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ABSTRACT

The main purpose of present article is to find the fundamental
solution of partial differential equations in the generalized theory of
thermoelastic diffusion materials with double porosity in case of

steady oscillations in terms of elementary functions.
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1 INTRODUCTION

ORD and Shulman [1] established the theory of generalized thermoelasticity by modifying Fourier’s law of

heat conduction. This theory overcomes the shortcomings of classical theory of thermoelasticity in which
thermal waves propagate with infinite velocity. The transfer of mass of a substance from the high concentration
regions to low concentration regions is known as diffusion. Nowacki [2-5] developed the classical thermoelasticity
with mass diffusion. With the help of modified Fourier’s and Fick’s laws, Sherief et al. [6] established generalized
theory of thermoelasticity with mass diffusion. Iesan [7] constructed the linear theory of thermolastic materials with
single voids. Aouadi [8] developed a theory of thermoelastic diffusion materials with voids and derived various
theorems. The double porosity model represents a double porous structure, one is macro porosity which is connected
to pores and other is micro porosity which is connected to fissures. Barenblatt et al. [9] and Warren and Root [10]
extended Darcy’s law to describe fluid flow through undeformable double porosity materials. Wilson and Aifantis
[11] developed the theory for deformable materials with double porosity. Iesan and Quintanilla [12] derived a non-
linear theory of thermoelastic solids with double porosity structure based upon Nunziato-Cowin theory of materials
with voids. This theory was not based upon Darcy’s law. Kansal [13] established linear generalized theory of
thermoelastic diffusion with double porosity. The construction of fundamental solution of a system of partial
differential equations and establishment of their basic properties are required to study the boundary value problems
by using potential method. The concept of fundamental solutions has great importance in many mathematical,
mechanical, physical, and engineering applications. For example, the application of fundamental solutions to a
recently developed area of boundary element methods has provided a concrete advantage in that an integral
representation of the solution to a boundary value problem in terms of a fundamental solution can be solved more
easily by numerical methods with respect to a differential equation with some specified boundary and initial
conditions. Several authors [14-18] constructed the fundamental solutions in the theories of elasticity and
thermoelasticity for materials with double porosity.
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T. Kansal 282

In this paper, firstly the basic equations for homogeneous anisotropic generalized thermoelastic diffusion solid
with double voids are considered. After reducing to the isotropic case and assuming the solutions in case of steady
oscillations, the fundamental solutions of the governing equations are constructed in terms of elementary functions.
Some basic properties of fundamental matrix are also discussed. Finally, some particular cases are obtained.

2 BASIC EQUATIONS

Let X =(x,,x,,x;) be the point of the Euclidean three-dimensional space £°,[x| = (xf +X5 +x )1,2 ,D, = [i,i,i]
ox, Ox, O,
and let ¢ denote the time variable. Following Kansal [13], the governing equations for an anisotropic homogeneous
generalized thermoelastic diffusion solid with double porosity in the absence of body forces, heat and mass diffusive
sources are
Constitutive relations:

o, =Cyly tp;9+y,w—a,0-0,C @)
Q =q,9, +a,v,, @)
X =0 s, )
E=—p,e;, —d ¢—ay +y,0+vC 4)
¢ =-ye; —ud—fy+y,0+mC (5)
pS =aze; +7/1¢+7/21//+’D?—:9++aC (6)
TS =—q, (7
-n,, =C (®)
P=-be, -vp—my—-ald+bC )

Equations of motion:
Oy = Pl (10)
Balance of equilibrated forces:
Q. +E=k ¢ (11)
2, +E =k (12)

Equation of heat conduction:
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283 Fundamental Solution in the Theory of Thermoelastic....

q, +74, =—K,0,, (13)
Equation of chemical potential:
n +7'n, =—d, P, (14)

In the equations mentioned above, oy

e; :%(ui, ; +u; ) are, respectively, the components of the stress and
strain tensor, u, are the components of displacement vector U, Q., y, are equilibrated stress vectors, &, are the
intrinsic equilibrated body forces associated to macro pores and fissures respectively, p is the density,C, is the
specific heat at the constant strain, ¢,,77, are the components of heat and mass diffusion flux vectors Q,m
respectively, k,,k, are the coefficients of equilibrated inertia, 7', is the absolute temperature in the reference state,
0 is the temperature variation from the absolute temperature T, , C is the concentration of the diffusion material in
the elastic body, S, P are entropy and chemical potential per unit mass respectively, ¢, are change in volume
fraction fields from the reference volume fraction, ¢, (=cy; =c,;, =c;; ) is the tensor of elastic constants,
K, (=K ).d,;(=d ) are respectively the components of thermal conductivity and diffusivity, a,,b, are tensors of

thermal and diffusion moduli respectively, a, b are, respectively, the coefficients describing the measure of
thermodiffusion and of mass diffusion effects, 7,is the thermal relaxation time which ensures that the heat

conduction equation predicts finite speeds of heat propagation and 7' is the diffusion relaxation time, which ensures
that the equation satisfied by the concentration also predicts finite speeds of propagation of matter from one medium
to the other.

If we put ¢ :/15;'/ Oy + 1, 5,'1 + U0, é}kaag/ =& 6;,b; =4, dj’pij =h 51])%‘,‘ =D, 51']" q; =1 o ; =h 51'/" fz] =1, 61'1‘9

ikl I >~ ij>

K, =K&;,d; =DJ; in the above equations, then from Eqs. (10)-(14) with the aid of Eqgs. (1)-(9), we obtain the

ij
basic equations for homogeneous isotropic thermoelastic diffusion material with double porosity as:

HAU+(A+ ) grad divu+ p, grad ¢+ p, grady — & grad 60— &, grad C = pli (15)
—p,div U+(t, A—d " Yp+(r, A= )y + 7,0 +vC =k, b (16)
—p,div U+ (1, A=)+ (t, A—f W+ 1,0 +mC =k, (17)
0 o’ .
PR [pC.0+T,(& divu+y,¢+y,p +aC)|=K A6 (18)
. 0 L0
DA[—(_fzdlvu—v¢—m(//—a¢9+bC]: 54—2’ P C (19)

In the upcoming sections, the chemical potential has been used as a state variable instead of the concentration.
The Eqgs. (15)-(19) can be rewritten as:

HAU+(A + ) grad div U+ g, grad ¢+ g, grady —s, grad 0 —1, grad P = pli (20)
—g divu+(t, A—d)p+ (1, A—g,) )y +&,0+wP = k¢ 21
—g, divu+(r, A—&, )¢+ (t, A— )y +&,0 +vP = ki (22)
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_(§+ro %;JTO[SI divu+§“¢+§221//+c*¢9+sP]+KA0:0 (23)
0 40 .
_(5+T ?][11 dzvu+w¢+vy/+sﬁ+nP]+DAP:0 (24)
where
HI%,II =né,,s, =& +al,g =p —Vi,g =p,—ml,A'=A-1& s =an,v =mn,w=vn,
d=d —ww,e, =a,-wW,&, =y, +vs, f, = f—mv,E, =y, +ms,c’ :p—ce-i—aS.

0

3 STEADY OACILLATIONS

Now, we consider the case of steady oscillations. We assume the displacement vector, volume fraction fields,
temperature change and chemical potential functions as:

[U(X,t), dX,1), w(X,t), O(X,t), P(X,t)]=Re[(U", ¢,y ,0 , P )e ] (25)
where, @ is oscillation frequency.

Using Eq. (25) in Egs. (20)—(24) and omitting asterisk (*) for simplicity, we obtain the system of equations of
steady oscillations as:

[ A+ (A + ) grad div + pe’ |U+ g, grad ¢+ g, grady —s, grad 0—1, grad P =0 (26)
—g divu+[t, A—d, + k@ 1¢+ (1, A—&,) )y +&,0+wP =0 27)
—g, divu+(, A—g,)p+[t, A— f, + k@' Ny + &£,0 +VvP =0 (28)
7, T,[s, divu+&, ¢+ E W+ [KA+7,Tyc 10 +7,T,sP =0 (29)
o'[l divu+wp+viy +s50]1+[DA+1'n]P=0 (30)

where, 7, =10(1-107,),7' =101 —1007°) .

We introduce the second order matrix differential operators with constant coefficients

) F(D)=|F,®,

Tx7
where

0’ 0 0 0 0
o 0 ’F;y4(Dx):g16_=F;;5(Dx):g2_’Fo(Dx):_Sl_7F;77(Dx):_11_=
.xp xq X

F (D) =[pA+pa’1s,, +(A +
(D) =[h+ po’]6, +(A'+p) P’ e >

P P p p

0 0
£, (D) =-g gﬁEm(Dx) =t,A~d, +ko",F(D,) = F,(D,) =riA~¢,,F(D,) = &,,F,(D,) = w,F,(D,) =~g, P

q q
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0
Fss(Dx) = tzA_fl +kza)2’F56(Dx) = §22’F;7(Dx) = VsFeq(Dx) = TlslTﬂ g’Fm(Dx) = T1§1|E1’125(Dx) = 115227;17
q

F,(D,)=KA+7,'T,,F,(D,) = 75Ty, F, (D) = o'l —NO JE, (D) =1'W,FE(D,)=7'v,F(D,)=7's,F,(D,)=t'n+DA p,g=1,2,3.
Ox
q

2) F(D)=|

P‘;h(Dx)

X7

where

2

Ox Ox

P

F,(D,)=t,A,F(D,)=KA,F,(D,)=F,(D,)=0,F,(D,)=DA p,q=1,23 i=4,...,7 e=4,5 j=6,7.

F,(D,) = 1A, +(2'+ 1)

JF(D,) =0, F,(D,) =0,F,(D,) =t,A, Fi(D,) = F;,(D,) =,A,F;(D,) = F,(D,) = 0,

The system of Egs. (26)—(30) can be written as:

F(D,) U(x) =0

where U = (U,4,y,6,P) is a seven-component vector function for £°. The matrix F'(D,) is called the principal
part of the operator F(D, ) .

Definition 1: The operator F(D,) is said to be elliptic if det F (1) %0, where x = (x;,x,,;).

We have, det F (k) = det

,u|K|2 +(A+ it (A + pxx, A"+ px, &, 0 0 0 0
(A + K K, gl + A+ K (A )k, 0 0 0 0
(A" + K i, (A" + )i,k ple + A+l 0 0 0 0
0 0 0 vl nk 00
0 0 0 A 0
0 0 0 0 0 K o0
0 0 0 0 0 0 Dl

’ 4
=12 (A +210KD(,t, 1)K
Therefore, operator F(D, ) is an elliptic differential operator if and only if
HA +2)KD(t,t, —17) %0 (31)

Definition 2: The fundamental solution of the system of Egs. (26)-(30) (the fundamental matrix of operator F ) is
the matrix G(X) = "Ggh (X)"7 , satisfying condition

F(D,)G(X) = 6001 (X) (32)

where &(X)is the Dirac delta, 1(X) =||5gh "7 7is the unit matrix andXxe£*. Now, we construct G(X) in terms of

elementary functions.
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4 FUNDAMENTAL SOLUTION OF A SYSTEM OF EQUATIONS OF STEADY OSCILLATIONS

Let us consider the system of non-homogeneous equations
[ A+ (A + p) grad div + po’ | U—g, grad p—g, grady +1,T,s, grad O +7'l grad P=H
g divu+[t, A—d, +k &’ 1¢+ (1 A—g, )W +1,T,&E 0+ T WP =L
g divu+(r, A—g)g+[t, A~ f, + ko lw +1,T,&,0+1'vP =M
—s, divu+& ¢+ &, W +[KA+1,T,c 10+7'sP=2Z
—l divu+wg+vy +1,T,s0+[DA+7'n]P=X

where H is three-component vector function on E3; L, M, Z and X are scalar functions on E.
The system of Egs. (33)—(37) may be written in the form

F"(D,)U(x) = Q(x)

where F" is the transpose of matrix F , Q=(H,L,M ,Z,X), xeE".
Applying the operator div to Eq. (33), we obtain

(A +2u) A+ pe’]divu—g Ap—g, Ay +7,Tys, AO+7'l, AP = divH
The Eqs. (34)—(37) and (39) may be written in the form
N(A)S=Q

where S = (div U,,w,0,P),Q =W ,,w,w,,w, w)=(divH,L,M,Z,X) and

(A +20)A+ po® —g A —gA 7, Tys,A r'LA
8 HA—d, +k1w2 nA-g, 7Ty, r'w
N(A) = "Ngh (A)"5x5 = & nA-g, LA- +k2a’2 0,138, v
-, & & KA+Z'17:)C* T's
-1 w v r,T,s DA+7'n »

Egs. (34)—-(37) and (39) may be also written as:
rAsS=%v
where

5
1 S w1 (4) = det N
i=1 M

‘I‘z(\Pl,‘Pz,‘P3,\I”4,‘P5), \Pp = M*

M =X +2wKD(tt,-17) p=1,..,5.

and N; is the cofactor of the element N,, of the matrix N. From Eqs. (41) and (43), we see that

286

(33)

(34)

(35)

(36)

(37

(3%)

(39)

(40)

(41)

(42)

(43)
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287 Fundamental Solution in the Theory of Thermoelastic....

F(8) = 1A +4)

where A%,i =1,.....,5 are the roots of the equation ['(—x) =0, w.r.t. .
Applying operator I'(A) to Eq. (33), we get

T(AYA+ A )u=W

2
where 22 =22 and

Y7,
’ 1 ’ 1
Y = ;[F(A)H—grad[(ﬂ +¥, -gV¥, -V, + (s, ¥, +7 11\P5:|:|

From Egs. (42) and (44), we have
O(A)U(x) = ¥(x)
where

() = (W, ¥, ¥, W, W) and ©(4)=|©,, )]

®,(8) =T(A)A+4), 0,(A)=T(A),0, (1)=0i=123 j=4....7 p.g=L...7 p#q

Egs. (43) and (45) can be rewritten in the form

Y = |:11"(A)J +w,,(A) grad div:|H +w,,(A)grad L +w;,,(A) grad M +w,,(A) grad Z + w,,(A) grad X,
U

Y, =w, (A)divH+wy, (A) L +wy, (A)YM +w,, (A) Z +wy, (A) X,
Y, =w,;(A)divH+w,, (A) L +w,,(A) M +w,;(A) Z +wy,(A) X,
Y, =w,(A)divH+w,,(A) L +w,,(A) M +w, (A Z+w, (N X,
Y, =w (A)divH+wy (A) L +w s (A) M +w,(A) Z +wy (A) X,

where J = ||5pq ||3X3 is the unit matrix.

In the above equation, the following notations have been used:

1 , . . . . .
w,,(8) =~ T [(A'+ N (A) =g N, (A) = g, N5 (D) + 7, Tys, N (M) + T [N (A) ],

N (A
ij(A): j(;*)pzl, ..... ,5 j=2,.....,5.

From Eq. (47), we have
¥(x) =R"(D,)Q(x)

where R(D,) =|R,, (D,)

7x7°

© 2019 IAU, Arak Branch
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1 o’ 0 0
Rg;(Dx) = ZF(A)é:j Wy (A)ﬁvRi;pﬂ(Dx) = WIP(A)a’RerZ;i(DX) = Wpl(A)g7
i J i i

Rp+2;l+2(Dx) = wpl(A) l’] = 1>2’3 Pal = 2’3345 5.
From Egs. (38), (46) and (48), we obtain ®U = R"Q = R"F"U . It implies that
R'F" =0, F(D,)R(D,) =0(4)

We assume that A° # A’ #0 p,g=1,....,6and M u#0. Let

YOO =%, Y,,00= ir]ggg(xx Y, ()= iqgggx),

Y,X)=0p=123e=4,... ,7g,h=1,........ ,L7qg#h

where

2

6 5
c.(X)=———r = I1 (=22 "r, = I (A2-2)" g=1,.,6 h=1,....,5.
g 47Z'|X o i=l,izg ¢ i=l,izh

Lemma 1: The matrix Y is the fundamental matrix of the operator @(A) i.e.
OAN)Y(x) =0(x)I(x)
To prove the lemma, it is sufficient to prove that

C(AYA+ W (%) = 8(X), T(AY 4, (X) = 5(X)

6 6
Consider » r, = LZ(—I)" z,, where

i=1 Z7 =1

6 6 6 6 6 6
2 = 1K =21 LA = AN TLA = AN = 40,2, =TI = 21 TLA = AD TL(AL = A3 =49,

6 6 6 6 6 6
2 = I = AN T = A TLA, = ) = A0),2, = TUA = A7) TUA = A7) TS = )45 = A7),

i#3 i4 j#4
6 6 6 5 5 5

2= N8 =20 L = A0) IR = A2)(A8 = A0,z = T = A TS = A7) TL(AS = AL = 22),
i#5 J#S p#ES

6 6 6 6
= N 2 W =2 T ~A) T ~ 2K ).

Upon simplifying the R.H.S. of above relation, we obtain

6
2 =0.
i=1

Similarly, we find that

288

(49)

(50)

(51

(52)

(53)

(54)

(55)
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2 2 S NPT S T
S =20 = 0.3 | T =2 |=0. 3| 187 =2 |=0. 30| 11z =20 | =o. 56

Also, we have

P [f{(zf —Aj)} =L(A+4)6,(0=860)+(4, —2))6,(X) p,g=1,.....,6 (57)
Now, let us consider

P+ 207,00 = FIA+ 2)37,6,00 = FIA+ 23,500 + (5 = 25,001 .

Using Eqgs. (55)-(57) in the above relation (58), we obtain
C(AYA+26)Y,, (X)

= fg(A + ﬂf)Zr]g(ﬂf —20)5,00 = ﬁg(A HAD L, (A = AD[800+ (4 = A5, (0]

H:c\

fia+ 2%, 1105 20,00 = f1a 20X, 18 =20 [0+ - 2,00

I(A+ /IZ)Z jﬁ:l(zj -2 gg(x):[_lf[S(A-;- ifz)irlg Lnil(ﬁf —ﬂ;)}[é(x)ﬂﬂj ~3)6,(0]

1]
H:@

AMZ)Z N -6 0= 23, [H(z —ﬁg)}[ﬁ(XH(ﬁ? ~20)6,09] = (A+ 25,0 = 5(x).

H:o

Similarly to Egs. (55)-(57), we obtain

;rZi :0’;’"21'(112 _’11'2):0’;’”21' [ﬁ(ljz_lz :| Z [li[ ):‘=0,r25 [ﬁ[](liz _)“52):‘:1~ (59)

Now, we consider the Eq. (54),
[(A)Y, ()

= TIA+ 216,00 = LA+ 23, [800+(2 ~ 216,00

~ A+ AR B = 70s,00 = A+ LA =200+ -2 W]

Il
||:|m

1(A+2} )Zrzg[n(ﬁ A ):|gg(x) H(A+/12)Zr2g{l'[(lz A0 }[6(X)+(ﬂ;—ﬂ;)gg(xﬂ

H:ju.

[(A+4) ZVZQ[H(AZ ﬂ.z)}gg(x) (A+ A2 )Zrzg[n(f 22) }[5(x)+(,12 A6, (0) = (A+ ) () = 5(X).
We introduce the matrix
G(X)=R(D,)Y(x) (60)

From Eqgs. (50), (53) and (60), we obtain

F(D,)G(X) =F(D,)R(D,) Y(X) =O(A) Y(x) = 5(x) I(x)

© 2019 IAU, Arak Branch
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Therefore, G(X) is a solution to Eq. (32).
Theorem 1: If the condition (31) is satisfied, then the matrix G(X) defined by the Eq. (60) is the fundamental
solution of the system Eqs. (26)-(30) and each elementG, (X) of the matrix G(X) is represented in the following

form:

G, (0 = R, (DY, (X), G, () =R, (DY, () g =L Th=12,3 g =4,....,7 (61)

5 BASIC PROPERTIES OF FUNDAMENTAL SOLUTIONS

Theorem 2: Each column of the matrix G(X) is a solution of system of Egs. (26)-(30) at every point XxeE* except at
the origin.
Theorem 3: If the condition (31) is satisfied, then the fundamental solution of the system F (D,)U(x) =0, is the

matrix G™(x) = "G; (X)"7x7 , where

. 1 Atu O . 1 . | R O XX,
G,(X)=—|AJ,, — —— Y (X)=—Y, (X)) ——R, Y (X)=4 L +u £,
gh( ) P gh ﬂ'r+2/1 6xg5xh 11( ) ﬂ,'+2,u ll,gh( ) P gh 11( ) |X| H |X|3

* t . « « - . « t .
G44 (X) = 2_ 2 Y44 (X)’ G45 (X) = G54 (X) = ﬁYM (X)’ Gss (X) = —l_rzY44 (X)’
172 1 172 1 172 1
R U B . . . (62)
G (X) = EY““(X)’ G, (x)= BY““ (X), G5 (X) = G 3, (X) = G, (X) = G ,(X) =0,
. . . I . 1. A43u . A+
G,(X)=G, (X)=0,Y,(X)=—,Y,(X)=— A =— T T —
56 (X) = G, (%) n(x) 8 () 47r|x| 8ru(A'+2u) # 8ru(A'+2u)
. o
R, = -AS, g, h=123p=1,..6qg=4,5.
o 0x,0x, w & P 1
Corollary 1: The relations
* -1 * -1
G, 00=0("), G,,00=0(|")
hold in the neighbourhood of the origin, where g,# =1,2,3 and p,q =4,5,6,7.
Lemma 2: If the condition (31) is satisfied, then
Aw (A) ==L T(A) 5, +—=(A+ Z)N',(A) p=1
Wp1( )__; ( ) p1+F( + G)Np]( )p_ yereer D (63)

We will prove the result forp =1. Forp =1,

1 , . . . . .
W, (A) =- M,,ﬂ[(/l + ) N}, (A) =& N}, (A) = g, N1y (A) + 7, Ty, Ny (A) + T[N (A) |

Now

1| ((A'+2) A+ pd* )N} (A) — g AN, (A) — g, A N (A)

L(A) = L detN(A) =
M +7,T,s,AN,,(A) + 7' 1 AN {(A)

<
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Therefore,

1

Aw,(A)=—-—

M pu

LM —(uas por) Ny | = - DAL BEAD e
yr u M

- *

The results for p =2,......,5can be proved in the similar manner. Let

1 * 2 1 2 2
CI’” =T rZrJNH(_Ap )’ Con = 2 ’Cﬁgl =r1pwg1 (_ﬂ’p )’Cﬂlg =r2pwlg(_ﬂ“p )’
M A Yol

Coo :rzpwgh(—ﬂ,i) p=1...5gh=2,..,5.

prg

Theorem 4: If X # 0, then

5 5
Ggh (xX)= Zcp]] Sp.ah (xX)+ CGlleth (X), Gg;e+2 (X)= chle Spe (%),
r=1 p=l
5 5
Geong() =D 6, (X, Geny () =D ¢, 6,00 g N =123 ¢,y =2,...5.
p=1 p=l

From Eq. (57),
Ag,(X)=-4 ¢, (X)
Thus, we have

62

—— R X
oxox, }gﬂ( )

1 1
S5, (0 =——[AS,¢s (x)]=——{
gh2p /Ij gh2p A’j

From Eq. (63), we get

r-i?
W (-A2) (ﬂ;)=—M3ﬁ
HA, P

(A4 AN, (=4) p=1,......,5

From Eq. (61) with the aid of Egs. (49), (52) and (66)-(68), we have

Ggh (x) = Rgh(Dx)Yu(X) = |:ll"(A) é:gh +w;,(4) o :|Z6:r1pg,,(x)
7

6xg6xh o
6 _1 2
2 2

:Zr ;H—ﬂ,,)ég,,+w,,(—ﬁl,)axgaxh 5,0

I o . o
=37 | ——T(-22 R ) +w, (-2 —— | (X

; . yﬂj ( p)(ﬁxgéxh )+ W ( p)axgéxh:lg"( )
—26:}’ _—L(ﬂf—ﬂf)zv* (=4%) i 41 C(=AH)R., |¢ (X)

S| T T o, °r

Now,

© 2019 IAU, Arak Branch
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(64)

(65)

(66)

(67)

(68)

(69)
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0, for p=1...,5
(ﬂez_ﬂhz)rlh =r,,h=1...,5 and hyp F(_ﬂ’j):{l, for p=6 7o

By virtue of Egs. (64) and (70), Eq. (69) becomes

2 "p Nl*l (_/1;) o’ & 1 2 * S .
Ggh (X):_z M*/I; (3xg6xh S, (X)+[)Z:#_ﬂ;rlpr(_ﬂ’p)Rghgp(X)=Zcpllgp‘gh (X)"'csllehge(X)

= p=1

Now, consider

Gporn =R, ,(D,)Y,,(X) = Wle(A)a Zrngp(x) Zerwle( lz)é‘pg(x) Zcpl(’gpg(x)

and
5 5 N 5
Goinyn =R, 5, (D) Y, 00 =W, (A) D5y, 6,(0= D1, W, (=2) 5, () = D¢, 5,(¥)
p=1 p=1 p=1

Similarly the formula for G, (X) can be proved.

e+2;9
Lemma 3: If the condition (31) is satisfied, then

*

2 1 M
erh) ZrZP P Zer P ZrZP ﬂ’: =0, ZrZP l: Z ﬂz =T2,2,2 = * (7])
=

KRR po’N |\ (0)

and

I L
ZC,,H ———272% Con =T 5 (72)

p=1 pa) p=1 )« + 2#
Using Eq. (52), relations (71) can be proved by direct calculations.

N (A =KD (t1, =) + M A +M, 20 + M A2 +N [\ (0), p =1,...5. (73)

where M|, M and M ; are coefficients, independent of 4, and skipped due to lengthy calculations.
From Egs. (71) and (73), we obtain

and
Zslrszfl(—ﬁj) = 25:6,, [KD(tlt2 —ri) A+ M) + MyAY + Mo A +N11(0)] KD(t,t,—17)
p=l P
Therefore, from (64), we have
pzs—;cpll M Zs“llz nyNi(4) == 12’;5_:/1;61711 = Z VL (=4 = KD(?\/[ti_FIZ):_(iszﬂ)'
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Theorem 5: The relations

G, (X)—G; (X) = constant + O(|x|)

hold in neighborhood of the origin, where i,j =1,......,7. Let X # 0. From Egs. (62) and (65), we have

" o’ y7, o’
G, () -G;(X) = ax ox /pz;cpllgp(x)+csllRu§6(X)_Iu|:A5 [ oL +2,uj6x ox. :| (%)

2 5

0 1 . 1
= X)——— Y (X) |+ R | —c. (X _|_ X
aXiaxj ;Cpllgb( ) A’+2,u 11( )i| i |:p gﬁ( ) ( )i|

For i,j =1,.2,3. In the neighborhood of the origin, from Eq. (52), we have

A,
gp(X):—4 |X|Z( o [X |) =Y (x)— Y (00+Y (X).

(4, IXI)

where }717 ,(X)=— ypn |X| Z .,6. Clearly,

Py

7,00 =0(x").,,,0=0(|x).%,, (0= constant+0(x|) i.;=1,2,3 p=1,....6

Consider

S 1 " S 1 «
;Cpl]gp(x)_myﬂ(x):;cp]l{ (X) +Y (X):| {Z »Coll T/u)i|Yn(X)

By using equalities (72), from Eq. (78), we have

chng ( )— 11(X)_ Y;(X) z »Cpll +ch11 pp(x)

Also, we have

p12g6<X>+ o= [(x) B RN, (x)} eo=— [Y;;(x)—ﬁ+

Taking into account (77), (79) and (80) and that AY ,;,(X) = 0(x = 0), from Eq. (75), we have

" 1 0 R - o | R
G,j(X)—G,j(X)=—W{w—&}m(x)+m; ot p,,(X)erw2 R, Yo (X)

— A3, Y 24 (X)+constant + O(|x|) = constant +O(|x|) i,/ =1,2.3

Similarly, other formulae of (74) can be proved.
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Z,(,(x)}

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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Therefore, matrix G (X) gives the singular part of the fundamental solution G(X)in the neighborhood of the

origin.

6 PARTICULAR CASES

1. If we putw =0, that is, taking static case in the Egs. (26)-(30), we can obtain the fundamental solution of
partial differential equations in the generalized theory of thermoelastic diffusion materials with double
porosity in case of equilibrium oscillations in terms of elementary functions. In this case, operator I'(A),

vector ‘i’(x) and the matrix operators @(A), R(D,) and Y(X) :||Y,.j(x)||7 jare changed in the following

forms:
2
i. r)=A (A + A7), where A’,i =1,2 are the roots of the equation det N'(—x) =0, w.r.t. k¥ and

/1'+2/J —& —-& 0 0
& LA—d, nA—eg, 0 0
N‘@) =N, @), = & rA-g,  LA-f 0 0
-5 Sh o K 0
-1 w 1% 0 D,

i, Wx) =(Y,¥,,¥,, ¥, ¥,), where

Y = |:EF(A)J +w,,(A) grad divj| H+w, (A)grad L +w;,,(A) grad M,
Y7
Y, =w,(A)divH+w,,(A) L +w,,(A) M,
Y, =w,(A)divH +w,, (A) L +w, (A M,
Y, =w,(A)divH+w,,(A)L+w;,(A)M +w,, (A Z,
Y, =w (A)divH +w,,(A) L + w,(A) M +wy(A) X,
ii.  ©A)=]®, )|, where

®,(8) =T(A)A, ©,(A)=T(A),0, (A)=0i=123 j=4,.7 pg=1...7 p#q

iv.  R(D,)=|R, (D,

pr? where
X

2

1 0 0 0
R,(D,)= ZF(A)&U- +W11(A)W,R,-;p+z(|3x) = WIP(A)g,RM;i(DX) = WGI(A)G_x,.’

qu(Dx) =R, (D,)=R,(D,) =0, Re+2;p+2(DX) =Wy (A), R (D) =w, ., ,(A)
,j=1,23 p=2,34,5e=23k=6,7¢g=1,....,5.

v. Y =[%,00] . where

2 2
Ypp ) = 1S (x) +1,5, )+ Z’/i;g+2 gg(x)’ Yge(x) =76 )+ Zrz;g+2 gg(x)9
g=1 g=1

Y, (0=0p=123¢=4567qh=1....7,q#h
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Here

JEYSN BRT N . R GRS W U 2 R Y 3
47| 8z A A2+ %)

. 1 1 - 1

T 28,92 ~ohe T T 2 N0l =
A (4 =40 A A =4)

Ry S TP

If double porosity effect is skipped, then we can construct the fundamental solution of a system of
equations in the generalized theory of thermoelastic diffusion as given by Kumar and Kansal [19].

If the diffusion effect is neglected, then the fundamental solution of partial differential equations in the
generalized theory of thermoelastic materials with double porosity can be obtained similarly given by
Scarpetta et al. [17].

If further thermal effect is omitted, then we can obtain the fundamental solution of partial differential
equations in the theory of elastic materials with double porosity similarly given by Svanadze and de Cicco
[15].

7 CONCLUSIONS

The fundamental solution of a system of equations in the generalized theory of thermoelastic diffusion materials
with double porosity in case of steady oscillations in terms of elementary functions has been constructed. The
fundamental solution makes it possible to investigate three-dimensional boundary value problems of generalized
theories of thermoelastic diffusion with double porosity by potential method [20].
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