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 ABSTRACT 

 Collocation methods are popular in providing numerical 

approximations to complicated governing equations owing to their 

simplicity in implementation. However, point collocation methods 

have limitations regarding accuracy and have been modified upon 

with the application of B-spline approximations. The present study 

reports the stress and deformation behavior of shear deformable 

functionally graded cantilever beam using B-spline collocation 

technique. The material grading is along the beam height and varies 

according to power law. Poisson’s ratio is assumed to be a constant. 

The equations are derived using virtual work principle in the 

framework of Timoshenko beams to obtain a unified formulation for 

such beams. A sixth order basis function is used for approximation 

and collocation points are generated using Greville abscissa. 

Deformation and stresses; bending (axial) stresses and transverse 

(shear) stresses, and position of neutral axis are studied for a wide 

range of power law index values. The results are reported along the 

beam cross-section and beam length.                                  

          © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Functionally graded beams; B-spline collocation; 

Timoshenko beams; Power law index.  

1    INTRODUCTION 

INCE mid-1980s, with the advent of Functionally Graded Materials (FGMs), we are witnessing a new era in 

the field of material technology. FGMs, belongs to a class of advanced materials which have continuous 

variation in properties along a desired direction and in desired fashion. In such materials the composition (volume of 

constituents) and hence the structure gradually change over the volume, resulting in corresponding change in the 

properties of the material that is different from either of the parent material. Functionally graded material hence 

eliminates the sharp interfaces existing in composite materials/ structures where failure is usually initiated. Due to 

their customized behavior, FGMs may have very wide applications. If their manufacturing cost is reduced by 

improving the processes, then it may revolutionize the design processes as a whole. A thorough overview about 
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FGMs, their manufacturing techniques, modeling and design and applications can be referred in [1-5]. In [6] an 

exhaustive review on the modeling and analysis of functionally graded materials and their applications has been 

presented. Although considerable research on the functionally graded materials has been reported since their 

conceptualization, most of the work in the area of functionally graded structures (beams and plates) has been done 

only in last decade. Reddy and Chin [7] and Reddy [8] have studied and presented for the first time the modeling of 

FG plates in the framework of shear deformable theory considering the nonlinearities due to large deflection along 

with the variation in material properties across the thickness. Shankar [9] studied the behavior of FG Euler-Bernoulli 

beam using elasticity approach and is considered as the most fundamental work in this realm of FG beams. In this 

work an exponential variation of modulus of elasticity across the thickness is considered, keeping Poisson’s ratio 

constant; the variations in stress and displacements are monitored and the behavior of slender and stubby beams 

under different loading conditions are compared. In [10] Shankar extended his work to include a temperature 

gradient across the width of beam, keeping material property variation only dependent on position and independent 

of temperature; and for the same problem, the author in [11], used the method of Fourier analysis combined with 

Galerkin’s method for solution. Chakraborty et al [12] have developed a new beam element that can be applied to a 

bi-material shear deformable beam with functionally graded intermediate layer and hence to determine its 

mechanical response to static and dynamic loads in a thermal environment. Static and vibration analysis using higher 

order deformation theory for FG beams has been reported in references [13, 15-19]. The approaches to solutions in 

[13-14, 16-19] are various analytical techniques while computational technique was approached in [15]. In [19], 

Guinta et al have formulated a unified formulation using a generic N-order approximation for displacement variables 

of the cross-section and applied the theory to FG beams. The effect of geometric nonlinearity in the form of von 

Karman relations in the displacement terms has been accounted in [20-22]. Due to the variation in material 

properties across the cross-section, neutral axis does not coincide with the centre of gravity of the cross-section. The 

variation of the position of neutral axis with material gradation has been dealt in [22, 23]. An analysis for the FG 

beam resting on Winkler’s foundation and the solution using finite element technique has been reported in [24-25]. 

Li [26] reported a unique unified formulation for FG Timoshenko beam by reducing the three differential equations 

of displacement variables into a single fourth order equation. Effect of rotary inertia and shear deformation has been 

included and the entire formulation may be analytically reduced to Rayleigh and Euler-Bernoulli beam after 

neglecting a few terms. In recent years B-spline collocation technique is increasingly being used to find solutions to 

structural problems also. B-splines are widely accepted standards owing to their flexibility and computational 

efficiency. The collocation technique is quite simpler as compared to Finite Element Method and easy to apply to 

many problems involving differential equations. A comparative study between the B-spline collocation technique, 

Finite Element and Finite difference techniques for a two-parameter singularly perturbed boundary value problem 

has been reported in [27]; the method of B-spline collocation gives better approximation and convergence than the 

other two techniques. As a thumb rule we may presume that B-spline collocation may be preferred for 

comparatively simpler geometries like beams/ plates. The technique has been used successfully in fluid flow and one 

dimensional heat/ mass transfer [28] and also conduction radiation problem [29]. In 1995, Bert et al [30] have 

applied the method of spline collocation to find approximate solution in statics of beams and plates. Sun et al [31] 

have reported the application of B-spline collocation to problems of linear elasticity using orthogonal cubic B-spline 

functions. Vibration analysis of non-uniform beams supported on elastic foundation and of pre-twisted beams using 

spline collocation with uniform knot span has been carried out by Hsu [32, 33]. The effect of non-uniform knot span 

in the spline collocation procedure applied to a structural problem has been studied by Wu et al [34]; the author has 

utilized the concept of Radial Spline functions which includes the knot spacing as a variable, applied the same to 

beam problems and showed that non-uniform knot spacing gives a better approximation. Multiplicity of the knots 

may be an additional parameter in the analysis as it reduces the continuity of the spline at the knots. The effect of 

multiple knots in a structural problem is considered by Provatidis [35] through finite element analysis using cubic B-

spline shape functions. Recently, Isogeometric (IG) analysis [36] (using NURBS, which is a refined formulation of 

B-splines, as shape functions) is increasingly attracting researchers for finding approximate solutions to complex 

problems. Auricchio et al [37] have reported the applications of IG collocation technique and applied it to theoretical 

analysis of many mathematical problems. Reali [38] has applied for the first time IG collocation to slender beams 

and plates and have illustrated the inherent potential of the method. Patlashenko et al [39] have applied the cubic B-

spline collocation technique to study the behavior of panels subjected to mechanical and thermal loading. In [40] 

Patlashenko extended his work to nonlinear analysis of laminated panels using two dimensional spline collocation 

method. Mizusawa et al [41, 42] have used the concept of spline finite strip method to study the vibration 

characteristics of cross-ply and thick laminated cylindrical panes. Akhras et al [43] have applied the spline finite 

strip method to investigate the stability and vibration behavior of piezoelectric composite plates while Loja et al [44] 

have applied the B-spline finite strip technique to study the static and dynamic behavior of FG sandwiched plates 
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with piezoelectric skins. In a recent paper, Provaditis [45] has used the B-spline collocation technique to obtain the 

natural frequencies of thin plates in bending. The results in [45] report the effectiveness of B-spline collocation 

technique over the cubic B-spline Galerkin-Ritz formulation. 

In this paper B-spline collocation technique using sixth order b-spline shape functions is used for finding 

approximate solutions to the governing differential equations for static analysis of functionally graded shear 

deformable beam problem.  

2    FORMULATION 

A functionally graded cantilever beam of length ‘L’, rectangular dimensions of width ‘b’ and height ‘h’, having 

three dimensional Cartesian coordinate system as shown in Fig. 1 and material property gradation across the cross-

section is considered for static analysis. The boundary conditions for a cantilever beam are 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic diagram of FG beam and it coordinate system 

(a) Front view (b) Side view. 
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The modulus of elasticity follows power law distribution across the height of the beam (Fig. 2) and is given by 
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The subscripts ‘b’ and ‘t’ refers bottom and top fiber respectively and ‘β’ is the power law index. In the present 

work Poisson’s ratio is assumed to be a constant. As the materials considered in the present case resemble in 

properties and the variation of Poisson’s ratio between them is minimal, hence the assumption of invariable 

Poisson’s ratio is reasonable in the present case. However to generalize the idea to wider arena for considering 

materials that contrast in properties, the variation of Poisson’s ratio ( ( )z , power law depth dependent in present 

case) can be easily be incorporated in the governing equations. The effect of variation of Poisson’s ratio will be seen 

in rigidity modulus and shear correction factors as shown below 
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Fig.2 

Variation of Modulus of Elasticity across the cross-section 
with power law index, β. 
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The above beam is considered to be Timoshenko beam i.e. the effect of shear deformation will be accounted for 

the displacement variables; loading and corresponding deflection is constrained in the x-z plane. Let ‘u’, ‘w’ and ‘𝜙’ 

represent the axial and transverse deflection and rotation of the cross-section at the mid-plane respectively. A 

subscript ‘0’ with the variable (e.g. u0) will account for the corresponding variable value at mid-plane. The 
transverse deflection ‘w’ and the shear deformation ‘γ’ are assumed to be functions of ‘x’ and are uniform for a 

cross-section. Based on Timoshenko beam theory: 
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Virtual work principle states that the variation in strain energy is equal to the work done by the load to cause an 

infinitesimal deflection of beam i.e. 
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The following Eqs. (12-15) are introduced for decoupling of ‘x’ and ‘z’ parameters.  
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Here ‘ks’ is shear correction factor. Substituting the value of ϵxx followed by simplification and grouping of 

similar quantities, the following governing equations (Eqs. (16)-(18)) are obtained 
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The following boundary conditions are obtained (Eqs.(19)-(21)) 
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The above equations are governing differential equations and respective boundary conditions for functionally 

graded beams whose solutions provide an insight to their behavior under different conditions. Eq.(16), when 

substituted in Eq. (18), eliminates ‘u0’. As the remaining equations are coupled with two parameters, viz. ‘w’ and 

‘𝜙’, it would be convenient to transform them to a single independent variable, by the following substitutions [26]; 
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After the above substitution, a single fourth order differential equation remains as follows: 
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Using Eq.(22) and (23) the bending moment and shear force will take the form 
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As the above equation has been derived from first principles, hence it is valid under all types of environments 

viz. loading conditions and boundary conditions. Once the independent variable ‘F’ is determined, the other 

dependent variables can easily be determined. The solution of Eq. (24) is approached using collocation technique 

with b-spline basis as approximating functions. The b-spline collocation technique, in the present case uses sixth 

order b-spline basis functions as approximating polynomials. The governing equation for FG beam (given by 

Eq.(24)) is fourth order differential equation which is to be solved in its strong form in the present case, unlike the 

other cases like Galerkin’s technique where the order of differential equation is reduced through weak forms. Hence 

a polynomial of degree 4 or above will be suitable for solving Eq. (24). (Sixth order b-splines are fifth degree 

polynomials). However with an in view of considering varied cases of material and geometric non-linearity 

associated with the problem and to explore wider levels of research, higher order of b-spline functions is taken. In 

order to assess the effect of order of b-spline functions of the approximation accuracy the authors have developed a 

MATLAB code to incorporate different order for the basis functions. 
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B-splines are piece-wise polynomials (Fig. 3) made up of linear combinations of b-spline basis functions that can 

be used to approximate a solution to a mathematical problem. It is drawn in a parametric space ‘t’. They are defined 

in terms of order/ degree of the curve and also depend upon a set of non-decreasing coordinates in parametric space 

which is called a knot-vector. We assume that the knot vector is of open type given by: 
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In order to use the above relation we need the value of first order basis function, which is defined as follows: 
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Using (n+1) control points B0, B1... Bn, b-spline function is defined as: 
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Fig.3 

Sixth Order B-spline basis function with non-repeated 

knots. 

  

The continuity at the intermediate knots is controlled by the multiplicity and is given by the relation C
k-s-1

, 

where‘s’ is the multiplicity of the knot. Hence in case of single knots the continuity is C
k-2

; if the multiplicity is 

equal to order of the curve (k), then curve becomes discontinuous at that knot. A spline is continuously differentiable 

up to a limit defined by its order. At a non-repeated knot the spline function is continuous up to (k-2) derivatives, 

while in case of multiple knots they are differentiable only up to (k-s-1) derivatives. It must be understood here that, 

in Eq. (24), ‘F’ is not displacement variable although it has length dimensions. It is simply a quantity that relates the 

different parameters in such a form that the inter-relationships are largely simplified. ‘F’ is approximated as; 
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where Fi is a set of control points that define the polygon vertices of b-spline. This leads to 𝔑  unknowns that are to 

be determined. Let ‘m’ be the number of boundary conditions, and hence the number of collocation points required 

will be 𝔑-m. In this work collocation points are calculated using the method of Greville abscissa [46], defined for a 

knot vector, T = [t0, t1, t2……, tn+k+1] as: 
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(where ‘n’ is the degree of b-spline function and ti are the knots) 
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The above leads to 𝔑 values of xi, the first and the last of which represent the boundaries which have been 

already used in boundary conditions hence must be omitted. Out of the remaining the points which are located 

towards center are selected as collocation points. If multiple/ coincident knots are present in the knot vector then it 

will reduce continuity at that particular knot. In physical space the deflection curve for a beam follows C
2
 continuity. 

A sixth order b-spline function with single knots has a continuity of the order C
4
; hence at each junction of spline 

function the multiplicity of knots must be equal to three. If there are three coincident knots at each junction, then the 

number of smoothness conditions at point at is also equal to three. This will increase the no. of control points and 

hence the size of the problem will increase. In order to simplify the procedure we assume (without the loss of 

generality) that t0 = 0 and tn+k+1=L so as to merge the parametric space with real space; and thereby we may assume 

t = x [38, 39]. Let the entire length of the beam be divided into ‘l’ spans and ‘k’ is the order of the approximating 

spline. Each span is represented by a single spline function as such the total number of spline functions is equal to 

the no. of spans. As the continuity at the knots equals C
k-s-1

, the number of smoothness conditions at the knots is (k-

s) and hence depends upon the multiplicity‘s’. Let 𝜗i denote the number of smoothness conditions at each knot. 

Hence the total no. of coefficients of ‘l’ piecewise polynomials or the no. of control points, 𝔑 (n+1) is equal to: 
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The solution of Eq. (24) is approached through b-spline collocation technique and the parameter ‘F’ is 

determined. The transverse deflection ‘w’, slope ‘𝜙’ are then determined using Eqs. (22)-(23). Substituting Eq. (19) 

in Eq. (5) and using Eq. (22), the normal and shear stresses are calculated 
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From the basic elasticity theory we have 
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Substituting Eq. (35) in Eq. (37) 
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3    RESULTS AND DISCUSSION 

As a numerical example cantilever beam is considered of length L =0.5m, depth h= 0.125m and of unit width. The 

functionally graded material for the beam is assumed to be a mixture of steel and aluminum, the bottom fibers are 

steel rich while the top are enriched with aluminum. Their modulus of elasticity are taken as- ESteel = 210 GPa, EAl = 

70 GPa. The value of Poisson’s ratio is assumed to be a constant and taken as 0.3. The value of power law index is 

assumed to be equal to 1. An external uniform pressure load applied at the top surface and equal to 1kN is assumed. 

The beam length is assumed to be divided into three spans of equal length and a sixth order b-spline basis is used in 
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the collocation process. If we assume non-repeated knots then C
4
 continuity at each knot and we have five 

smoothness conditions at each intermediate knot. The total number of control points from Eq. (32), equals eight. As 

we have four boundary conditions given by Eq. (1), we need four collocation points as calculated below. Using k = 6 

and 𝔑 = 8 the knot vector is T = [0 0 0 0 0 0 1/3 2/3 1 1 1 1 1 1] in normalized form. The collocation points are 

calculated using Greville abscissa, i.e. Eq. (31): 

 

 0, 0.0667, 0.2000, 0.4000, 0.6000, 0.8000, 0.9333, 1X            (39) 

  

The Xi (i = 3, 4, 5, 6) are selected as the four collocation points. A MATLAB code is developed to find an 

approximate solution for Eq. (8) and the value of parameter ‘F’ is then used to find the transverse displacement ‘w’, 

rotation ‘𝜙’, normal and shear stresses in the beam using the Eq. (22), Eq. (35) and Eq. (38). The calculated values 

are compared with Reference [26] and are plotted in Fig. 4 (a-c). The verification of results with [26] is also 

presented in Table 1-2. The above formulation has been extended to study the effect of gradation in material 

properties on various parameters in a beam. In this regard, deflection or elastic curve for different values of power 

law index is plotted as shown in Fig. 5 (a-b). In Fig. 5(b), a better insight into the effect of power law index on beam 

deflection could be ascertained with the help of waterfall plots. It is observed that with the increase in index value 

the beam becomes stiff. The reason for this is the increase in concentration of steel with high value of stiffness. But 
the effect is less pronounced as the value of β exceeds 10. The variation of tip deflection with power law index is 

presented in Table 3. The effect of material gradation on normalized axial stress at three different positions in a 

beam cross-section viz. top fiber, bottom fiber and at geometrical center are plotted in Fig. 6 (a-c) wherein the effect 

of power law index on axial stress for functionally graded beams is reported. It is observed that as the value of index 

increases, induced axial stress decreases which is due to pronounced steel concentration and corresponding 

behavior. At higher gradation index values (>50), the behavior approaches isotropic. A similar observation from Fig. 

6b indicates that at geometrical center the axial stress is not zero and hence neutral axis and geometrical center does 

not coincide; the higher the index value, lesser is the separation. The behavior reported in Fig. 6(a) and Fig. 6(c) 
corresponding to different values of β is different, i.e. the stress behavior of upper and lower fibers is different. This 

can be accounted by the fact that with the variation of β the top fiber remains the same i.e. aluminum while the 

bottom fiber is aluminum for β =0 which changes to steel for β >0. It can be mentioned here that the stress behavior 

of isotropic material is independent of material property and depends only upon the geometric dimensions. The same 
is also verified for FG beam with upper and lower materials interchanged. Hence for mid and bottom fiber β =0 must 

be referred as isotropic case so as to maintain a sequential behavior. The values of maximum normalized stress at 

different heights of fixed end are given in Table 4., for different power law indices.  

 

 
(a) 

 
(b) 

  

  
(c) 

 

 

 

 

 

 

 

Fig.4 

Verification of (a) Beam Deflection, (b) Normalized Axial 

Stress and (c) Shear Stress with [26]. 
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Table 1 

Verification of normalized axial stress with [26]. 

Normalized Axial Stress 

z/h 
(at fixed end) (at mid-span) 

Present Reference 26 % error Present Reference 26 % error 

-0.5 -16.364 -16.364 1.78E-13 -4.090 -4.090 2.78E-13 

-0.4 -11.607 -11.607 1.78E-13 -2.901 -2.901 2.89E-13 

-0.3 -7.374 -7.374 2.00E-13 -1.843 -1.843 2.78E-13 

-0.2 -3.665 -3.665 2.00E-13 -0.916 -0.916 2.66E-13 

-0.1 -0.480 -0.480 1.78E-13 -0.120 -0.120 2.66E-13 

0.0 2.181 2.181 1.78E-13 0.545 0.545 2.89E-13 

0.1 4.320 4.320 1.78E-13 1.080 1.080 2.89E-13 

0.2 5.934 5.934 2.00E-13 1.483 1.483 2.89E-13 

0.3 7.025 7.025 2.00E-13 1.756 1.756 2.78E-13 

0.4 7.592 7.592 2.00E-13 1.898 1.898 2.66E-13 

0.5 7.636 7.636 2.00E-13 1.909 1.909 2.66E-13 

 
 

 

Table 2 

 Verification of normalized shear stress with [26]. 

Normalized Shear Stress 

z/h 
(at fixed end) (at mid-span) 

Present Reference 26 % error Present Reference 26 % error 

-0.5 -8.92E-17 -8.92E-17 1.02E-12 -4.46E-17 -4.46E-17 3.55E-13 

-0.4 0.697 0.697 1.04E-12 0.348 0.348 3.55E-13 

-0.3 1.169 1.169 9.99E-13 0.584 0.584 3.77E-13 

-0.2 1.443 1.443 1.02E-12 0.721 0.721 3.66E-13 

-0.1 1.544 1.544 1.02E-12 0.772 0.772 3.77E-13 

0.0 1.500 1.500 1.02E-12 0.750 0.750 3.66E-13 

0.1 1.335 1.335 1.02E-12 0.667 0.667 3.44E-13 

0.2 1.076 1.076 1.02E-12 0.538 0.538 3.66E-13 

0.3 0.750 0.750 1.02E-12 0.375 0.375 3.66E-13 

0.4 0.382 0.382 1.02E-12 0.191 0.191 3.44E-13 

0.5 -1.78E-16 -1.78E-16 1.02E-12 -8.92E-17 -8.92E-17 3.55E-13 

 

 

 

 
(a) 

 
(b) 

Fig.5 

(a) Beam deflection for different values of β and (b) waterfall plot of deflection with β. 
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Table 3 

Effect of power law index on deflection of free end 

Power law index, β 
Tip Deflection ( m ) 

Aluminum is at top and steel at bottom Steel at top and aluminum at bottom 

0.0 -0.7000 -0.2710 

0.1 -0.5805 -0.2847 

0.2 -0.5212 -0.2995 

0.5 -0.4430 -0.3423 

1.0 -0.3955 -0.3950 

2.0 -0.3590 -0.4469 

10.0 -0.3016 -0.5290 

20.0 -0.2881  -0.5779 

50.0 -0.2785  -0.6351 

100.0 -0.2751 -0.6640 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.6 

Plot of normalized axial stress with power law index at (a) 

Top, (b) Centroidal and (c) Bottom fiber. 

 

 
Table 4 
 Variation of normalized axial stress at fixed end with β. 

Power law index, β 
Maximum value of Normalized Axial stress (i.e. at fixed end) 

At top fiber At geometrical centre At bottom fiber 

0.0 12.000 0.000 -12.000 

0.1 10.617 0.821 -27.502 

0.2 9.844 1.264 -23.506 

0.5 8.620 1.885 -18.726 

1.0 7.636 2.181 -16.363 

2.0 6.666 2.083 -15.000 

5.0 5.527 1.330 -13.864 

10.0 4.890 0.749 -13.183 

20.0 4.487 0.389 -12.682 

50.0 4.205 0.158 -12.299 

100.0 4.100 0.079 -12.154 
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Fig.7 

Variation of neutral axis with power law index.    

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of maximum shear stress with β. 

 
 

Table 5 

Effect of power law index on position of neutral axis. 

Power law index, β 
Position of neutral axis (mm) 

Aluminum is at top and steel at bottom Steel at top and aluminum at bottom 

0.0 0.0 0.0 

0.2 -7.1 3.6 

0.4 -9.5 6.1 

0.6 -10.3 8.0 

0.8 -10.5 9.4 

0.9 -10.5 9.9 

1.0 -10.4 10.4 

1.2 -10.2 11.2 

1.4 -9.9 11.7 

1.6 -9.6 12.1 

1.8 -9.3 12.3 

2.0 -8.9 12.5 

2.2 -8.6 12.6 

2.4 -8.3 12.6 

2.6 -8.0 12.6 

2.8 -7.8 12.6 

3.0 -7.5 12.5 

 

 

 
(a) 

 
(b) 

Fig.9 

Variation of normalized axial and shear stress at mid-span along the cross-section with β. 
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(a) 

 
(b) 

Fig.10 

Waterfall plots of normalized axial and shear stress at fixed end with β. 

 

To study the variation of neutral axis with index value, a plot between the neutral axis positions for different 
values of β (0 to 10) is shown in Fig. 7 and the values are reported in Table 5. It is observed that as β approaches 

unity, the neutral axis is located farthest from the centroidal axis of the beam. For β less than unity, the axial stresses 

at layers below the neutral layer increases till the location of neutral axis from centroidal axis increases. For β 

greater than unity, the location of neutral layer recedes and asymptotically moves towards the centroidal axis. The 

axial stresses under such conditions are plotted in Fig. 6(c). The variation of shear stress for shear deformable 

Timoshenko beam is maximum at the neutral axis. In FG beams the neutral axis do not coincide the geometric 

center and the maximum shear stress exists at the neutral axis. The variation of maximum normalized shear stress 
with different values of β is shown in Fig. 8. Variation of normalized axial stress and normalized shear stress along 

the cross-section for different values of power law index is shown in Fig. 9(a-b) followed by the waterfall plots in 

Fig. 10(a-b). 

4    CONCLUSIONS 

A study of cantilever functionally graded Timoshenko beam with grading along the cross-section is reported through 

this work. The variation of modulus of elasticity and modulus of rigidity is considered by power law and Poisson’s 

ratio is considered to be a constant. The collocation technique using B-spline basis functions is used for solution. 

The collocation points are calculated using Greville abscissa. Transverse deformation, variation of neutral axis, 

normalized axial stress and normalized shear stress variations both along the cross-section and along the length of 

beam of the beam have been plotted with varying power law index values. The following conclusions can be 

enumerated- 

i) The grading plays a considerable role in the deformation and stress characteristics of the beam. With the 

increase in value of index value the behavior of the beam follows the characteristics of material that is at 

the bottom. 
ii) The stress behavior of top, mid and bottom fibers is quite different. For mid and bottom fiber β =0 must be 

referred as isotropic case so as to maintain a sequential behavior. 

iii) The stress behavior of isotropic material is independent of material property and depends only upon the 

geometric dimensions.  

iv) The neutral axis is observed to shift towards the material with higher elasticity. The neutral axis is at 

farthest from geometrical center corresponding to index value approaching unity. 
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