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 ABSTRACT 

 The comprehension of the anisotropy impacts on mechanical 

properties of the rolled steel sheets was investigated using a non-

quadratic anisotropic yield function. In this study, experimental and 

modelling determination regarding the behaviour of an industrial 

rolled sheet for a ferritic stainless low-carbon steel were carried 

out. The parameters of the associated yield equation, derived from 

the three orthotropic yield functions proposed by Hill48, Yld96 and 

Yld2000-2d, were determined. Predictions and the evolution of 

normalized yield stress and normalized Lankford parameters 

(plastic strain ratio) obtained by the presented investigative are 

considered. The forecasts given by the YLD2000-2d criterion are 

consistent with that of the experience. In order to describe the path 

of strain behavior, the isotropic hardening function is described 

using the following four empirical standard formulae based on: 

Hollomon, Ludwick, Swift and Voce law. More accurately, the 

anisotropy coefficients of three yield functions are represented as a 

function of the longitudinal equivalent plastic strain. 

                                 © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Constitutive model; Sheet metal forming; Anisotropy 
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1    INTRODUCTION 

 HE use of thin sheet metal is very widely adopted in modern industry. Nowadays, with increasing demands for 

safety, lower weight or reduced fabrication costs, process control and innovative forming processes emerge. The 

rolling sheets are characterized by the presence of three mutually orthogonal planes of orthotropic symmetry. It is 

notable that the rolling process promotes the existence of induced anisotropy, which greatly influences the 

Drawability properties and formability of sheet metals to the desired dimensions and shape. This is especially true 

for aluminum alloys and ferritic steels, which exhibit strong crystallographic textures after hot rolling [1-3]. To 

describe and identify the anisotropic mechanical behavior of materials, several such functions (quadratic and non-

quadratic) have been proposed. First, Hill [4], which is a simple generalization of the isotropic von Mises plasticity 
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to give a quadratic yield criterion mainly associated with the flow rule based on Drucker's postulate.  Another 

isotropic approach of yield functions introduced by Hosford [5] and extended to a planar anisotropic model by 

Barlat et al. [6-11] and the recent yield function development by Aretz [12] to probe the anisotropic properties of 

metals. In addition, a quadratic function of Hill48 and as for the constitutive law, a more flexible and adaptable 

model is the non-quadratic anisotropic yield functions, Yld96 [9] and Yld2000-2d [10], were used to describe the 

initial anisotropic yield surface with the isotropic hardening law for the yield surface evolution. These are having 7 

and 8 material parameters which can be identified respectively by the yield stresses and strain ratios in three uniaxial 

cases, RD (0°), DD (45°) and TD (90°) and one equibiaxial tension case with a varying cross-section. Yield 

functions can involve a several anisotropy coefficients for a material. The identification of these parameters requires 

usually high number mechanical tests in different directions following loading paths. To ensure a certain precision 

of parameters, the number of experimental data should not be lower than the number of material parameters 

considered in the identification operation [13]. The description of initial anisotropy of the yield function coupled 

with optimal hardening evolution, can lead to a good representation of the mechanical behavior [14]. In order to 

describe the path of strain behavior, the isotropic hardening function is described using the following various 

empirical standard formulae based on: Hollomon, Ludwick, Swift and Voce model. For more accuracy, Wang et al. 

[15] proposed an equivalent strain-dependent identification method by taking into account the evolution of 

anisotropic parameters at different plastic strain levels, which these coefficients of Hill48, Yld96 and Yld2000-2d 

yield functions are represented as a function of the longitudinal equivalent plastic strain (  ). 

The remainder of this investigative study is structured as follows. Section 1, a basic mathematical description of 

the anisotropic behavior of a homogeneous rolled sheet, expressed in accordance with the Hill's formalism and 

improving Barlat’s Yld96 and Yld2000-2d yield function of generalized materials, is presented. In Section 2 

describes experiments that were carried out to determine the mechanical characteristics of the material according to 

the needs of the analysis, since mechanical experiments are used to provide comparison with theoretical results. 

Then, in Section 3, describes the isotropic hardening for a metal sheet with four classical laws using curve fitting for 

Stress-Strain experimental data. The yield surface expands and contracts homotheticly in stress space during strain-

hardening and strain-softening, respectively. For convenience, the three groups of independent anisotropy 

coefficients corresponding to the three yield functions, are represented as a function of the longitudinal equivalent 

plastic strain (  ) is employed in Section 4. 

2    PHENOMENOLOGICAL MODELS 

Considering (RD: the rolling direction, TD: the transverse direction and ND: the normal direction) the three 

orthotropic directions) wherein the only nonzero component of the stress tensor is xx   in the sample frame (x, 

y, z) (Fig.1). In this section, three yield criteria were used to predict the anisotropic plastic behaviour of the AISI 

439-430Ti - Ferritic stainless sheet steels (FSS). 

 

 

 

 

 

 

Fig.1 

Schematic illustration of the tensile test used in the sheet 

plane (Symmetric Rolling). 

 

2.1 Hill’s 48 yield criteria 

The first plastic yield criterion describing the anisotropic behavior of rolled sheets, was the orthotropic and quadratic 

criterion proposed by Hill [4], insensitive to Bauschinger effect and to Spherical stress characterized by six 

coefficients independent parameters. In the system of orthotropic coordinates, the Hill’s 48 yield criteria are 

formulated as follows: 

 

ijf Y F G H L M N                   2 2 2 2 2 2 2

22 33 33 11 11 22 23 13 12 0( ) ( ) ( ) ( ) 2 2 2 2  (1) 
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F, G, H, L, M and N anisotropy coefficients can be derived from texture components (see also [2]) or usually 

determined from mechanical tests (i.e.; usual uniaxial tensile as well as simple shearing), as hereafter:  

whenever, in plane stress state (i.e.;     33 13 23 0 , and    11 22 12, , 0 ) , Eq. (1) can be reduced to  

 

F G H N         2 2 2 2

22 11 11 22 12 0( ) 2 2  (2) 

 

where L M N G F H     
3

3 3 3
2

 ,  Hill48 yield function reduces to Mises yield function.    

 If
1

0 , 
2

0  and 
3

0  are the yield stresses in uniaxial tension along the axes RD, TD, and ND, respectively: 

 

 G H   
2

1

0 02       F H   
2

2

0 02      F G   
2

3

02  (3) 

 

If 
23

0 , 
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0  and 
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0  are the simple shear stresses along the anisotropy axes: 
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The most common method to obtain F, G, H and N material parameters of the Hill'48 model, can be related to 

experimental yield stresses as follows. 

For the stress-based method, the Input data is b   0 45 90, , ,  [16].  
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Input data is r r r0 45 90, ,  [17]. 
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Input data is r  0 45 90 90, , ,  [18]. 
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Note that all these variants imply ref  0 . Where   0 45 90, , are unidirectional yield stresses of 0°, 45° and 

90° according to the rolling direction (RD). b  is the biaxial yield stress determined by a biaxial tensile test 

experiment. Noting that, all these variants imply ref  0 . Since formability of any sheet is characterized by  ( )  

mechanical parameter that is primarily related to the size and shape of grains, drawability is usually related to the 

r ( ) -value, (Lankford’s Parameter) which is defined as the ratio of the true strains in the width and in the thickness 
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directions, respectively. Based on the Hill48 quadratic criterion as well as on the associated flow rule according to 

normality principle, relationships determining mechanical and anisotropic parameters are: 
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The anisotropic coefficients F, G, H, and N of Hill-48 were obtained from Eqs. (3) and (4) to computed r-values.  
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2.2 Yld96 yield criteria 

The yield criterion Yld96 proposed by Barlat et al. [9] one of the most accurate anisotropic yield functions for rolled 

sheets presents the following form:  

 

1 2 3 2 3 1 3 1 2 0( ) 2
a a a a

ijf S S S S S S                   (9) 

 

The non-quadratic exponent ‘‘a’’ is a material's constant strongly associated with the crystal structure. For an 

FCC material, the values of the constant a=8 are mainly recommended and a=6 concerning BCC materials. In Eq. 

(7), the eigenvalues of the isotropic plasticity equivalent stress space is given by:  

 
S L       

 

where L is the fourth order symmetric and deviatoric tensor that represents a linear transformation of the Cauchy 

stresses. For orthotropic materials, in a 6 by 6 notation, L reduces to this following form with Ck are material 

constants: 
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For plane stress condition in which ( 0)zz xz yz     and the z-direction is the third principal direction, 
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and 
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The principal deviatoric stresses 
ijS in plane sheet can be formulated as:  
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3 1 2( )S S S    (13) 

 

The coefficients 1,2,3 1 2 3, ,i      are computed using the transformation: 
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P is the transformation matrix between the principal direction of s and the principal axes of anisotropy 

 

cos sin 0

sin cos 0

0 0 1

P

 

 

 
 


 
  

         

 

The relations between 1,2,3 1 2 3, ,i      and   are given by 
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In the above equations, 1 2 3 6 0 1, , , , , , ,x y z zc c c c     are eight coefficients that describe the anisotropy of the 

material. The value of 0z is usually set to 1. Seven parameters obtained by a numerical identification based on the 

experimental data 0 45 90 0 45 90, , , , ,r r r    and b . A nonlinear system of seven equations of the seven unknowns is 

recommended to be solved using the Newton-Raphson method. It should be noted that the function of Yld96 reduces 

to the simple isotropic case when all the seven anisotropy parameters 1 2 3 6 1 2 3, , , , , ,c c c c     in the L tensor are equal 

to 1 and finally by setting the exponent a = 2 and all the anisotropic parameters equal to unit, the standard von 

Mises isotropic criteria is restored. 

2.2.1 Calculation rb-value from Yld96 

The mechanical parameter b yy xxr   (which is defined as the ratio of the true strains in the width and in the 

longitudinal directions, respectively) is analogous to the r-value, and it characterizes the slope of the yield stress of 

the balanced biaxial loading stress state ( )b xx yy   . If the rb coefficient is equal to 1, the isotropic case will be 

recovered, else, it is anisotropic behaviour. This coefficient can be evaluated using three different approaches: the 

first approach concerns experimental way by performing compression tests. The second approach regards the 

computation of this coefficient from a polycrystal model based on the micro-texture of the material. The third 
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approach to theoretically use Yld96 yield function. In this work, since it was not possible to perform compression 

tests. The coefficient rb can be computed by 
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The generalized form of anisotropy equation is described in following equation: 
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Here,  is the orientation measured anticlockwise form reference x-axis. The rotation rules of stress components 

from the specimen reference to the sheet axes in uniaxial test are given as: 
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2.3 Yld2000-2d yield criteria 

Barlat et al [10] proposed a non-quadratic anisotropic plastic potential model for metals, which is also very 

successful for steel. Eq. (18) expresses the Yld2000-2d yield criteria in terms of the principal stress deviators tensor: 

 

1 2 2 1 1 2 0( ) 2 2 2
k k k k

ijf Φ S S S S S S                      (18) 

 

Idem in the case of Yld96, the non-quadratic exponent ‘‘k’’ is a material's constant strongly associated with the 

crystal structure. For an FCC material, the values of the constant k=8 are mainly recommended and k=6 for BCC 

materials. For the anisotropic case, the linear transformations reduce to: 
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Or, the transformation can also be applied to the Cauchy stress tensor   as: 
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S C S C T L
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In this case the first and the second modified principal deviatoric stresses 1,2S  , 1,2S   in plane sheet can be shown 

as:  
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In the previous equations, C’ and C’’ are linear transformation matrices. Where the transformation matrix, T, is 
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The tensors L’ and L’’ representing linear transformations of the stress tensor are. 
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Therefor 1 2 3 0m m mL L L     for m = 1, 2, 3.  For convenience in the calculation of the anisotropy parameters, 

the coefficients of L’ and L’’ can be expressed as follows: 
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Finally, the anisotropic parameters can be expressed in the following manner: 
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The sheet rolled is strongly anisotropic, to describe this property, it is necessary to identify eight independent 

coefficients of anisotropy such as: 1 7....   and 8 , where they reduce to unite in the simple isotropic case. The 

eight unknown anisotropy coefficients of the Yld2000-2d yield function were obtained using the eight experimental 

material data ( 0 45 90 0 45 90, , , , , , ,b br r r r    ). A nonlinear system of seven equations of the seven unknowns is 

recommended to be solved using the Newton-Raphson method to determine the i  parameters.  

The reference yield stress is 0ref  . The rotation rules of stress components from the specimen reference to 

the sheet axes in uniaxial test are given as: 
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( )   : is the yield stress of specimen under uniaxial tensile test.  
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A directional r-value ( )r  , associated with the orientation angle θ in plane sheet can be calculated from 
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3    UNIAXIAL TENSILE TEST 

Uniaxial tensile tests were conducted to determine two essential parameters, the yield stress ( )  and the ( )r  of 

the overall sheet. The sheet samples prepared along three orientations 0°=RD, 45°=DD and 90°=TD from the rolling 

direction (RD) were investigated. The anisotropic coefficients of this rolled sheet were also calculated for the 18% 

pre-strain level and the results were tabulated in Table 1. 
 

Table 1  

Material mechanical property for FS steel in three directions. 

 

     Fig. 2 shows the uniaxial hardening curves for specimens extracted at three different orientations (RD, DD and 

TD). The yield curves in TD and RD are even crossing each other. The experimental data were taken from Chahaoui 

et al. [3]. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Hardening curves for FS steel. 

 

The normalized flow stresses (yield stress) and r-value for different directions are presented in Table 2. Yield 

stresses for each direction were then normalized by the mono-directional yield stress along the rolling direction. 

 
Table 2 

The normalized tensile yield stress by the rolling direction uniaxial yield stress. 

 

Yield stress 
0 u   45 u   90 u   b u   

1 1.021 0.97 1 

 

r-value 
0 0r r  45 0r r  90 0r r  br  

1 2.01 1.17 0.8612 

 

Note that in this work, the equibiaxial yield stress b  was assumed 1b   and the rb-value was computed from 

Yld96.  

4    DETERMINATION OF ANISOTROPY COEFFICIENTS FOR DIFFERENT YIELD FUNCTIONS 

The resulting anisotropic coefficients of Hill’s 1948 (F, G, H and N) and all independent coefficients of Yld96 and 

Yld2d-2000 for as-received material. The Values are summarized in Table 3. 

Fig. 3 reflects the variations of the mechanical parameters for three yield criteria (Hill 1948, Yld96 and Yld2000-

2d). All of them predict the normalized anisotropic coefficient ( )  and ( )r  evolved with θ in Fig. 3(a-b). The 

flow stresses ( )   and the Lankford r-values ( )r   deducted from Yld2000-2d also agree with experimental data 

very well.  Furthermore, the corresponding yield Loci of the materials that are obtained for the studied yield criteria 

were plotted in Fig. 3(c). 
 

Direction ν 
e  (0.2% offset) (MPa) r 

0°  278 0.7 

45°    0.3 283 1. 41 

90°  271 0.82 
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Table 3  

Calculated anisotropy parameters for the FS steel identified from conventional tests. 

 

 

 

FS steel 

 

Hill48 

F  G  H  N  

0.48  0.53  0.51  1.4  

 

YLD96 a=6 
1c  2c  3c  6c  x  y  

1z  
/ 

1.023 0.976 1.023 0.945 1.227 1.612 2.490 / 

 

YLD2000-2d k=6 
1  2  3  4  5  6  7  8  

0.915 1.041 0.914 1.012 1.026 1.001 1.012 0.879 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

Fig.3 

Distribution of the uniaxial mechanical parameters for FS 

steel. (a) Normalized yield stress.(b) Plastic strain ratio 

and in. (c) Comparison of three yield contours predicted 

with Hill48,Yld96, Yld-2000-2d and Experiment 

behaviour. 

5    CURVE FITTING FOR STRESS- STRAIN EXPERIMENTAL DATA WITH ISOTROPIC 

HARDENING MODEL  

The flow stress equation is related with stress and strain data in order to describe the path of strain behavior of FS 

steel. The isotropic hardening function is described using the following various empirical standard formulae based 

on: Hollomon, Ludwick, Swift and Voce model in the rolling direction. 

 The Hollomon hardening law is:  nh

t h tK   

 The Ludwick hardening law is:  

 

 
0

nl

t l tK              (30) 

 

 The Swift hardening law is:     0( )
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 The Voce hardening law is:  0( )exp( )t Sat Sat tnv         

In order to quantitatively evaluate the theoretical yield stress-strain relations, we calculated the average error 

estimation of each equation as: 
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where n is the number of the experimental points; 
i

Theoritical  and 
i

Experimental are the experimental stress and the 

corresponding theoretical stress, respectively. Kh, Kl, Ks, sat , nh, n l, ns, and nv were obtained by fitting data 

( ,t t  ) in the uniaxial tensile test along the rolling direction (0°). The results are presented in Table 4.  

 
Table 4  

Fitting data of the four hardening laws. 

Hollomon Ludwick Swift Voce 

Kh (MPa) 600 Kl (MPa) 806 Ks  (MPa) 685.6 
sat  (MPa) 541 

nh 0.12 nl 0.65 ns 0.166 nv 12.85 

 

In order to describe the plastic property of the material, an isotropic hardening model was fitted to the 

experimental uniaxial tensile data. It was observed from the previous literatures [19-21]. In Fig. 4, the 

experimentally measured stress-strain curve and the fit by the four laws, which were utilized for FS steel. It is shown 

that a good fit is achieved in first by the Voce and it was a better choice of stress-strain evolution of pre-strained 

material. Therefore, the Voce law is adopted in this work. The Voce  hardening model is used to compute the yield 

stress in terms of the total equivalent plastic strain 100%.   

 

 

 

 

 

 

 

 

 

Fig.4 

Fitting of experimental hardening curve with different 

hardening models. 

6    EVOLUTION OF YIELD STRESSES NORMALIZED WITH YIELD STRESS FOR THE ROLLING 

DIRECTION 

Directional uniaxial tensile test 0 0 45 0 90 0, ,      and the assuming of equibiaxial yield stress 0b   and 

br were conducted in order to derive the independent anisotropic coefficients of Hill-48, Yld96 and Yld2000-2d 

yield functions respectively in sheet plane at five  levels. The hardening model of voce (Fig.5) was then used as 

input data to calculate these parameters. Uniaxial stresses were normalized by the uniaxial stresses in the RD for 

different  levels, are listed in Table 5. Moreover, the values of anisotropic parameters of Hill-48 and corresponding 

r-values are tabulated in Table 6. The values of anisotropic parameters of Yld96 and Yld2000-2d model are given in 

Tables 7 and 9 respectively, knowing that at each plastic strain-level the parameters were calculated using the 

Newton-Raphson iteration method. 

 

 

 

 

 

 

 

 

 

 

Fig.5 

The hardening curves from different testing in terms of 

100% of plastic strain. 
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Table 5 

The normalized uniaxial stresses in terms of the plastic work per unit volume wp. 

( )   
0  45  90  0 0   45 0   90 0   0b   

0.001 293 280 275 1 0.955 0.938 0.969 

0.16 509 527 506 1 1.035 0.994 1.014 

0.30 536 552 535 1 1.030 0.998 1.014 

0.40 539 555 539 1 1.030 1.000 1.015 

0.56 541 556 540 1 1.027 0.998 1.012 

 

Note that the equibiaxial yield stress 
b  was assumed in this work. Thus, 

0 90( ) / 2b     at each strain-level 

.  
 
Table 6 

The values of anisotropic parameters of Hill-48 and corresponding r-values. 

( )   F G H N 
0r  45r  90r  br  

0.001 0.464 0.60 0.535 1.66 0.89 1.060 1.154 0.7670 

0.16 0.480 0.49 0.52 1.38 1.055 0.920 1.082 0.9734 

0.30 0.484 0.488 0.515 1.398 1.056 0.938 1.064 0.9920 

0.40 0.485 0.485 0.514 1.40 1.060 0.940 1.060 1.0000 

0.56 0.486 0.490 0.510 1.410 1.040 0.940 0.056 0.9842 

 

Note that the equibiaxial rb-value was calculated from Yld96 (Barlat et al., [10]). 

 
 

Table 7 

The values of anisotropic parameters of Yld96 function (exponent a = 6). 

( )    1c   2c   3c   6c   x   y   1z  

0.001 1.0970     0.9646 1.0347 1.1167 0.7311     1.3396     0.8013     

0.16 0.9923     0.9801     1.0197     0.9148     0.9930     1.0534     1.2772 

0.30 0.9882 0.9842 0.9273 0.9882 1.0108 1.0298 1.2279 

0.40 0.9852 0.9852 1.0147 0.9277 1.0203 1.0203 1.2233 

0.56 0.9902 0.9861     1.0138     0.9341   1.0080     1.0352 1.2057 

 

 

Table 8 

The values of anisotropic parameters of Yld2000-2d function (exponent k = 6). 

( )    1   2   3   4   5   6   7   8  

0.001 0.8760     1.1964 0.9348 1.0134     1.0423     1.1216    1.0495     1.0579 

0.16 0.9912     1.0214 0.9644 0.9915 0.9943     0.9810 0.9622 0.9541 

0.30 0.9990 1.0087 0.9717     0.9917 0.9925     0.9770 0.9677 0.9617 

0.40 1.0029     1.0029     0.9734 0.9911 0.9911     0.9734         0.9678 0.9627 

0.56 0.9971     1.0092 0.9736 0.9925 0.9945 0.9812     0.9706 0.9654 

 

The anisotropy coefficients listed in Tables 6, 7 and 8 were used to plot the diagrams in Figs. 6. Subsequently, 
the evolution of normalized mechanical parameters of flow stresses σ (θ) (yield stresses normalized with yield stress 

for the rolling direction) and Lankford coefficient r(θ) for seven orientations (0°, 15°, 30°, 45°, 60°, 75° and 90°)  is 

plotted at three levels of effective plastic strain   at the start of plastic deformation 001.0 ). Thus, it is 

graphically demonstrated that the evolution of these parameters based on both yield functions (Hill48, Yld96 and 

Yld2000-2d) change with level of   at different orientations and the mechanical response is appreciably 

significant. 

The according parameters are given in Tables 6, 7 and 8; the values of anisotropic parameters of Hill-48, Yld96 

and Yld2000-2d of FS steel were calculated using stress ratio and r-values in each equivalent plastic strain as shown 

in Fig.7(a, b and c). The values the anisotropy coefficients are varied in relation to the increase of the equivalent 

plastic strain until 30% of equivalent plastic strain for Hill48 and Yld2000-2d functions but about 40% forYld96.  

Beyond these values, no significant variation in coefficient evolutions. 
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Fig.6 

Normalized flow stresses ( )  and Lankford ( )r  for seven orientations at three levels of effective plastic strain based on 

both yield functions (Hill48, Yld96 and Yld2000-2d). 

  

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

Fig.7 

Anisotropic coefficients were calculated using values of 

Tables (5- 8).(a) Hill48 Parameters.(b) Yld96 Parameters. 

c) Yld-2d-2000 Parameters. 
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For convenience, the three groups of independent anisotropy coefficients corresponding to the three yield 

functions, are represented as a function of the longitudinal equivalent plastic strain (  ).The independent material 

coefficients calculated at each level of equivalent plastic strains have been optimized using fourth-order polynomial 

equations functions. 

 
4 3 2

0 1 2 3 4id b b b b b                  (32) 

 

These anisotropy coefficients functions are given in Tables 9, 10, and 11 for FS steel witch the varying 

parameters as they were obtained from the fitting procedure. 
 

Table 9 

The anisotropy coefficients of Hill48 yield functions as a function of the equivalent plastic strain (  ). 

Hill48 coefficients Fourth-order fit 

F 
4 3 20.4364 0.7771 0.5242 0.1658 0.464         

G 
4 3 211.654 15.797 7.6038 1.5475 0.6        

H 
4 3 20.3506 0.0857 0.2114 0.1283 0.535         

N 
4 3 232.724 44.928 21.575 4.1859 1.66        

 

Table 10 

The anisotropy coefficients of Yld96 yield functions as a function of the equivalent plastic strain (  ). 

Yld96 coefficients Fourth -order fit 

1c  
4 3 210.38 14.143 6.8914 1.4374 1.097        

2c  
4 3 20.363 0.6749 0.4763 0.1573 0.9646         

3c  
4 3 280.598 90.012 30.107 2.7492 1.0347         

6c  
4 3 279.667 95.161 36.695 5.0232 1.1167        

x  
4 3 224.222 33.077 16.285 3.4949 0.7311         

y  
4 3 224.603 33.894 16.967 3.7365 1.3396        

1z  
4 3 261.99 84.221 39.689 7.4224 0.8013         

 

Table 11 

The anisotropy coefficients of Yld2000-2d yield functions as a function of the equivalent plastic strain (  ). 

Yld2000 coefficients Fourth -order fit 

1  
4 3 210.555 14.439 7.1295 1.5343 0.876         

2  
4 3 215.381 21.246 10.6 2.3089 1.1964        

3  
4 3 20.9401 1.5495 1.0018 0.3095 0.9348         

4  
4 3 22.5877 3.4553 1.6271 0.3194 1.0134        

5  
4 3 24.9207 6.6366 3.2049 0.663 1.0423        

6  
4 3 214.383 19.532 9.4654 1.9521 1.1216        

7  
4 3 210.412 14.227 6.7908 1.31061 1.0495        

8  
4 3 212.227 16.836 8.0874 1.5618 1.0579        

7    CONCLUSIONS 

In the present paper, constitutive formulations based on the three orthotropic yield functions of Hill48, Yld96 and 

Yld2000-2d are presented and analysed to predict the anisotropic plastic behaviour of the AISI 439-430Ti - Ferritic 
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stainless sheet steels (FSS). At several points of experience, Yld2000 criterion gives better agreement of flow 

stresses predictions and r-value anisotropies with experimental data in comparison with Hill’48 and Yld96 

functions. For the isotropic hardening, it is shown that, the Voce hardening law a very good compromise with the 

experimental results for sheet and it is adopted to govern the evolution of the true stress as a function of the 

equivalent plastic strain. This fact makes the possibility to predict the mechanical behavior of the material beyond 

the homogeneous zone of deformation. The three groups of independent anisotropy coefficients corresponding to the 

three yield functions (Hill48; Yld96 and Yld2000-2d yield functions) are represented as a function of the equivalent 

plastic strain (  ) at each level in order to describe the material behavior more accurately. 
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