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 ABSTRACT 

 This work deals with the interaction of P-waves between a 

moving central crack and a pair of outer cracks situated at the 

interface of an orthotropic layer and an elastic half-space. 

Initially, we considered a two-dimensional elastic wave equation 

in orthotropic medium. The Fourier transform has been applied to 

convert the basic problem to solve the set of four integral 

equations. These set of integral equations have been solved to get 

the analytical expressions for the stress intensity factor (SIF) and 

crack opening displacements (COD) by using the finite Hilbert 

transform technique and Cooke’s result. The main objective of 

this work is to investigate the dynamic stress intensity factors and 

crack opening displacement at the tips of the cracks. The aims of 

the study of these physical quantities (SIF, COD) is the 

prediction of possible arrest of the cracks within a certain range 

of crack velocity by monitoring applied load. SIF and COD have 

been depicted graphically for various types of orthotropic 

materials. We presented a parametric study to explore the 

influence of crack growing and propagation. This result is very 

much applicable in bridges, roads, and buildings fractures. 
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1    INTRODUCTION 

HE problems of interaction of elastic waves by cracks or inclusions in layered media are of considerable 

importance given their application in engineering mechanics. Cracks or inclusions are present essentially in all 

structural materials, either as natural defects or as a result of fabrication processes. With the increased usage of 

macroscopically anisotropic construction materials such as fiber-reinforced composites, the study of diffraction of 

elastic waves by cracks or inclusions in composite materials has gained much importance. The study becomes more 

relevant if the cracks or inclusions are located at the interface of layered media. The stress singularity near the edge 

of the finite crack is important because of its practical application. Solutions to problems of moving cracks at the 

interface of dissimilar materials are important since they can assist in the understanding of how composite can be 
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best constructed to arrest running cracks. The study of crack problems is extremely important for the sake of safety 

and security of structural components. The works of Atkinson [3] focused attention on cracks propagating along 

with the interface of dissimilar materials behavior. Chen [4] considered the problem of the dynamic response of a 

central crack in a finite elastic strip. The crack was assumed to appear suddenly when the strip is being stretched at 

its two ends. The problem was solved by Laplace and Fourier transform techniques. Itou [5] also studied the 

dynamic problem for an infinite elastic medium weakened by two coplanar Griffith cracks in which a self 

equilibrated system of pressure is varied harmonically with time. To solve this problem, the author has expanded the 

surface displacement in a series of functions which is automatically zero outside the cracks and has used the 

Schmidt method. Itou [6] also solved two different problems involving two finite cracks. Srivastava et al. [7] studied 

the diffraction of elastic waves by one or more cracks moving along the interface of two elastic media. The transient 

response of two cracks at the interface of a layered half-space was investigated by Kundu [9]. In the presence of 

such flaws has been solved by many authors like Lowengrub [2], Erdogan [12], Shbeeb et al. [16]. Das et al. [11] 

considered two coplanar Griffith cracks moving along the interface of two dissimilar elastic medium. In this 

problem, the distribution of stress and displacement due to the propagation of two parallel and co-planar Griffith 

cracks with constant velocity under anti-plane shear stress at the interface of two dissimilar elastic media are 

presented. Analytical studies of crack interaction problems have been made by Lowengrub [1], Rose [8], Carpinteri 

et al. [15], Das et al.[14] and many authors. The problem of obtaining dynamic stress intensity factor for a semi-

infinite crack in orthotropic materials with concentrated shear impact loads was investigated by Wang et al. [17]. Li 

[18] obtained a closed-form solution of stress intensity factor for mode-III interface crack between two bonded 

dissimilar elastic layers. E. Lira-Vergara and C. Rubio-Gonzalez [19] found the dynamic stress intensity factor of 

interfacial finite cracks in orthotropic materials. Matbuly [20] investigated the dynamical problem and obtained the 

analytical expression of the stress intensity factor. An effective approach for finding stress intensity factor in an 

elastic layered composite containing three moving collinear Griffith cracks under antiplane shear stress at the 

interface of an orthotropic layer and a half-space has been performed by Das [21]. The solution to determine the 

dynamic stress intensity factors for three collinear cracks in an orthotropic plate subjected to time-harmonic 

disturbance was given by Itou [22]. Palas et al. [23] considered the problem of interface crack at orthotropic media. 

Basak et al. [24] solved a semi-infinite moving crack at the orthotropic strip. Basu et al.[25] solved on the effect of a 

sudden impact of a torsional load on a penny-shaped crack sandwiched between two elastic layers embedded in an 

elastic medium. S. Das et al. [26] has been solved the interaction between Griffith cracks in a sandwiched 

orthotropic layer. Bagheri et al. [27] introduced the problem analytical solution of multiple moving cracks in 

functionally graded piezoelectric strip. Multiple interacting arbitrary shaped cracks in an FGM plane has been 

solved by Monfared et al. [28]. A. Habib et al [30] suggested Several embedded cracks in a  functionally graded 

piezoelectric strip under dynamic loading. The mixed mode analysis of arbitrary configuration of cracks in an 

orthotropic FGM strip using the distributed edge dislocations is consederd by monfared et al. [31]. Dislocation 

technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under  impact load is 

found by A. Hijazi et al. [32]. H. Ershad et al. [33] studied the problem transient response of cracked 

nonhomogeneous substrate with piezoelectric coating by dislocation method and finally solved. R. Bhageri et al. 

[34] is proposed fracture analysis in an imperfect FGM orthotropic strip bonded between two magneto-electro-

elastic layers.  

Although a fair amount of research has been done on the interaction of waves due to cracks between dissimilar 

media, most of the problems considered so far have been either the interaction of shear waves or the diffraction due 

to finite cracks or interaction in infinite cracked media. As per the best of our knowledge the problem involving 

moving collinear cracks between two dissimilar media due to normally applied displacements at the boundaries has 

not been considered earlier.  

In this work, we have considered the interaction of P-waves in a bonded dissimilar orthotropic strip and a semi-

infinite medium containing three collinear Griffith cracks at the interface with the action of constant normal 

displacement applied at the boundary. The Fourier transform is used to reduce the problem to a system of dual 

integral equations. These sets of equations have been solved by using the finite Hilbert transform technique and 

Cooke’s result. An iterative procedure is adopted to obtain the solution of the problem. This procedure leads to 

obtain the analytical expressions of the stress intensity factor (SIF) and crack opening displacement (COD). Finally 

the effects of material constants, the width of the upper-medium and crack length on stress intensity factor and crack 

opening displacement have been shown by the graphs. 
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2    FORMULATION OF THE PROBLEM  

Let us consider three collinear Griffith cracks moving with constant velocity c along with the interface of an 

orthotropic layer of width h1' ' and an orthotropic half-space. Let x 1 , y 1 , z 1  be the cartesian co-ordinate axes which 

are the axes of symmetry of the orthotropic materials. The cracks are assumed to occupy the region x l1 1 ,  

l lx 2 1 , z   1 , y 1 0 . Normalizing all the lengths by l' ' and setting 
x

x
l
1 , 

y
y

l
1 ,  

l
a

l
1 , 

l
b

l
2 , 

h
h

l
1  the new location of the crack at the interface becomes x a , b x 1 , z  , y  0 . 

The displacements 
   k
xU x y t, , and 

   k
yU x y t, , ;  k 1,2  along the X and Y axes respectively are given by the 

following equations 

  

 
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    
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where 
 k

C11 ,
 k

C 22 ,
 k

C12 are material constants, 
 k

12 the shear modulus. Here the superscripts k 1,2  represent 

upper material and lower material respectively. Now we introduce the Galilean transformation x X ct  ,  y Y ,  

t t  so that the Eqs. (1) and (2) become 
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 

 
 

    
 

 
 kk k k

k k k k yk kx x x
uu u u

C c C
x yx y t

   
  

    
   

22 2 2
2

11 12 12 122 2 2
 (3) 

 

    
 

 
 

    
 

 
 k k kk

k k k ky y yk kx
u u uu

c C C
x yx y t

   
  

    
   

2 2 22
2

12 22 12 122 2 2
 (4) 

 

 where 
       k k
x xu x y U X Y t, , ,  and 

       k k
y yu x y U X Y t, , , . The stresses and displacements are related by 

the following equations 

 

     
 

 
 kk

k k k yk x
yy

uu
C C

x y
 


 

 
12 12 22/  (5) 

 

   
   kk

k yk x
xy

uu

y x
 


 

 
12/  (6) 

 

     
 

 
 kk

k k k yk x
xx

uu
C C

x y
 


 

 
12 11 12/  (7) 

 

At the plane y  0  along which the crack lies, the boundary conditions to be specified as (Fig. 1)  

 

       yy yyx x x a b x      
1 2

,0 ,0 0, , 1 (8) 
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       y yu x u x a x b x    
1 2

,0 ,0 , , 1 (9) 

 

       x xu x u x a x b x    
1 2

,0 ,0 , , 1 (10) 

  

       yy yyx x x a x b     
1 2

,0 ,0 , 1,  (11) 

 

       xy xyx x x      
1 2

,0 ,0 ,  (12) 

 

The displacement component xu  in x-direction is negligible in comparison to the displacement component yu in 

y-direction in the case of mode-I crack. So we consider that the displacement on the crack faces 
   xu x 1

,0 and 

   xu x 2
,0 are identical. So in place of the Eq.(10) we consider 

 

       x xu x u x 
1 2

,0 ,0 ,  x .   

                                                       

 Now the condition at the boundary y h  

 

     
yu x h v x    

11

0, ,  (13) 

 

   xu x h x    
1

, 0,  (14) 

  

 

 

 

 

 

 

 

 
 

 

 

 

Fig.1 

Geometry of the original problem. 

  

where 
 

v
1

0  is constant normal displacement applied at the boundary. The above system of boundary conditions is 

not suitable to solve the problem. We consider a constant homogeneous normal load 0  superimposed on the crack 

surface so that the displacement on the boundary becomes zero. Then, by a trivial superposition, we may arrive at 

the original problem. 

The new boundary conditions that the crack is subjected to normal stresses of magnitude 0  are (Fig. 2)  

 

       yy yyx x x a b x       
1 2

0,0 ,0 , , 1  (15) 

 

       y yu x u x a x b x    
1 2

,0 ,0 , , 1 (16) 



           Moving Three Collinear Griffith Cracks at Orthotropic Interface                           685 
 

© 2020 IAU, Arak Branch 

       x xu x u x x     
1 2

,0 ,0 ,  (17) 

 

       yy yyx x x a x b     
1 2

,0 ,0 , 1,  (18) 
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1 2
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   yu x h x    
1

, 0,  (20) 

 

   xu x h x    
1

, 0,  (21) 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig.2 

Geometry of the transformed problem.  

 

It can be easily shown that the above two problems are equivalent to some particular value 0 . For the problem 

of plane stress having this set of boundary conditions, the suitable value of 0  has been obtained ( Georgiadis and 

Papadopoulos, [10] ) 
   
C C v

h




1

22 21 12 0
.  The solutions of Eqs. (3) and (4) are 

 

     
 

 
 

 
 

 
 
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xu x y A e A e A e A e sin x d
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     


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   
  
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1

1 2 3 4
0

2
, ‍‍ ‍ ‍ , y h  0  (22) 
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 
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 y y
xu x y A e A e sin x d y

 
   


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 
 
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Eqs. (22-25) contain a total of six unknown functions A A A A A A1 2 3 4 1' 2', , , , ,  of new transformed variable 

 alone and  
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        
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 k

 2
1( ) ,

 k
 2

2( )  are the roots of the equation  
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The expressions for stresses now become 
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               

 y y y y
C A e A e A e A e cos x d

   
        




  

    
 

1 1 1 1

1 1 2 2
1 1 1 1

1 1 2 2 3 3 4 422 1 1 2
0

1
‍‍ ‍ ]  

(29) 

  

   
 

     

 y y
yy x y C A e A e cos x d

 
   





 
 

  
 

2 2

1 2

2
22 12

1 212
0

2
, [  ‍  

         

 y y
C A e A e cos x d

 
      

  
  

 
2 2

1 2
2 2 2' '

1 1 3 222 1 2
0
‍‍ ]  

(30) 

3    DERIVATION OF THE INTEGRAL EQUATION   

Applying the boundary condition 
       xy xyx x  
1 2

,0 ,0 we obtain the following relation 

 

A a A a A a A a A a A    1 11 2 22 3 33 4 44 1' 55 2'  (31) 

 

where a a a
    

     

 
  

  

2 31 2 2 4
11 22 33

1 1 1 1 1 1

, , . 
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      Using boundary condition 
       yy yyx x  
1 2

,0 ,0 we get the following relation:  

 

A b A b A b A b A   2 11 3 22 4 33 1' 44 2'  (32) 

 

 where 
R P a

b
P a Q






11 11 22
11

11 11 11

.
, 

S P a
b

P a Q






11 11 33
22

11 11 11

.
, 

P a T
b

P a Q






11 44 11
33

11 11 11

, 
P a T

b
P a Q






11 55 22
44

11 11 11

, 

        C C

P

   







1 1 1 1

112 12 22 1

11 ,  

        C C

Q

   







1 1 1 1

212 12 22 1

11 , 

        C C

R

   







1 1 1 1

312 12 22 2

11 , 

        C C

S

   







1 1 1 1

412 12 22 2

11 , 

        C C

T

   







2 2 2 2'
112 12 22 1

11 ,  

        C C

T

   







2 2 2 2'
312 12 22 2

22  

 

Next to the boundary condition (21) yields 

 

A c A c A c A  3 11 4 22 1' 33 2'  (33) 

 

where  

 
      

         

      
    

h h
h

h h
h

b a e b e e a e

c

b a e b e a e

     

   

   


 


 
    
  


 
   

  

1 1 1 1 1 1
1

1 2 1 2 1 2
1

1 1 1 1
1

1 2 1 2
1

2
22 11 22 33

11

2
11 11 11 221

 

      
    

      
    

h h
h

h h
h

a b e b e a e

c

b a e b e a e

   

   

 


 


 
   
  


 
   

  

2 2 2 2
1

1 2 1 2
2

1 1 1 1
1

1 2 1 2
1

2
11 33 33 44

22

2
11 11 11 221

 

      
    

      
    

h h
h

h h
h

b a e b e a e

c

b a e b e a e

   

   

 


 


 
   
  


 
   

  

2 2 1 2
1

1 2 1 2
1

1 2 1 1
1

1 1 1 2
1

2
44 11 44 55

33

2
11 11 11 22

.

1

 

 

 

On utilizing the boundary condition (17) we obtain  

 

A d A d A 4 11 1' 22 2'  (34) 

 

where 

 

c b a a b c m c b a b c
d

b c a a b c m c b a b c

        


        

22 11 11 11 33 22 11 22 11 44 33 22
11

11 11 11 11 22 11 11 11 11 33 22 11

1

1
 

c b a b a a b c
d

b c a a b c m c b a b c

      


        

33 11 11 44 11 55 44 33
22

11 11 11 11 22 11 11 11 11 33 22 11

1

1
, 

 

 
m

 

 






2 '
32

11 2 '
11

 

 

 



688                             P. Mandal and S.C.Mandal   
 

 

© 2020 IAU, Arak Branch 

Finally using 
   yu x h 
1

, 0 , we get the following relation 

 

A A' '
1 2Δ  (35) 

 

where  2

1

Δ
Δ

Δ
 

The mixed boundary conditions in Eqs.(15) and (16) lead to a pair of dual integral equations 

 

     
 

H G x d
 

    




    
0

10
12

‍‍ ‍ 1‍ ‍ cos ‍
2

 (36) 

 

   G x d  


0
‍‍ cos ‍0  (37) 

 

 where 

 

   
e e e

G A
    

 


    
 



' '
1 44 2 33 4 11 1 3 '

2

Δ
 

 

           e e e e

H
e e e e

           


      

       
  


      

1 1 1 12 2 2 2
1 44 2 33 3 22 4 111 1 2 2

1 44 2 33 3 22 4 11 1 3Δ
 

     

 

a b c d d a b e a b e a b d d a b a c a c d d
e

a c a c a d d a a

          
  

      

11 11 11 22 11 11 11 22 11 11 33 11 22 22 11 11 33 11 33 22 11 22 11

11

22 22 22 33 33 22 11 44 55

Δ Δ Δ Δ Δ

Δ Δ Δ
 

   e b c d d b c b c b d d b c       22 11 11 22 11 11 22 11 33 22 22 11 33 33Δ Δ Δ Δ  

 e c d d c c   33 11 22 11 22 33Δ Δ  ,      e d d 44 22 11Δ  

 

4    SOLUTION PROCEDURE   

We consider the solution of the integral Eqs.(36) and (37) in the form 

 

         
a

b
G g t sin t dt f w sin w dw  

 
  

1
2

0

1 1
‍‍ ‍ ‍‍ ‍  (38) 

 

where  g t and  f w 2  are the unknown functions to be determined. By putting the value of  G  and using the 

result 

 

   t x t x
d

x t


 








 

0

sin cos ,
‍ 2

0 ,

  

 

In Eq. (37) it can be shown that the equation is satisfied with the condition  

 

 
b

f w dw 
1

2‍‍ ‍0  (39) 



           Moving Three Collinear Griffith Cracks at Orthotropic Interface                           689 
 

© 2020 IAU, Arak Branch 

Further substituting the value of  G  , Eq. (36) and using the above results 

 

   t x t x
d

t x

 




 


0

sin sin 1
‍‍ ‍log

2
 (40) 

 

and  

  

       

  

x tt x yzJ y J z
dydz

t y x z

   




 
 

0 0

2 0 0 2 2 2 2

sin sin
‍‍  

(41) 

 

We obtain the following integrodifferential Equtions.  

 

   
a

b

d t x d w x
g t dt f w dw

dx t x dx w x


 
  

  
1

2
1

0
‍‍ ‍log ‍‍ ‍log 2[‍ ‍  

 
 

  

a x t yzL y zd
g t dt dydz

dx t y x z



 
  0 0 0 2 2 2 2

,
‍‍ ‍‍  

 

  

x w

b

yzL y zd
f w dw dydz

dx t y x z 
  

1
2

0 0 2 2 2 2

,
‍‍ ‍‍‍ ]  

(42) 

 

where  

  

       L y z H J y J z d    


  0 0
0

, ‍  (43) 

 

It is to be noted that  L y z, represented by the semi-infinite integral given by the Eq.(43) has a slow rate of 

convergence. Applying a contour integration technique the semi-infinite integral has therefore been converted to the 

finite integrals following Mandal et al. [13, 35] as: 

 

   

         

    

C R T T Q

L y z i c
S R Q T


       


  

 
   

   
   

      


1 1 1 11
1 1 2 2 1 1 2 211 11 11 1122

1 2

0
1 211 11 11 11

, ‍
Δ 1 Δ Δ

 

         

    
       

C R T T Q

J c y H c z d
S R Q T

       

    
  

 
   

 

    

1 1 1 11
3 1 4 2 3 1 4 211 11 11 1122

11 12 2
0 0

3 411 11 11 11

]
Δ 1 Δ Δ

 

      
    

C T Q

R S T Q

   

  



 
   

1 1 1

2 11 2 111 22 2 2

1 11 11 2 11 11

ˆ ˆˆ ˆ

ˆ ˆ
[‍

Δ 1 Δ
 

      
    

       
C T Q

J c y H c z d
R S T Q

   
    

  


 
     

1 1 1

4 11 4 1122 2 2 11 12 2
0 0

3 11 11 4 11 11

ˆ ˆˆ ˆ

ˆ ˆΔ 1 Δ
 

(44) 

 

where  

 

 
C

 
1

11

1
  ,  

 
c  

1 2   ,  
 

 r r r   

1
1

2 2
1 1 1 2

1
[ 4 ]
2

 ,  
 

 r r r   

1
1

2 2
2 1 1 2

1
[ 4 ]
2

,  
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   r r r    

1
1 2 2

1 1 2'1

1
[ 4 ]
2

ˆ   ,  
   r r r   

1
1 2 2

1 1 2'2
ˆ 1

[ 4 ]
2

,  

 
           r C C C C c C

C
      

  

1 1 1 112 2 2
1 12 12 11 22 221

22

1
2 1 ,   

 

 
    

 C
r c c

C C
   

  
    

  
  

1
1 12 2 2 211

2 1 1

22 11

1
1  

 

 
    

 

C
r c c

C C
   

  
    

  
  

1
1 12 2 2 211

2' 1 1

22 11

1
1  ,  

        
      

C c

C

   


 

 





1 1 1 12 2 2
1 12 11

1
1 1 1

1 12 12

( )
 ,   

        

      

C c

C

   


 

 





1 1 112 2 2
11 1 12

2
1 1 1

1 12 12

( )
,    

        
      

C c

C

   


 

 





1 1 1 12 2 2
2 12 11

3
1 1 1

2 12 12

( )
 , 

        

      

C c

C

   


 

 





1 1 112 2 2
11 1 12

4
1 1 1

1 12 12

( )

,   

        
      

C c

C

   


 

 





1 1 1 12 2 2
1 12 11

1
1 1 1

1 12 12

ˆ
ˆ

( )

 

        

      

C c

C

   


 

 





1 1 112 2 2
11 1 12

2
1 1 1

1 12 12

( )
ˆ

ˆ
 , 

        
      

C c

C

   


 

 





1 1 1 12 2 2
2 12 11

3
1 1 1

2 12 12

ˆ
ˆ

( )

 

        

      

C c

C

   


 

 





1 1 112 2 2
11 2 12

4
1 1 1

2 12 12

( )
ˆ

ˆ
,  

 

 

 


 






1

1 1

1

1 1

ˆˆ
ˆ

ˆˆ
 

 

Employing the series expansions for the Bessel function J0 and the Hankel function 
 

H
1

0 as: 

 

          i i z
J c y H c z c y


  

 

   
      

    

11 1 12 2 2
0 0

2 2
log 1 log

2
  

 

In Eq.(44) we have  

 

        L y z M c c O c  
1 12 2 2, log  (45) 

 

where 
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(46) 



           Moving Three Collinear Griffith Cracks at Orthotropic Interface                           691 
 

© 2020 IAU, Arak Branch 

Let us expand  g t and  2f w in the form  

 

           1 12 2
0 1logg t g t c c g t O c 

 
   

 
 (47) 

 

           1 12 2 2 2 2
0 1logf w f w c c f w O c 

 
   

 
 (48) 

 

 Substituting the above expansion and the value of  ,L y z from Eq. (45) and using (47) and (48) in Eq. (42) we 

obtain 

 

       1 12
0 1

0
‍‍ log log

ad t x
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 
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1
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b
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d
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 

  

 
 
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b
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d
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    
   

    
    

(49) 

 

Equating the coefficients of the like powers of 
 1 2c the following equations are derived  

 

 
 2

1 0

0 12 20
‍‍ ‍log 2‍ ‍‍ 2

a

b

wf wd t x
g t dt dw

dx t x w x
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
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a
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

      
1

2
0 0

0
2      ‍‍ ‍‍ ‍

a

b
M tg t dt wf w dw

 
   

    (51) 

 

From (39) we obtain  

 

 
1

2‍‍ ‍ ‍0i
b

f w dw   (52) 

 

Rewriting Eq. (50) as: 

 

   
 

0 1
0
‍‍ log ‍

a t x
g t dt F x

t x





  (53) 

 

where  
 

 2
1 0

0
1 2 210

12

2
‍‍

2

x

b

wf w
F x dw dv

w v





 
   
 
  

   and applying the Cook’s result we got the following 

expression:  
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 
 

 2 2 2
1 0

0
0 2 21 2 2 2 2

12

2
‍

b

w a f wt t
g t dw

w ta t a t



 


  

 
  (54) 

 

 Substituting the value of  0g t from (53) in Eq. (50) the following singular integral equation is formed: 

 

 
 

2 2 2
1 0

0

2 2 1

12

‍
2b

w a f w
dw

w x






 

  (55) 

 

Applying Hilbert-transform we have  

 

   

 
      

2 2 2

2 0 1
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12
1 1

w w b wD
f w

w a w w a w b w






  

    

 (56) 

 

 where 1D  is the unknown constant to be determined from Eq. (52). Now using Eq. (56) in Eq. (54) we obtain 

 0g t  

 

 
 

 
      
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
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From Eq. (51) we have       
 
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Rewriting Eq. (51) as: 

 

   1 2
0
‍‍ ‍log

a t x
g t dt F x

t x



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where  
 2
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x
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  , 
 

 1 10
0 1 01

12

a a
b bQ I J D K L





     
 

with the help of 

Cook’s result (1970) the solution of the integral Eq. (58) is found to be  

 

   
2 21

2
1 12 2 22 2 2 2

2 2
‍

b

MQ t t w a
g t f w dw

w ta t a t 


  

 
  (59) 

 

Substituting the value of  1g t from Eq. (59) in (51) the singular integral equation becomes  
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 
2 21

2
12 2

2
‍

b

w a MQ
f w dw

w x 


 

  (60) 

 

Next using the finite Hilbert-transform technique the solution of the integral Eq.(60) is found to be of the form  

 

 
 

      

2 2 2

2 2
1 2 2 2 2 2 2 2 2 2

2
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w w b wDMQ
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
  

    

 (61) 

 

where 2D  is the unknown constant to be determined from the Eq. (52). Substituting the value of  2
1f w  from Eq. 

(61) into Eq.(59)  1g t is obtained as: 

 

 
 

      
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
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 (62) 

 

The values of the unknown constants 1D and 2D we utilize Eq. (52) and given by  

 

   2 2 21 , 1,2i i

E
D A a b a i

F

 
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 
0

1 1

12

A



 , 2 2

2MQ
A


 and ,

2
F F p

 
  

 
, ,

2
E E p

 
  
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 are the elliptic integrals of a first and second kind 

respectively and 
2

2

1

1

b
p

a





. On substituting one of the values  1,2iD i  given by the Eq. (63) in the Eqs. (56)-

(57) and Eqs. (61)-(62) yield  
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(64) 
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(65) 

5    STRESS INTENSITY FACTOR BAND CRACK OPENING DISPLACEMENT   

Substituting the values of the functions  g t and  2f w the stress component 
 1
yy can be evaluated from Eqs.(29). 

The stress intensity factor aK , bK and 1K  at the tip of the cracks at ,x a  and 1x   respectively are found to be 
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(66) 
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(67) 
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(68) 

where      1 2 2 2 1
0 01a a

b b

E
N I J a b a K L

F

 
       

 
.  

The crack opening displacement is given by 
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with the help of the Eqs.(64) and Eqs. (65) we get the expressions of crack opening displacement as follows:  
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(69) 

 where 
2 2

2 2
sin

a x

b x






and 

2

2

1
sin

1

x

b






 

6    NUMERICAL CALCULATIONS AND DISCUSSIONS    

From the expressions of the stress intensity factors aK , bK  and 1K  at the tip of the cracks given by the Eqs. 

(66),(67) and (68), it is clear that SIF depends on the material constants and width (h) of the upper medium. The 

values of SIF can be plotted graphically against the crack velocity (c). Keeping the central crack length fixed 

 0.2a  stress intensity factors at the tip of the central and outer cracks have been plotted against crack velocity for 

different outer crack lengths  0.4,0.6,0.8b  (Fig. 3,Fig. 5). It is observed from the figures, that the stress intensity 

factors aK and 1K  initially decrease with an increase in the value of the crack velocity (c) and after it increases. 

Also with the increase in the distance between the central crack and outer crack, the graph of stress intensity factors 

become flattered and the graph tends to be linear. Again, on keeping the outer crack length fixed 0.7b  , SIFs are 

shown for different central crack lengths  0.4,0.6,0.8a  in Figs. 6,7,8. It is found that the nature of stress intensity 

factors remains the same in this case as well. The graphs are shown only for Table 1 and Table 2 materials as the 

nature of the graphs are a similar type for various type of orthotropic materials. The values of engineering elastic 

constants are given in the following table   
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Table 1 

Engineering elastic constants.  

   Elastic constants     

Medium-1   E-type glass-epoxy composite     

Medium-2   Steel-Mylar composite     

 

      
Table 2 

Engineering elastic constants 

   Elastic constants     

Medium-1   Boron-epoxy composite     

Medium-2   Steel-Mylar composite     

 

  

 

 

 

 
 

 

 

Fig.3 

Stress intensity factor aK vs crack velocity C with fixed 

central crack length  0.2a  and layer thickness  0.3h  , 

(—)Table 1; (- - -)Table 2.  

  

 

 

 

 

 

 

 
Fig.4 

Stress intensity factor bK vs crack velocity C with fixed 

central crack length  0.2a  and layer thickness  0.3h  , 

(—)Table 1; (- - -)Table 2.  

 

  

 

 

 

 

 

 

 
Fig.5 

Stress intensity factor 1K vs crack velocity C  with fixed 

central crack length  0.2a  and layer  thickness  0.3h  , 

(—)Table 1; (- - -)Table 2.  

 

 

 



696                             P. Mandal and S.C.Mandal   
 

 

© 2020 IAU, Arak Branch 

 

 

 

 
 

Fig.6 

Stress intensity factor aK vs crack velocity C  with fixed 

outer crack length  0.4b  and layer thickness  0.3h  , 

(—) Table 1; (- - -) Table 2.  

 

  

 

 

 

 

 
Fig.7 

Stress intensity factor bK vs crack velocity C  with fixed 

outer crack length  0.4b  and layer thickness  0.3h  , 

(—) Table 1; (- - -) Table 2.  

 

  

 

 

 

 

 

 
Fig.8 

Stress intensity factor 1K vs crack velocity C with fixed 

outer crack length  0.4b  and layer thickness  0.3h  , 

(—) Table 1; (- - -) Table 2.  

 

From the all figures (Fig. 3-Fig. 8) it is clear that the values of SIF depends on the geometry of the crack and the 

applied load distribution. If the applied load is constant then the SIF decreases with increasing value of crack 

velocity which means that crack will not propagate further if applied load does not exceed critical value of the load. 

The crack opening displacement (COD) has been plotted for different crack lengths. It is observed from Fig. 9 and 

Fig. 10, that the peak of crack opening displacement increases as the length of the crack increases. For the central 

crack, crack opening displacement gradually decreases slowly and for the outer crack, crack opening displacement 

gradually increases and obtaining its maximum value, decreases slowly thereafter. 

  

 

 

 

 

 

 

 

 

 
Fig.9 

Crack opening displacement vs distance for generalized 

plane stress.  
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Fig.10 

Crack opening displacement vs distance for generalized 

plane stress.  

 

7    COMPARISION  

In this part, we have compared our results with some published articles to prove the correctness and validation of 

our problem. Interaction of moving interface collinear Griffith cracks under anti plane shear waves is solved by S. 

Das [21]. In present problem, we considered the moving three collinear Griffith cracks at orthotropic interface under 

P-waves. Geometrically both problems are same but the medium and wave forms are different. Das [21] considered 

in isotropic medium and antiplane shear wave but in our work we are considered orthotropic medium and P-wave. 

For correctness in our problem, we are converting the medium from orthotropic to isotropic medium. For isotropic 

media we can write  11 22 2C C     , 12C    where    and    are Lame’s constant. The term M of kernel 

function (Eq. (45)) has been converted by the expression of Lame’s constant. In both works, the expression of Stress 

Intensity Factor (SIF) for central crack are same. Only the term P of  bK  in Das [21] is slightly different with the 

term M of aK  in our work because of wave forms are different. 

For more validation of this work, we plotted the graphs of SIF against the layer thickness like the numerical 

result of S. Das [21]. The following graphs are showing the correctness of our work 

 

 

 

 

 

 

 
Fig.11 

Stress intensity factor aK vs layer thickness (h) with fixed 

central crack length  0.5a  .  

 

 

The nature of the above graph is same with comparing the graph of SIF in S. Das [21]. Similar type of problem 

was solved by Debnath [26]. They considered the interaction between Griffith cracks in a sandwich orthotropic 

layers and we have taken same type of problems with single layer. Both problems have been solved by using 

integral equation method and it produced like same results (SIF). The accuracy of our work is confirmed by 

following the graphs. These graphs are plotted against layer thickness 

 

 

 

 

 

 

 
Fig.12 

Stress intensity factor aK vs layer thickness (h) with fixed 

central crack length  0.5a  .  
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The graphs of SIF are similar in nature with Debnath [26]. In the above graph, the SIF increases with increasing 

the values of layer thickness.  

8    CONCLUSION 

An interfacial crack problem with a Griffith Crack between two dissimilar orthotropic media has been solved and 

numerical computation has been done with a pair of composite materials. The SIF and COD have been obtained at 

the tips of the crack on the orthotropic bi-material interface subject to P wave interaction. The singularities and 

discontinuities associated with the P waves and crack have been predicted in the solution. The graphs of Stress 

Intensity Factor and Crack Opening Displacement have been plotted to show the effects of various parameters on 

these quantities. From all the graphs it can be concluded that the value of SIF can be controlled and arrested within a 

certain range by varying a parameter i.e. crack velocity by monitoring applied loads. Moreover COD can also be 

controlled by varying same parameters. Finally the expressions for the stress intensity factor in case of isotropic 

medium have also been obtained and verified with the results already obtained earlier. 
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