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 ABSTRACT 

 In this article, the vibration and dynamic response of an orthotropic 

composite cylindrical shell under thermal shock loading and 

thermal field have been investigated. The problem is that the shell 

is initially located at a first temperature, and some tension caused 

by a mild heat field is created, then the surface temperature of the 

cylinder suddenly increases. The partial derivative equations of 

motion are in the form of couplings with the heat equations. First, 

the equations of motion are derived by the Hamilton principle; here 

first-order shear theory and considering strain-shift relations of 

Sanders are used. Then, the equation system including the 

equations of motion and energy equations by the Runge–Kutta 

fourth-order method are solved. In this study, the effects of length, 

temperature, thickness and radius parameters on natural 

frequencies and intermediate layer displacement are investigated. 

The results show that the increase in external temperature decreases 

the natural frequency and increases the displacement of the system. 

In addition, the results of radial transitions were evaluated with 

previous studies and it was found that it is in good agreement with 

the results of previous papers. 

 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OMPOSITE materials have identified their position in engineering and are now used at various points as 

common materials, especially for structural purposes. Today, in the military industry, airplane, automotive, 

construction of sporting and entertainment products, electronics, mechanical and medical materials, composite 

materials are used. One of the most important structures used in various industries is the thin-walled cylindrical 

shells used in various applications The use of thermoelastic behavior of cylindrical shells subject to extreme 

temperature changes is very important in the design of advanced engineering structures. However, both in metal 

structures and in composite structures, the temperature changes both during production and when used are very 

common. Changes in temperature make two important effects. First, the amount of material is expanded when the 
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temperature rises and contracted when cools. This expansion and contraction are usually proportional to the 
temperature variation. The thermal expansion coefficient α is a constant correlation between thermal strain and 

temperature variation relative to a reference temperature. In which there is no strain or thermal stress. The second 

effect relates to the stiffness and strength of the material; many materials become softer, more flexible and weaker 

when heated. Unwanted vibrations in systems result in poor performance, system life, or major failures and system 

disruptions, resulting in huge economic losses. Therefore, initial studies to control the vibrations of any system can 

prevent the occurrence of vibration problems when using the system. In this study, the dynamic response and the 

frequency response of composite cylindrical shells under thermal shock and a mild initial thermal field are Studied. 

One of the first studies in this field is the McQuillen, E.J. and Brull [1] paper, by numerical studies They checked 

the thermoelastic coupling of a thin cylindrical shell by using the traditional Gallerican method. In that study, they 

considered a nonlinear distribution of temperature in the shell thickness, and found that the difference between the 

coupling and non-coupling was about 1%. Fundamental monograph about coupled thermoelasticity was published 

by Biot [2]. The thermal problems of the theory of plates and shells have been considered in the series of 

monographs [3–8]. In addition, we would like to mention also the following important works devoted to the subject 

of the paper. Thermal stress solution of conical shells (semi-coupled) was first considered by Huth [9,10]. The 

coupled thermoelasticity of shells of revolution was studied by Eslami et al. [11–13], based on second-order shell 

theory, and the governing equations including normal stress and strain as well as the transverse shear and rotary 

inertia were considered. Coupled dynamic thermoelastic equations of cylindrical thin shells were solved by 

Hakimelahi and Soltani [14] who used the numerical Galerkin method. They assumed variable mechanical and 

thermal shocks along the cylindrical shell with axial displacement and parabolic temperature distribution through 

thickness. Dynamic equilibrium equations of conical shells were obtained by Eslami and Moosavi [15] using a 

general linear theory which includes normal and lateral shear stresses and assuming dependency of strain field on 

temperature. Thus, semicoupled dynamic equations of conical shells were derived and solved by using the Galerkin 

finite element method. Tarn[16] examined the exact solution of thermal and thermal loads on a FGM cylinder. In his 

research, he considered the Yang model as a function of radius. In this study, a precise solution is presented for 

temperature distribution, thermoelastic deformation and stress field for a non-homogeneous thick cylinder. 

Alibeigloo [17] studied the thermoesthetic problem of static deformations in piezoelectric coated cylindrical shells. 

He used Navier's and state space methods to solve ordinary differential equations and the governing equations. R. 

Ansari,and J. Torabi [18] Free vibrations of cylindrical shells made of functional reinforced composites with carbon 

nanotubes under thermal loading and enclosed by elastic substrates have been investigated. They have affected the 

various parameters such as thermal loading, different boundary conditions, elastic bedding and geometric conditions 

Different on the natural frequency of the structure. Alibeigloo [19] studied the Elasticity solution of functionally 

graded carbon nanotube-reinforced. Y. Kiani and M. Eslami [20] Based on the uncoupled thermoelasticity 

assumptions, axisymmetric thermally induced vibrations of a circular plate with the arbitrary type of time-dependent 

boundary conditions made of FGM are analyzed. S.E. Ghiasian et al. [21] studied geometrically nonlinear thermally 

induced vibrations of functionally graded material beams and solved via a hybrid iterative central finite difference 

method and Crank-Nicolson method. S. M. Alipour et al. [22] investigated thermally induced vibrations of 

functionally graded material rectangular plates and solved the equation by means of the GDQ accompanied by the 

successive Runge–Kutta algorithm in the time domain. A. Keibolahi et al. [23] analyzed large amplitude thermally 

induced vibrations of a shallow curved beam that is made from an isotropic homogeneous material. H. R. Esmaeili 

et al. [24] investigated Large amplitude thermally caused vibrations of cylindrical shells made of a through-the-

thickness FGM. All of the thermo-mechanical properties of the FGM shell are considered to be functions of 

temperature and thickness coordinate. A. Keibolahi et al. [25] studied the dynamic buckling of a shallow arch 

subjected to a transient type of thermal loading by following the Budiansky–Hutchinson criterion. M. Javani et al. 

[26] analyzed nonlinear vibrations of the FGM shallow arches subjected to different sudden thermal loads Based on 

the uncoupled thermoelasticity assumptions. The heat equations solved numerically by a hybrid iterative GDQ 

method and Crank-Nicolson time marching scheme. M. Javani et al. [27] investigated large amplitude thermally 

induced vibrations of an annular FGM plate subjected to rapid surface heating. 

2    PROBLEM FORMULATION 

Consider a thin cylindrical shell of thickness h and an average radius R in the coordinates (x, Θ, z), as shown in Fig. 

1, which z is measured from the midpoint of the cylinder, it is assumed that this The shell is on a uniform thermal 

field, with which it reaches the thermal equilibrium and suddenly it enters a thermal shock (this shock can be a 
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sudden increase in temperature at either one of the internal or external surfaces, or both), The shell is isolated on its 

edges and the boundary conditions are considered to be clamped. 

 

 

 

 

 

 

 

 

Fig.1 

Cylindrical shell coordinates. 

 

In order to obtain the governing equations, a relatively thin cylindrical shell is assumed to be hypothesized. The 

displacement components are based on the first order approximation of the shells as follows [28]: 

 

  xU x θ z u x θ z x θ0, , ( , ) ( , ,0)    (1) 

 

    θV x θ z v x θ z x θ0, , , ( , ,0)    (2) 

 

   W x θ z w x θ0, , ,  (3) 

 

In these relations, u0, v0 and w0 represent the components of displacement vector of the point on the middle of the 

crust, and 
x  and   represent the rotation of the tangents of the middle surface along the x and Θ axes, 

respectively. Therefore, in the hypothesized theory is just the normal strain εz = 0, the components of other normal 

and shear strains at each point of the cylindrical thickness are obtained as follows [29]: 
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According to Hooke's law, stresses are obtained according to strain components as follows [28]: 
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Note that the coefficients of thermal expansion affect the longitudinal strain and have no effect on the shear 

strain. In addition, in the present problem, each layer is transversally isotropic (in directions 2 and 3, the properties 

are similar), and we have v12 = v13, G12 = G13, E22 = E33, and the simplifications for Qij coefficients are expressed as 

follows [30]: 
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For a single layer of composite: 
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According to the stresses presented in relation 8, forces and moments will be as follows [30]: 
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In this relation, the coefficients, ij ijD B  , and ijA   are as follows: 
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The forces and moments created by thermal loading are calculated by the following relationships: 
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with regard to the loading symmetry and the geometry of the problem relative to the cylinder axis, the strain 

components can be considered as follows [31]: 
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T

X x θ x xM B ε B ε D k M11 12 11                      (16) 
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To obtain the equations of motion, we use Hamilton's principle for these equations. The general form of this 

principle is as follows [32]: 
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After performing several integral integrators and separating the coefficients for δu, δv, δw, the motion equations 

are as follows [33, 34]: 
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Due to the axial symmetry of geometry and loading, (∂/ ∂θ = 0(, the number of motion equations for dynamic 

cylindrical shell behavior is reduced in the general case of sanders theory and Eqs. (2) and (5) are self-sufficient 

[35]. The motion equations in this case will be as follows: 
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To solve thermoelastic coupling problems, it is necessary to solve simultaneously the equations of motion and 
energy equations. 
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   T x θ z t T x θ t zT x θ t0 1, , , , , ( , , )                    (29) 

 

T1 and T0 are functions that we must obtain from the equation system. The Galerkin method is used to obtain two 

non-dependent thermal conductivity equations of Eq. (31). by averaging it in the thickness z of the shell, assuming a 

linear distribution in the thickness of the shell given by Eq. (32), the two variables T1 and T0 appear in the energy 

equations. For a multilayer cylindrical shell under thermal shock with axial symmetry and a uniform distribution 

along x, the energy Eq. (8) in terms of displacement terms is summarized as follows [36]: 
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The two integrals (32) and (33) yield two non-dependent energy equations, using two non-dependent T1 and T0 

functions: 
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In these equations, some of the parameters are eliminated due to the axial symmetry (∂/∂θ = 0). Relationships for 

the coefficients 
K

jR ( )
 are given in the appendix.  

As already mentioned,  β is the volumetric expansion coefficient and k is the conduction coefficients in different 

directions of the composite. To solve the problem, we need to solve a device that contains the equations of motion 

and energy equations. These equations are in the partial derivative (pde), that is, the function x and t. To solve the 

equations, we need to write them to the finite element matrix form Mx Cx Kx F.    Matrix form can be used in 

a variety of ways, including the Rang Kuta method. The steps in converting the pde equations into the matrix form 

of the finite element are as follows. First, using the Galerkin method, we write the equations in a weak form, and 

then write them in a common matrix. 

The initial conditions of the problem are considered zero: 
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The weak form of the equations will be: 
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By integrating the final form of the ode's equations is as follows: 
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Now, the equations can be written in the form of the matrix Mx Cx Kx F   , and this equation can be solved 

by different methods. In this study, the Runge–Kutta methods has been used. 

3    RUNGE-KUTTA FOURTH-ORDER METHOD 

This method was first presented by two German mathematicians named Renge and Kuta. This method has several 

levels that we use in this paper from its fourth order state. Runge-Kutta fourth order method is a numerical technique 

used to solve ordinary differential equation of the form 

 

   
dy

f x y y y
dx

0, , 0                       (47) 

 

K1, K2, K3, and K4 are the values of the Rang Kuta method, which should be weighted average of these values 

with the values of displacement and velocity in the previous step in order to calculate the velocity and displacement 

in each step [37]. 
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which h is time step of solving.  

4    NUMERICAL RESULTS AND DISCUSSION 

In this section of the work, we will verify the results of the research with other studies of scholars that are presented 

in valid journals. For this purpose, we compared the results of the radial motion of the intermediate layer with the 

results of the Jeng-Shian Chang et al [28], which can be seen in the Figs. 2-4 for the shells of different fiber angles. 

In all of these cases, the shell is considered as a double-headed. As you can see, the results are very close to the 

results of Chang et al [28] work. 

 

 

 

 

 

 

 

 

 

Fig.2 

Comparison of the interlayer displacement for the fiber angle 

(45,- 45, 45, -45) with ref [6]. 
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Fig.3 

Comparison of the interlayer displacement for the fiber angle 

(0, 90, 0, 90) with ref [6]. 

  

 

 

 

 

 

 

 

 

 

Fig.4 

Comparison of the interlayer displacement for the fiber angle 

(0, 0, 0, 0) with ref [6]. 

 

All results are obtained using the properties listed in the Table 1. Otherwise, the values that have been changed 

in the description of the image are listed. 

Table 1 

Geometry and material properties of composite shell. 

Parameter value Parameter 

                    25.4 cm                                                 Cylindrical length (L) 

                    50 cm                                                 Middle layer radius (R) 

                      0.0635cm                                                 Thickness of each layer (H) 

                   (-45,45,-45,45)                                                 Fiber angle 

                   137.9 Gpa                                                 Young's modulus for direction 1 (E11) 

                   8.96 Gpa                                                 Young's modulus for direction 2 and 3 (E22=E33) 

                   7.1 Gpa                                                 Shear modulus (G12=G13) 

                   3.447 Gpa                                                 Shear modulus (G23) 

                   0.3                                                 Poisson's ratio (ʋ) 

                  46.2×10-3 J/cm s K                                                 Heat transfer coefficient in direction 1 (K11) 

                  7.2×10-3 J/cm s K                                                 Heat transfer coefficient in direction 2 and 3 (K22=K33) 

                  16.35 J/cm2 s                                                 Thermal shock load (ft) 

                  100 oC                                                 Initial temperature change (Δϴ) 

 

The effect of change in shell thickness on the displacement of the middle layer and frequency is shown in Figs. 5 
and 6. 

 

 

 

 

 

 

 

 

 

Fig.5 

Changes in the radial displacement of the interlayer in 

different thicknesses of the layers. 
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Fig.6 

Changes in natural frequencies by changing the thickness of 

the layers. 

 

 

In Figs. 7 and 8, the length of the cylindrical length parameter is investigated. It is seen that in Fig. 7, with 

increasing length of the cylinder, the displacement of the middle layer is increased, as can be seen in Fig. 8, by 

increasing the length of the cylinder. The natural frequency has decreased. 

 

 

 

 

 

 

 

 

 

Fig.7 

Change in the radial displacement of the middle layer by 

changing the length of the cylinder. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Change in natural frequencies by changing the length of the 

cylinder. 

 

Another important geometric parameter in the cylindrical shell is the radius of the intermediate layer, which in 

Figs. 9 and 10, respectively, deals with the effects of the middle layer radius on the displacement of the middle layer 

and the frequency. By increasing the radius, the displacement Dropped. In Fig. 10, it is also observed that the natural 

frequency increased by increasing the radius. 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Changes in the radial displacement of the intermediate layer 

by changing the radius of the cylinder. 

  



The Dynamic and Vibration Response of Composite….                               185 
 

© 2020 IAU, Arak Branch 

 

 

 

 

 

 

 

 

 

Fig.10 

Change in natural frequencies by changing the radius of the 

cylinder. 

 

In the next study, Fig.11 shows the effect of different angles of the fiber in the dynamic response. 
 

 

 

 

 

 

 

 

 

Fig.11 

Changes in the radial displacement of the intermediate layer 

by changing the Fiber angle. 

 

 

The basic parameter to be considered in this study is the effect of the shock load (ft) on the range of vibration 
displacement. The result of this study is shown in Fig. 12. 

 

 

 

 

 

 

 

 

 

Fig.12 

Changes in the radial displacement of the intermediate layer 

with a change in thermal shock. 

 

Figs. 13 and 14 show a change in the natural frequency and displacement of the middle layer by changing the 

thermal field temperature. As the temperature rises, the material becomes softer so that the displacement rises, but 

due to the initial stresses it causes that the natural frequency decreases. Fig. 13 shows that the field does not have 

much effect on the original frequency (first frequency), but the increase of the field affects the subsequent 

frequencies and reduces the frequency. 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Changes in natural frequencies by changing the temperature 

of the initial thermal field. 
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In Fig. 14 it is seen that the existence of a mild initial field (up to 100 degrees) does not have much effect on the 

dynamic response but will reduce the natural shell frequencies (especially higher frequencies). However, the thermal 

field does not have a significant effect on the dynamic response in the short time, but after a while it reduces the 

hardness matrix values and will reduce the frequency and increase the range of displacement. 

 

 

 

 

 

 

 

 

 

Fig.14 

Changes in the radial displacement of the intermediate layer 

with a change in Thermal field. 

 

5    CONCLUSION 

In this paper, the dynamics and vibrational responses of cylindrical shells of thin-walled composite materials under 

the primary thermal field and thermal shock were investigated. The influence of parameters such as radius, 

cylindrical length, shell thickness, temperature of the field and ... on the range of radial displacement of the middle 

layer and Natural frequencies were dealt with. By examining the effects of the heat field and thermal shock, it was 

found that a mild heat field (far away from the melting point of the composite matrix) does not have an effect on the 

dynamic response but reduces the natural frequency, especially higher frequencies. But the effect of increasing the 

thermal shock on the increase in displacement is considerable, but with transient effects it has no effect on natural 

frequencies. 

APPENDIX  

j

j

j

j

j

j

j

j

j

N
i

kz zz i i

i

h
N

j

kz zz

i h

h
N

i j i

kx xx

i h

h
N

i i

c v j

i h

h
N

i i

x a xx j

i h

h
N

i

θ

i h

R k h h

R k zdz

R k z dz     i

R ρc z dz    i

R T β z dz    i

R

1

1

1

1

1

(1)

1

1

(2)

1

( ) ( 1)

1

( ) ( 1)

1

( ) ( 1)

1

( )

1

( ),

,

1, 2,3

1,2,3

1, 2,3































 



 

   

   





 

 

 

 


j

j

j

j

j

i

a θθ j

h
N

i i

z a zz j

i h

h
N

i i

xθ a xθ j

i h

T β z dz    i

R T β z dz    i

R T β z dz    i

1

1

( 1)

( ) ( 1)

1

( ) ( 1)

1

1,2,3

1,2,3

1,2,3















  

   

   



 

       

 



The Dynamic and Vibration Response of Composite….                               187 
 

© 2020 IAU, Arak Branch 

REFERENCES 

[1] McQuillen E.J., Brull M.A., 1970, Dynamic thermoelastic response of cylindrical shells, Journal of Applied 
Mechanics 37(3): 661-670.  

[2] Biot M.A., 1956, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics 27(3): 240-253. 

[3] Timoshenko S., Winoowsky-Krieger S., 1959, Theory of Plates and Shells, McGraw-Hill. 

[4] Boley B.A., Weiner J.H., 1960, Theory of Thermal Stresses, John Wiley & Sons. 

[5] Nowacki W., 1962, Thermoelasticity, Pergamon Press. 

[6] Ugural A.C., 1981, Stresses in Plates and Shells, McGraw-Hill. 

[7] Awrejcewicz J., Krysko V.A., 2003, Coupled thermoelasticity problems of shallow shells, Systems Analysis Modelling 

Simulation 43(3): 269-286. 

[8] Awrejcewicz J., Krysko V.A., 2003, Nonlinear coupled problems in dynamics of shells, International Journal 

of Engineering Science 41(6): 587-607. 

[9] Huth J.H., 1953, Thermal stress in conical shells, Aeronaut 20: 613-616. 

[10] Huth J.H., 1955, Thermal stress in conical shells, Aeronaut 22: 506-508. 

[11] Eslami M.R., Vahedi H., 1991, A general finite element stress formulation of dynamic thermoelastic problems using 

Galerkin method, Journal of Thermal Stresses 14: 143-159.  

[12] Eslami M.R., Shakeri M., Sedaghati R., 1994, Coupled thermoelasticity of axially symmetric cylindrical shell, Journal 

of Thermal Stresses 17(1): 115-135. 

[13] Eslami M.R., Shakeri M., Ohadi A.R., Shiari B., 1999, Coupled thermoelasticity of shells, effect of normal stress and 

coupling, AIAA Journal 37(4): 496-504. 

[14] Hakimelahi B., Soltani N., 1999, A solution for the coupled dynamic thermoelastic problems of thin cylindrical shells 

under pressure shear and temperature shocks using finite element methods, Journal of Faculty of Engineering 33(3): 

73-86.  

[15] Eslami M. R., Mousavi S. M., 1998, Dynamic analysis of conical shells under mechanical and thermal loading by 

Galerkin finite element method, Second Conference of Aerospace Engineering, Iran. 

[16] Tarn J.Q., 2001, Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical 
loads, International Journal of Solids and Structures 38(46-47): 8189-8206.  

[17] Alibeigloo A., 2011, Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to 
thin piezoelectric layers, Composite Structures 93(2): 961-972.  

[18] Ansari R., Torabi J., Faghih Shojaei M., 2016, Free vibration analysis of embedded functionally graded carbon 

nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach, Journal of 

Vibration and Control 24(6): 1123-1144. 

[19] Alibeigloo A., 2016, Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel 
subjected to thermo mechanical load, Composites Part B: Engineering 87: 214-226.  

[20] Kiani Y., Eslami M.R., 2014, Geometrically non-linear rapid heating of temperature-dependent circular FGM 

plates, Journal of Thermal Stresses 37(12): 1495-1518. 

[21] Ghiasian S.E., Kiani Y., Eslami M.R., 2014, Non-linear rapid heating of FGM beams, International Journal of Non-

Linear Mechanics 67: 74-84. 

[22] Alipour S.M., Kiani Y., Eslami M.R., 2016, Rapid heating of FGM rectangular plates, Acta Mechanica 227(2): 421-

436. 

[23] Keibolahi A., Kiani Y., Eslami M.R., 2018, Nonlinear rapid heating of shallow arches, Journal of Thermal 

Stresses 41(10-12): 1244-1258. 

[24] Esmaeili H.R., Arvin H., Kiani Y., 2019, Axisymmetric nonlinear rapid heating of FGM cylindrical shells, Journal of 

Thermal Stresses 42(4): 490-505. 

[25] Keibolahi A., Kiani Y., Eslami M.R., 2018, Dynamic snap-through of shallow arches under thermal shock, Aerospace 

Science and Technology 77: 545-554. 

[26] Javani M., Kiani Y., Eslami M.R., 2019, Geometrically nonlinear rapid surface heating of temperature-dependent FGM 

arches, Aerospace Science and Technology 90: 264-274. 

[27] Javani M., Kiani Y., Eslami M.R., 2019, Large amplitude thermally induced vibrations of temperature dependent 

annular FGM plates, Composites Part B: Engineering 163: 371-383. 

[28] Chang J.S., Shyong J.W., 1994, Thermally induced vibration of laminated circular cylindrical shell panels, Composites 

Science and Technology 51(3): 419-427. 

[29] Bert C.W., Kumar M., 1982, Vibration of cylindrical shells of bimodulus composite materials, Journal of Sound and 

Vibration 81(1):107-121. 

[30] Vinson J.R., Sierakowski R.L., 2006, The Behavior of Structures Composed of Composite Materials, Springer Science 
& Business Media.  

[31] Eslami M.R., Shakeri M., Sedaghati R., 1994, Coupled thermoelasticity of an axially symmetric cylindrical shell, 
Journal of Thermal Stresses 17(1): 115-135.  

[32] Pothula S.G., 2009, Dynamic Response of Composite Cylindrical Shells under External Impulsive Loads, PhD Thesis, 
University of Akron.  



188                                 S.A. Mousavi et.al. 
 

 

© 2020 IAU, Arak Branch 

[33] Kang S.G., Young K.J., 2016, Thermo-mechanical response of multi-layered cylinders under pressure and thermal 

loading with generalized plane strain condition, ASME 2016 Pressure Vessels and Piping Conference, American 
Society of Mechanical Engineers.  

[34] Zhengwei H., Chengjun W., 2015, Vibration analysis for the cylindrical shell and plate composite structure using the 

mixed-mode substructure method, Proceedings of the 22nd   International Congress on Sound & Vibration, Florence, 

Italy. 

[35] Eslami M., Vahedi H., 1992, Galerkin finite element displacement formulation of coupled thermoelasticity spherical 
problems, Journal of Pressure Vessel Technology 114(3): 380-384.  

[36] Shiari B., Eslami M.R., Shaker M., 2003, Thermomechanical shocks in composite cylindrical shells: a coupled 
thermoelastic finite element analysis, Scientia Iranica 10(1): 13-22.  

[37] Prince P.J., Dormand J.R., 1981, High order embedded Runge-Kutta formulae, Journal of Computational and Applied 
Mathematics 7(1): 67-75.  


