the presence of crack. Further as the plate becomes thin with increase in 
1 /l h , the buckling 

temperature decreases which is true from one’s physical understanding. 
 

 
(a) Mode 1 

 
(b) Mode 2 

  

 
(c) Mode 3 

 
(d) Mode 4 

Fig.7 

Variation of non-dimensional critical buckling temperature with 1 2/l l  for various crack lengths. 

 

Fig. 9 shows the variation of ratio of deflection of cracked plate to intact MEE plate. In order to investigate the 

primary resonance, the ratio of forcing frequency to fundamental frequency of intact plate is varied from 0.5 to 1.4. 
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It is interesting to note that the presence of crack shifts the primary resonance and it takes place well below 

11/ 1intact  . This is due to decrease in stiffness of plate due to centrally located crack. The results for variation of 

deflection ratio of heated intact plate to intact plate with respect to ratio of forcing frequency and fundamental 

frequency are shown in Fig. 10. With the rise in temperature of plate, it is known that the fundamental frequencies 

decreases, such a fact seen in literature is validated from the results in Fig. 10. As expected the rise of temperature 

decreases fundamental frequency of plate thereby increasing the deflection. The shift in primary resonance can be 

attributed to the decrease in stiffness due to temperature rise. Thus to the best of authors knowledge Figs. 9 and 10 

along with Eqs.( 46) to (53) presents first time the effect of rise in temperature, crack length on deflection and 

primary resonance of MEE plate.  

 

 

 

 

 

 

 

 

Fig.8 

Variation of non-dimensional critical buckling temperature 

with 
1 /l h  for various crack lengths, 

1 2/ 1l l  . 

  

 

 
2

11/ intact  

 

 

 
Fig.9 

Central deflection ratio 
11 11/cracked intactW W  versus the 

normalized operational frequency  
2

11/ intact  for various 

values of crack length (a). 

  

 

 
2

11/ intact  

 

 
 

 

Fig.10 

Central deflection ratio 
11 11/heated intactW W  versus the 

normalized operational frequency  
2

11/ intact  for various 

values of temperature ( *T ). 

7    CONCLUSIONS 

In the present study, an attempt has been made to develop an analytical model for free vibration analysis of a 

partially cracked magneto-electro-elastic (MEE) plate subjected to thermal environment. The proposed model is 

capable of predicting the vibration response of cracked magneto-electro-thermo-elastic plate and has obvious 

advantage of being simple, efficient computation time and ease of parametric study. The classical governing 

equation is thoroughly modified to accommodate the effect of pyroelectric and pyromagnetic behavior on free 
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vibration of MEE plate. The analytical results obtained from present study shows the influence of crack length, plate 

aspect ratio and rise in temperature on fundamental frequency of MEE plate. It is established that the fundamental 

frequency is decreased by rise in temperature of the plate and this decrease in frequency is further augmented by 

presence of a partial crack. A unique classical expression for buckling temperature of cracked magneto-electro-

thermo-elastic plate is presented discounting geometric nonlinearity. It is shown that the presence of the crack at the 

centre of plate decreases the critical buckling temperature. The fact that the natural frequency and critical buckling 

temperature for an intact plate decreases with increase in plate aspect ratio is established to be true for cracked MEE 

plate also. A classical relation for central deflection of cracked and heated MEE plate is also proposed. The effect of 

varying forcing frequency, crack length and temperature rise on deflection has been established.  To the best of the 

authors' knowledge, this is the first attempt to model vibrations of a cracked magneto-electro-thermo-elastic plate 

subjected to temperature rise and hence it would be instructive to formulate the model using some shear deformation 

theory or FEM technique.  
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