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 ABSTRACT 

 In this article, the time-dependent stress redistribution analysis of 

magneto-electro-elastic (MEE) thick-walled sphere subjected to 

mechanical, electrical, magnetic and uniform temperature gradient 

as well as moisture concentration gradient is presented. Combining 

constitutive equations of MEE with stress-strain relations as well as 

strain-displacement relations results in obtaining a differential 

equation in which there are the creep strains. At the first step, 

discounting creep strains in the mentioned equation, an analytical 

solution for the hygro-thermo-magneto-electro-elastic behavior is 

achieved at the initial state. After that, the creep stress rates can be 

achieved by keeping only the creep strains in the differential 

equation for the steady-state condition. The analysis is done by 

applying the Prandtl-Reuss equations as well as Norton’s law in 

creep behavior modeling. Finally, the history of stresses, 

displacement as well as magnetic and potential field, at any time, is 

achieved using an iterative method. Results show that the increase 

in tensile hoop stress resulted from creep progress must be 

considered in design progress. In addition, the effect of 

hygrothermal loading is more extensive after creep evolution. 

                                 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 WING to the enormous usages of intelligent materials in modern technology, MEE intelligent structures are 

todays broadly employed in engineering areas. In composites containing piezoelectric materials in addition to 

piezomagnetic materials, there is an intense magneto-electrical coupling that there is not in a piezoelectric or 

piezomagnetic material individually. Moreover, MEEs has some superior properties such as the piezoelectric, 

piezomagnetic and magnetoelectric effects wherein the elastic deformations can be produced by applying an electric 

or magnetic field as well as mechanical load. Since the intelligent materials are used subjected to different loadings 

and boundary conditions, disclosing the influences of the humidity, thermal field, magnetic field, electric field and 
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mechanical field on the performance of them is vital [1-3]. Also, to have the best performance and reliability, creep 

analysis is valuable for actuators employed for high-precision positioning and load-bearing usages [4]. With the 

purpose of multiphysical analysis, many researchers tried to explore the multiphysical response of intelligent 

structures. The coupled hygrothermal analysis of laminated piezoelectric plates is carried out by Smittakorn and 

Heyliger [5]. Also, they [6] revealed the influence of the hygrothermal as well as electro-mechanical conditions on 

the static and dynamic response of plates made of adaptive wood composite. Raja et al. [7] studied the stresses in 

laminated piezoelectric plates and shells under hygrothermal condition. Dai and Wang [8] analytically solved the 

thermo-magneto-piezoelectric stress and displacement problem of a hollow cylinder. Akbarzadeh and Chen [9] 

investigated the static behavior of a long hollow smart cylinder under hygrothermal loading. Multiphysical behavior 

of a functionally graded rotating thick-walled cylinder is studied by Akbarzadeh and Chen [10]. Saadatfar and 

Aghaie-Khafri [11,12] revealed that the actuation and sensing authority of functionally graded piezoelectric material 

(FGPM) layers extensively affected by the grading-index of them under hygrothermal loading. Using differential 

quadrature method (DQM), Saadatfar and Aghaie-Khafri [13] analyzed the response of a functionally graded 

material (FGM) cylindrical shell integrated with FGPM layers in hygro-thermo-magnetic environmental condition.  

The behavior of MEE spherical structures is studied by some researchers. Wang and Ding [14, 15] investigated 

the dynamic behavior of MEE hollow sphere. Transient thermal stress in a multilayered MEE thick-walled sphere is 

studied by Ootao and Ishihara [16]. Chen et al [17] investigated the static behavior of an anisotropic and 

multilayered MEE thick-walled sphere analytically. Saadatfar and Aghaie-Khafri [18] analyzed the Static stresses 

and displacement in a functionally graded MEE hollow sphere in hygrothermal environmental condition. 

Investigating the creep behavior of smart piezoelectric spheres is the subject of few articles in the literature. Dai et 

al. [19] studied the creep behavior in a FGPM sphere subjected to thermo-electro-mechanical loads. Ghorbanpour 

Arani et al. [20] investigated creep stresses and electric potential redistribution in a piezoelectric thick-walled sphere 

employing Mendelson’s method. Jabbari and Tayebi [21] derived a solution for time-dependent creep problem of a 

thick-walled sphere made of fluid-saturated porous FGPM placed in a constant magnetic field. Using Burgers’ creep 

model, Loghman and Tourang [22] analyzed the non-stationary creep behavior of a polyvinylidene fluoride (PVDF) 

smart hollow sphere. 

Searching the literature in the area of creep analyses of smart materials shows that there is no published work 

studying time-dependent creep stress redistribution of a MEE hollow sphere with hygrothermal gradient. This paper 

makes the first attempt to study the creep behavior of MEE hollow sphere using the Prandtl-Reuss equations and 

Norton’s law. The goal of this research is to explore the effects of conceivable interactions of various physical fields 

on the response of MEE intelligent materials. 

2    THEORETICAL FORMULATIONS  

Consider a MEE thick-walled sphere which radially polarized and magnetized in which the interior and exterior 

radius are a and b, respectively. Concerning spherically symmetric, nonzero components of temperature (T), 
displacement (u), magnetic potential (ψ), electric potential (Φ) and moisture concentration (M) are function of 

radius. In the following sections, cij ,e1j ,q1j ,β11, ε11, d11, p1, m1, αi, k
T
, k

C
, χ1, γ1, βi are the elastic, piezoelectric, 

piezomagnetic, dielectric, electromagnetic, magnetic, pyroelectric, pyromagnetic, thermal expansion, thermal 

conductivity, moisture diffusivity, hygroelectric, hygromagnetic and moisture expansion coefficients, respectively.  

2.1 Basic equations of problem 

The complete strains are supposed to be sum of magnetic, electrical, hygrothermal, mechanical and creep strains. 

Therefore, the stress-strain relation can be expressed as [18, 19]: 
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where, σi and εi

c
 (i = r, θ) are stresses and creep strains, respectively. Besides, we have [18, 23]: 
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(2b) 

 

In the absence of body forces, electric charge and electric current densities, the equations of equilibrium, 

electrostatics and magnetostatics for MEE sphere can be written as: 
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where Dr is the electric displacement and Br is the magnetic induction. The sphere is considered to be subjected to 

magneto-electro-mechanical loading. Thus, the boundary conditions can be expressed as follow:   
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Solving Eqs. (4), gives: 
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where, A1 and A2 are unknown constants. Substituting Eqs. (6) into Eqs. (1c) and (1d), yields: 
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These equations can be rearranged as:  
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Substituting Eqs. (8) into Eqs. (1a) and (1b) gives: 
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Substituting Eqs. (10) into Eq. (3), the equilibrium equation can be rewritten as: 
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For solving the Eq. (12), the temperature and moisture concentration functions must be found. 

2.2 Temperature and moisture concentration distribution 

In an uncoupled hygrothermal problem, the heat conduction equation and moisture diffusion equation can be solved 

independently. The uncoupled steady-state axisymmetric heat conduction and Fickian moisture diffusion equations 

are expressed as [18]: 
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Integrating Eqs. (14) twice gives: 
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where, Wi and Si (i=1, 2) are unknown constant. The moisture concentration change Ma and Mb and temperatures 

change Ta and Tb are assumed at the inner and outer surfaces of the sphere, respectively. Utilizing these boundary 

conditions, Wi and Si are achieved as: 
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2.3 Primitive hygrothermal analysis of the MEE thick-walled sphere 

In primitive state, eliminating creep strains in Eq. (12) yields: 

 

     

   

2
1 4 5 1 10 113 2 9 2 4 2 10 21 2

2 2 2

1 3 6 1 9 12 2 1
7 82 3 3

.

W M M S M MM W M S M W M SM Mu u
u

r r rr r r

W M M S M M A A
M M

r r r

        
   



    
  

 

 

 

(17) 

 

The complete solution of Eq. (17) can be considered as: 
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Concerning the homogeneous solution, for the numerical values to be used, only real distinct roots will be found 

[18]. So, the homogeneous solution of the Eq. (17) is expressed as: 
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where, B1 and B2 are unknown constants. Also, the particular solution can be considered as: 
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Utilizing Eqs. (19) and (20) we have:  
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Now, using Eq. (22), Eq. (8a) can be written as: 
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Integrating Eq. (23) gives: 
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where Z1 is an unknown constant. In a similar way, ( )r is achieved as: 
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where Z2 is an unknown constant. Using Eqs. (24) and (25) into Eqs. (10), the radial and hoop stresses are achieved 

as: 
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Using the magneto-electro-mechanical boundary conditions, the unknown constants A1, A2, B1, B2, Z1 and Z2 can 

be determined by solving a system of six linear algebraic equations. The system of six linear algebraic equations can 

be considered in the following form: 
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 1 2 1 2 1 2 ,
T
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(29) 

 

By solving the Eq. (28), the radial displacement as well as electric potential, stresses and magnetic potential are 

achieved at zero time. 

2.4 Creep analysis of MEE thick-walled sphere 

Assuming the hygrothermal field to be steady-state, differentiation Eq. (12) with respect to time yields: 
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(30) 

 

The relation between creep rates and the stresses are expressed by the famous Prandtl-Reuss equations as the 

following form [24]: 
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(31) 

 

where (i r, , )c
i   , 

c
e and 

e  are the creep strain rate, effective creep strain rate and the effective stress, 

respectively. Norton’s law is considered as the creep constitutive model as [25]:  

 
(r)(r)c n

e eB   
(32) 

 

where material creep parameters B(r) and n(r) are function of radius as: 

 

1
0 0(r) , (r)

b
B b r n n   (33) 
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where b0,b1 and n0 are constants. Considering the axisymmetric of the sphere and using Eq. (32) into Eqs. (31), 

gives: 
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(34) 

 

Using the Von Mises equivalent stress, we have: 
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Eqs. (34) are rewritten as: 
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(36) 

 

Substituting Eq. (36) into Eq. (30), we have: 
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(37) 

 

By the same way as in previous section, the solution is: 
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(38) 

 

where D1 and D2 are constant and G11(r) and G21(r) can be determined using the method of variation of parameters 

as [26]: 
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(39) 

 

Differentiation Eqs. (8) and (10) with respect to time yields: 
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Substituting Eq. (38) into Eqs. (40) and integrating Eqs. (40c) and (40d), after rearranging, gives: 
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(41d) 

 

where J1 and J2 are constant. The boundary conditions must be used to determine unknown constants. The 

mechanical pressures, electric and magnetic potentials of interior and exterior surface of the MEE sphere do not vary 

over the time, so we have: 
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(42) 

 

The resultant system of six linear equations can be solved like as previous section. The components of matrix X 

are as previous case and the component of matrix F are written as: 
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(43) 

2.5 Numerical procedure to achieve history of stresses  

To obtain history of stresses in addition to electric and magnetic potential during creep progress, the stress rates and 

the gradient of electric and magnetic potential are needed. Step-by-step procedure is explained in detail as follows: 

1) A suitable time increment should be selected for timing steps. As the creep progress improves in the time, 

the sum of time steps is total time. After the ith timing step, the total time can be expressed as: 
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(44) 

 

2) Immediately after loading, the creep strains are zero and the solution is an elasticity problem. So, primitive 

values of stresses, potentials are obtained from Eqs. (26), (27), (24) and (25), respectively. So, the values of 

stresses in the first time step are acquired. 

3) G11 and G21 are calculated numerically, and then, the stresses and potentials rates for the first step are 

obtained using Eqs. (41). 

4) In the next time steps, the stresses (potentials) and stresses rates (potentials rates) redistributions for 

previous step are available. So, the stresses (potentials) redistributions are obtained by general formulation 

of the iterative method: 

 
(i) (i 1) (i 1) (i)

1 1(r, t ) (r, t ) (r, t )dt , , , ,i i i r     
        (45) 

 

5) This iterative procedure is repeated for the total time steps. 

3    NUMERICAL RESULTS AND DISCUSSIONS  

Here, the creep behavior and effective parameters on the response of the MEE sphere are investigated and discussed 

comprehensively. Material constants for the material to be used for MEE are listed in Table 1. [18, 19]. The inner 

radii a=0.1m and outer radii b=0.25m are taken. The following non-dimensional quantities are used for simplicity: 
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(46) 

 

First of all, the creep progress during the time is studied. The multiphysical boundary conditions are taken as: 

 

7 , 0, 3000, 0, 0, 0, 30, 0, 0.25a a b a b a b a bP MPa T T M M             (47) 

 

Fig. 1 demonstrates the creep evolution of hollow MEE sphere under multiphysical environmental condition and 

loading. In this analysis, the time increment dt=2 hour is used. It is obvious from Fig. 1(a), (e) and (f) that the radial 

stress, electric potential and magnetic potential have no change with time at the inner and outer radii of the sphere 

which satisfies the constant electro-magnetic and mechanical boundary conditions. The variations in the rate of 

stresses, electric and magnetic potentials and displacement, without considering the value, become less extensive 

during the time. Fig. 1(b) depicts that by serving the time, the positive circumferential stress is decreased at the 

interior surface (as far as becomes negative) and is increased at the exterior surface with decreasing rate. Besides, by 

serving the time, the magnitude of maximum hoop stress is rised and its location is moved from the inner radius 

toward outer radius. This increase in tensile hoop stress must be considered in design progress because the 

circumferential stress rather than the radial stress is the reason of the failure of elastic thick-walled spheres [23, 27]. 

According to Fig. 1(c), the equivalent stress is decreased with time at the interior surface, while it exhibits a reverse 

behavior at the exterior surface. Fig. 1(d) shows that outward maximum radial displacement is at the inner radius 

and it decreases smoothly toward the external surface. Also, with serving the time, the displacement is rised at a 

reducing rate. Fig. 1(f) reveals that the absolute value of magnetic potentials, in the same point of radius, is 

increased with the time at a decreasing rate. 

The influence of hygrothermal environmental condition on the initial and creep response of the MEE sphere is 

disclosed in Fig 2. The temperature and moisture concentration are considered to be zero on the interior surface. 

However, the moisture concentration and temperature are rised on the exterior surface. In this case, Pa=5 MPa and 

Mb=Tb/200 are taken and other boundary conditions are as previous case. Concerning Fig. 2(a), rising in 

hygrothermal loading yields to reduction in compressive radial stress both in initial state and after creep evolution. 

More enhancement in hygrothermal loading results in tensile radial stress in a part of thickness especially after creep 

progress. Consequently, for designing purpose, the effect of hygrothermal loading after creep progress is more 
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important rather than initial state because these ceramics are mechanically brittle and are very sensitive to tensile 

loads and may not be utilizable after some years. Fig. 2(b) shows that increasing the hygrothermal loading results in 

rising in both initial and creep hoop stress. Also, there is a fix point near the outer radius for initial circumferential 

stress and near the inner radius for creep circumferential stress that the hoop stress does not change with a change in 

hygrothermal loading. In addition, the tensile circumferential stress for the initial state becomes maximum at the 

inner radius. Conversely, after creep progress, the hoop stress becomes compressive at the inner radius. Fig. 2(c) 

depicts that rising in applied hygrothermal loading rises both the initial and creep outward radial displacement. This 

increase is higher after creep progress. Also, after creep progress, the radial displacement becomes maximum at the 

interior surface. Fig. 2(d) demonstrates that rising in hygrothermal loading results in rising in the electric potential 

(regardless of the sign) in both the initial and creep case. Fig. 2(e) shows that rising in hygrothermal loading rises 

the magnetic potential in both initial and creep case.  

To reveal the influence of moisture dependence as well as temperature dependence of the elastic coefficients on 

the response of MEE sphere, the elastic coefficients are presented in the form of [9]: 

 
* *

0 (1 T M)ij ijC C      (48) 

 

where, 0ijC  is the elastic coefficient which is independent of temperature and humidity. Also, *  and *  are 

empirical coefficients for the temperature and humidity dependence, respectively. Here, to have no non-linear 

equations, it is supposed to rise the temperature and moisture uniformly. So, the sphere is under uniform temperature 

and moisture concentration increase, T=50, M=0.25 and we have: Pa= 50MPa. Other boundary conditions are kept 

unchanged. Fig. 3 indicates the influences of the temperature dependence as well as humidity dependence on the 

initial and creep response of the MEE sphere. Owing to similarity of the influence of the temperature and humidity 

on the multiphysical behavior, the same magnitudes are considered for the empirical constants, while 
* * 0   indicates the material properties which are independent of temperature and moisture. Fig. 3(a) shows 

that negative value of empirical constants increases both the initial and creep compressive radial stress, whereas the 

positive value has a reverse effect. Fig. 3(b) depicts that the initial circumferential stress is decreased for minus 

value of empirical constants while the effect of positive value is reverse. The changes are negligible near the outer 

radius for the initial stress. Furthermore, it is observed that the effect of empirical constants on the hoop stress after 

creep progress is negligible. Fig. 3(c) and (d) illustrate that, after creep evolution, negative value of empirical 

constants leads to an increase in electric and magnetic potential of each point while the positive value has a reverse 

effect. The changes are more significant after creep evolution. According to Fig. 3(e), minus value of empirical 

constant rises the outward radial displacement and reversely, the positive value of empirical constant decreases the 

radial displacement. 

To the best of author’s knowledge, there is no available paper in the literature for time-dependent creep analysis 

of MEE spheres. However, static behavior of MEE thick-walled sphere has been studied in Ref. [18]. Thus, to verify 

the results, the radial and hoop stress distributions is compared in Fig. 4. The details of non-dimensional parameters 
and material constants can be found in Ref. [18]. In this case: Pa=2KPa, Tb=2, Φb=2000 and other boundary 

condition are kept at zero.  As can be seen, due to analytical method, the results have a very good agreement. 
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11( / )d Ns C  11 ( / )Ns VC  3( / )r m kg  
3( / )m kg  

5.8×10-9 95×10-6 2.82×10-9 0.8×10-4 1.2×10-4 

1( / )m N AmK  1 ( / )Cm kg  2 2
1 ( / )P C m k  2

1 ( / )Nm Akg  n0 

2.5×10-5 0 -2.5×10-5 0 3 

b1 b0 ρ   

-5 0.11×10-36 7530   
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Fig.1 

(a) Radial, (b) circumferential and (c) equivalent creep stresses, (d) radial displacement (e) electric and (f) magnetic potentials 

redistribution during creep progress. 
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Fig.2 

Influence of hygrothermal condition on initial and creep (a) 

Radial stress, (b) circumferential stress (c) radial displacement 

(d) electric potential and (e) magnetic potential. 
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Fig.3 

Influence of hygrothermal dependence of the elastic 

coefficients on the initial and creep (a) Radial stress, (b) 

circumferential stress (c) electric potential, (d) magnetic 

potential and (e) radial displacement distributions. 

  

 

 

 

 

 

 

 

 
Fig.4 

Radial and circumferential stresses. 



70                             M.Saadatfar 

 

© 2020 IAU, Arak Branch 

4    CONCLUSION 

In this article, the time-dependent creep progress of a magneto-electro-elastic hollow sphere is investigated 

analytically. The sphere is considered to be subjected to magneto-electro-mechanical loading and is placed in a 

hygrothermal environmental condition. The creep analysis is carried out using the Prandtl-Reuss equations as well 

as Norton’s law. It is observed that variations in the rate of stresses, electric and magnetic potentials and 

displacement, regardless of the value, become less extensive during the time. Also, the increase in tensile hoop 

stress, resulted from creep progress, must be considered in design progress because of the role of the circumferential 

stress in the failure of spheres. Results show that the effect of hygrothermal loading after creep progress must be 

considered in design to avoid failure because of tensile radial stress. The effect of hygrothermal loading is more 

extensive after creep evolution. As observed, the negative value of empirical constant increases the radial stress, 

radial displacement, electric potential and magnetic potential and decreases the hoop stress. While, the positive one 

has a reverse effect.  

REFERENCES 

[1]    Saadatfar M., Aghaie-Khafri M., 2015, Electro magneto thermo elastic behavior of a rotating imperfect hybrid 

functionally graded hollow cylinder resting on an elastic foundation, Smart Structures and Systems 15:1411-1437. 

[2]    Saadatfar M., Aghaie-Khafri M., 2015, On the magneto-thermo-elastic behavior of a FGM cylindrical shell with 

pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, Journal of Solid 

Mechanics 7: 344-363. 

[3]    Saadatfar M., 2018, Effect of interlaminar weak bonding and constant magnetic field on the hygrothermal stresses of a 

FG hybrid cylindrical shell using DQM, Journal of Stress Analysis 3: 93-110. 

[4]   Ghorbanpour Arani A., Mosallaie Barzoki A.A., Kolahchi R., Mozdianfard M.R., Loghman A., 2011, Semi-analytical 

solution of time-dependent electro-thermo-mechanical creep for radially polarized piezoelectric cylinder, Computers & 

Structures 89: 1494-1502. 

[5] Smittakorn W., Heyliger P.R., 2000, A discrete-layer model of laminated hygrothermo piezoelectric plates mech, 

Composite Materials and Structures 7: 79-104. 

[6] Smittakorn W., Heyliger P.R., 2001, An adaptive wood composite: theory, Wood Fiber Science 33: 595-608. 

[7]    Raja S., Sinha P.K., Prathap G., Dwarakanthan D., 2004, Thermally induced vibration control of composite plates and 

shells with piezoelectric active damping, Smart Materials and Structures 13: 939-950. 

[8]    Dai H.L., Wang X., 2006, Magneto–thermo–electro–elastic transient response in a piezoelectric hollow cylinder 

subjected to complex loadings, International Journal of Solids and Structures 43: 5628-5646. 

[9]    Akbarzadeh A.H., Chen Z.T., 2012, Magneto electro elastic behavior of rotating cylinders resting on an elastic 

foundation under hygrothermal loading, Smart Materials and Structures 21: 125013. 

[10]    Akbarzadeh A., Chen Z., 2014, Thermo-magneto-electro-elastic responses of rotating hollow cylinders, Mechanics of 

Advanced Materials and Structures 21: 67-80. 

[11]    Saadatfar M., Aghaie-Khafri M., 2015, On the behavior of a rotating functionally graded hybrid cylindrical shell with 

imperfect bonding subjected to hygrothermal condition, Journal of Thermal Stresses 38: 854-881. 

[12]    Saadatfar M., Aghaie-Khafri M., 2015, Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell 

with imperfect bonding supported by an elastic foundation, Aerospace Science and Technology 43: 37-50. 

[13]    Saadatfar M., 2015, Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell 

with imperfect bonding, Meccanica 50: 2135-2152. 

[14]    Wang H.M., Ding H.J., 2006, Transient responses of a magneto-electro-elastic hollow sphere for fully coupled 

spherically symmetric problem, European Journal of Mechanics A/Solids 25: 965-980. 

[15]    Wang H.M., Ding H.J., 2007, Radial vibration of piezoelectric/magneto strictive composite hollow sphere, Journal of 

Sound Vibration 307: 330-348. 

[16]    Ootao Y., Ishihara M., 2012, Exact solution of transient thermal stress problem of a multilayered magneto-electro-

thermoelastic hollow sphere, Applied Mathematical Modeling 36: 1431-1443. 

[17]    Chen J.Y., Pan E., Heyliger P.R., 2015, Static deformation of a spherically anisotropic and multilayered magneto-

electro-elastic hollow sphere, International Journal of Solids and Structures 60: 66-74. 

[18] Saadatfar M., Aghaie-Khafri M., 2014, Hygrothermo magneto electro elastic analysis of a functionally graded magneto 

electro elastic hollow sphere resting on an elastic foundation, Smart Materials and Structures 23: 035004. 

[19]    Saadatfar M., 2019, Stress redistribution analysis of piezomagnetic rotating thick-walled cylinder with temperature-and 

moisture-dependent material properties, Journal of Applied and Computational Mechanics 6: 90-104. 

[20]    Ghorbanpour Arani A., Kolahchi R., Mosallaie Barzoki A.A., Loghman A., 2013, The effect of time-dependent creep 

on electro-thermo-mechanical behaviors of piezoelectric sphere using Mendelson’s method, European Journal of 

Mechanics A/Solids 37: 318-328. 



Hygrothermal Creep and Stress Redistribution Analysis….                              71 

 

© 2020 IAU, Arak Branch 

[21]    Jabbari M., Tayebi M.S., 2016, Time-dependent electro–magneto–thermo elastic stresses of a poro-piezo-functionally 

graded material hollow sphere, Journal of Pressure Vessel Technology 138: 051201. 

[22]    Loghman A., Tourang H., 2016, Non-stationary electro-thermo-mechanical creep response and smart deformation  

control of thick-walled sphere made of polyvinylidene fluoride, Journal of Brazilian Society of Mechanical Science and 

Engineering 38:2547-2561. 

[23] Saadatfar M., Rastgoo A., 2008, Stress in piezoelectric hollow sphere with thermal gradient, Journal of Mechanical 

Science and Technology 22: 1-8. 

[24] Bakhshizadeh A., Zamani Nejad M., Davoudi Kashkoli M., 2017, Time-dependent hygro-thermal creep analysis of 

pressurized fgm rotating thick cylindrical shells subjected to uniform magnetic field, Journal of Solid Mechanics 9: 

663-679. 

[25]    Shariyat M., Ghafourinam M, 2019, Hygrothermo mechanical creep and stress redistribution analysis of thick-walled 

FGM spheres with temperature and moisture dependent material properties and inelastic radius changes, International 

Journal of Pressure Vessels and Piping 169: 94-114. 

[26]    Saadatfar M., 2019, Time-dependent creep response of magneto-electro-elastic rotating disc in thermal and humid 

environmental condition, AUT Journal of Mechanical Engineering.(In Press) 

[27]    Ghorbanpour A., Golabi S., Saadatfar M., 2006, Stress and electric potential fields in piezoelectric smart spheres, 

Journal of Mechanical Science and Technology 20: 1920-1933. 


