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 ABSTRACT 

 In this paper, the nonlinear dynamical behavior of an isotropic 

rectangular plate, simply supported on all edges under influence of 

a moving mass and as well as an equivalent concentrated force is 

studied. The governing nonlinear coupled PDEs of motion are 

derived by energy method using Hamilton’s principle based on the 

large deflection theory in conjuncture with the von-Karman strain-

displacement relations. Then the Galerkin’s method is used to 

transform the equations of motion into the three coupled nonlinear 

ordinary differential equations (ODEs) and then are solved in a 

semi-analytical way to get the dynamical responses of the plate 

under the traveling load. A parametric study is conducted by 

changing the size of moving mass/force and its velocity. Finally, 

the dynamic magnification factor and normalized time histories of 

the plate central point are calculated for various load velocity ratios 

and outcome nonlinear results are compared to the results from 

linear solution.          © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Moving load; Nonlinear response; Plate; Galerkin’s 

method.  

1    INTRODUCTION 

 HE dynamical behavior of elastic bodies like beams or plates under moving loads has been the subject of study 

of many researchers since late sixties. Due to its increasing applications in the field of structural dynamics, 

obtaining the vibration characteristics of the beams and plates subjected to moving loads have been very important 

issue for many years. Some examples of such applications can be addressed as the design of bridges and elevated 

roadways subjected to moving vehicles, runway of aircrafts and the rocket launcher systems. For such cases 

certainly the accurate calculation of the dynamic response is necessary for reliable design and hence better 

performance. Primarily, an extensive study of dynamical characteristics of different structures under moving loads 

are reported by Fryba [3], but all reported studies are related to the linear behavior of the systems. Later on, the 

linear and nonlinear dynamics of beams excited by a moving mass have been reported by Kiani et al. [6] and 

Yanmeni [22]. The nonlinear dynamical analysis of an inclined Euler–Bernoulli beam subjected to a moving force 

has been studied by Mamandi et al. [8]. The nonlinear coupled PDEs of motion have been solved by using the mode 
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summation method. The authors concluded that the quadratic nonlinearity assumption in the mode equations of 

motion prevails the softening behavior on the dynamic response of the beam. The nonlinear coupled governing 

PDEs of motion of an inclined Timoshenko beam subjected to moving masses/forces have been solved using 

Galerkin’s approach via numerical integration methods [8, 9, 10, 11, 12, 13, 14]. A parametric sensitivity analysis 

referred to the magnitude of the travelling mass or force has been done. The dynamical behavior of plates under the 

act of moving load or moving mass has been studied by a number of researchers [4, 5, 17, 18, 20, 21, 23]. Linear 

dynamic responses of plates under the action some types of moving loads have been studied in [2]. 

In this paper, the effect of the geometric nonlinearity caused by stretching of the mid-plane of a rectangular plate 

with immovable simply supported on all edges and travelled by a moving mass/force on the dynamic response is 

investigated. Based on the Hamilton’s principle the governing nonlinear coupled PDEs of motion are derived and 

then solved applying Glarkin’s method to obtain dynamic response of the plate.  In extending the issue of moving 

mass further to a more applicable study we believe that the same problem but under motion of the moving force has 

its own importance in this filed. Based on this postulate this study is initiated. It should be mentioned that what 

makes this work new is related to the very important outcome results from the application point of view. Briefly, it 

should be pointed out that the main contribution and significant technical advantages of this paper is to present some 

tangible results which have not been reported in the earlier published papers. 

2    MATHEMATICAL MODELING  

2.1 Problem statement 

Consider an isotropic and homogenous elastic rectangular plate of sides a and b (length a and width b) simply 

supported on all edges with plate density ρ, uniform thickness h, mass per unit area of the plate  (= ρh), modulus of 

elasticity E, Poisson’s ratio , bending stiffness D = Eh
3
/12(1-2

) and subjected to a moving mass me with constant 

velocity V (in the case of constant velocity of motion) and constant acceleration/deceleration A (in the case of 

motion with constant acceleration) as shown in Fig. 1. As can be seen in Fig. 1 the origin of the Cartesian coordinate 

system xoy is placed at the lower left corner of the plate. In our upcoming analysis it is assumed that the moving 

mass travels along a straight line at half of the plate’s width, i.e. y = b/2 (see Fig. 1). It should be mentioned that in 

our upcoming analysis when the moving mass enters the left side of the plate at time t = 0, zero initial conditions are 

assumed. Moreover, in our analysis it has been assumed the moving mass during its travel never loses its contact 

with the plate surface under it. In this work, the nonlinear dynamic behavior for the coupled longitudinal and 

transversal in-plane and out of plane displacements of a uniform rectangular plate under the act of moving 

mass/force is considered. It is assumed that the damping behavior follows the viscous nature. Moreover, the plate 

deforms within the linear elastic range and therefore the Hook’s law is prevailing. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

A rectangular plate of sides a and b simply supported on all 

edges subjected to a traveling mass me with velocity V and 

acceleration/deceleration A. 

 

 

According to the von-Karman nonlinear strain-displacement relations, the normal strains x  and y  and the 

shearing strain xy  of the middle surface for the plate shown in Fig. 1 are expressed as follows [16, 19, 23]. 

 
2 2

, , , , , , , ,/ 2, / 2,x x x y y y xy y x y yu w v w u v w w          (1) 

 

In which u(x, y, t), v(x, y, t) and w(x, y, t) represent the time dependent displacements of an arbitrary point 
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located on the middle surface of plate in x, y and z directions, respectively measured from equilibrium position when 

unloaded. Also, in our notation the subscripts (,x), (,y) and (,t) stand for the derivative with respect to the spatial 

coordinates (x) and (y) and time (t), respectively. To obtain the nonlinear governing differential equations of motion 

by applying Hamilton’s principle, the kinetic energy T of the rectangular plate under consideration is [15, 16]: 

 

 2 2 2

, , ,0 0

1

2

a b

t t tu v w dxdyT h      (2) 

 

and according to the Kirchhoff’s plate hypotheses, the strain energy U of the plate is given by [15]: 

 
/2

0 0 /2

1
( )

2

a b h

x x y y xy xy
h

U dxdydz     


      (3) 

 

where ,x y   and xy  are normal and shear in-plane stresses, respectively and for the plate under consideration can 

be obtained by the Hook’s law given by [19]: 

 

2 2

( ) ( )
,,

2(11 1

x y y x xy

x y xy

E E E    
  

 

 
  

  
 (4) 

 

Now, we can establish the Lagrangian function of the sytem as: L=T− (U−We). Applying Hamilton’s principle 

on L yield to [15, 23]: 

 

2 2 2

1 1 1

0 ( )
t t t

et t t
Ldt U T dt W dt         (5) 

 

In which the total external virtual work done eW  by the gravity and the travelling mass acting on the plate at 

the location x = x0(t) and y = y0(t)(= b/2) is [15, 23]: 

 

  2
0 0 0 0

2

1, , , ,
( ) , ( ) /2

0 0 2

2
b a

e e tt xt xx x
x t At V t x y t b

W m g w Vw V w Aw w dxdy 
   

        (6) 

 

In which, mew,tt , 2meVw,xt and meV
2
w,xx are inertial, Coriolis and centrifugal induced forces acting on the elastic 

surface of the plate, respectively due to the motion of the mass. 

After substitution of Eqs. (2), (3) and (6) into Eq. (5), performing the integration and doing some mathematical 

simplifications one would get the nonlinear governing coupled PDEs of motion (EOMs) for the force relation in the 

x, y and z directions, respectively as follows: 
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In which cp
2
=E/ρ(1-2

) and 
4
=(

4
/x

4
+2

4
/x

2
y

2
+

4
/y

4
). Furthermore, δ(x-x0(t))δ(y-y0(t)) represents two 

dimensional Dirac’s delta function in which x0(t) and y0(t) are the instantaneous position of the moving mass 

travelling on the plate. In case the mass is travelling with a constant velocity V (A = 0) on a straight path along the 

trajectory parallel to the side a at the half of the width of the plate (y = b/2), then its instantaneous position is given 

by x0(t) = Vt + x0 and y0(t) = b/2 where x0 represents the initial position of the mass at the start of its motion. In 
addition, c (or cm,n) coefficient is internal viscous damping of the plate related to modal damping ratio, namely ζm,n 

expressed by ζm,n = cm,n/2(λm,nωm,n)
 
[1, 23], where ωm,n is the natural frequency of the mth-nth mode of vibration and 

λm,n is the modal mass of this mode given by λm,n = ρhab/4 [1,7]. 

3    SOLUTION METHOD   

In this study Galerkin’s method is chosen as a powerful mathematical tool to analyze the vibrations of a plate. Based 

on the separation of variables technique, the response of the plate in terms of the linear free-oscillation modes can be 

assumed as follows: [1] 

 

( , , ) ( ) ( , ) ( ) ( , )
m n

T

ij ij
i j

u x y t p t x y P t x y    
(10) 
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T

kl kl
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v x y t q t x y Q t x y    (11) 

 

( , , ) ( ) ( , ) ( ) ( , ),
n n

T

vz vz
v z

w x y t r t x y R t x y    (12) 

 

where P(t), Q(t) and R(t) are vectors listing the generalized coordinate pij(t), qkl(t) and rvz(t), respectively and (x, y), 

(x, y) and (x, y) are some vectorial functions collecting the first mode shapes (eigen-functions) of ij(x, y), kl(x, 

y) and vz(x, y), respectively. In the next step, primarily we substitute Eqs. (10) to (12) into Eqs. (7), (8) and (9), then 

on the resulting relations, pre-multiplying both sides of Eq. (7) by 
T
(x, y), Eq. (8) by 

T
(x, y) and Eq. (9) by 

T
(x, 

y), integrating over the interval (0, a) and (0, b) and imposing the orthogonality property of the vibration modes of 

the plate along with the properties of the two dimensional Dirac delta function, the resulting nonlinear coupled 

modal ODEs of motion in matrix form are as follows: 
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In which dot mark over any parameter indicate the derivative with respect to the time, (t). All matrices I1 to I35 

appearing in above relations are given in Appendix A. It is clear that Eqs. (13) to (15) are three nonlinear coupled 

second-order ordinary differential equations (ODEs). The boundary conditions for a plate with immovable simply 

supported on all edges and initial conditions (ICs) are: [19] 

 

Essential BCs:  0u v w                at   0,x a        0u v w             at   0,y b  

Natural BCs:   ,0 0x xxM w        at  0,x a    ,0 0y yyM w        at   0,y b  
(16) 

 

and 

 

ICs   
, , ,( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0) 0t t tu x y u x y v x y v x y w x y w x y       (17) 

 

The equations of motions for a plate subjected to a moving concentrated force of magnitude meg can be derived 

from the equations of motion for a plate subjected to a moving mass by neglecting the inertial effect of the traveling 

mass. For this system the Eqs. (9) and (15) are needed to be rewritten where Eqs. (7), (8), (13) and (14) remain 

unchanged. 

In order to solve the Eqs. (13), (14) and (15), all entries in the matrices listed in Appendix A should be 

calculated. It can be seen that the following functions (mode shapes) for the ij(x, y), kl(x, y) and vz(x, y) will 

satisfy both the linearized equations of motion and boundary conditions of the plate with immovable simply 

supported on all edges [1]. 

 

, ,( , ) sin sin ( , ) sin sin ( , ) sin sinij kl vz

j y l y z yi x k x v x
x y x y x y

a b a b a b

    
      (18) 

 

Now, we use Eq. (18) to calculate all matrix quantities given in Appendix A. In the next step these evaluated 

matrices will be used in the Eqs. (13) to (15) and later the set of equations will be solved numerically using the 

Adams-Bashforth-Moulton integration method via MATLAB solver package to obtain values of pij(t), qkl(t) and 

rvz(t). By back substitution of pij(t), qkl(t) and rvz(t) in Eqs. (10) to (12), u(x, y, t), v(x, y, t) and w(x, y, t) can be 

obtained, respectively. Subsequently, after obtaining values for u(x, y, t), v(x, y, t) and w(x, y, t) the dynamic 

response of the rectangular plate subjected to a moving mass travelling with a constant velocity can be calculated. 

Moreover, the dynamic response of the rectangular plate under variation of different parameters, including the 

velocity of the moving mass or an equivalent force and magnitude of the moving load are discussed. 

4    RESULTS AND DISCUSSIONS  

To establish our calculations we consider a plate with geometry and mechanical properties listed in below: 

 
9 3 24 , 2 , 0.01 , 200 10 , 7850 / , 9.81 / , 0.033a m b m h m E Pa kg m g m s          and 0.3v   (18) 

 

It should be mentioned that all deflection variation vs. moving mass instantaneous position are given in a non-

dimensional form that is w/wstatic. Moreover, it has to be pointed out that based on the conducted convergence study 

related to the linear and nonlinear analyses, 9 modes of vibration are taken into account for the steady state answers 

for u(x, y, t), v(x, y, t) and w(x, y, t). To clarify the results and in order to have a better insight on interpreting the 

variation of the obtained results we tried to present the results in dimensionless forms. So we begin with defining the 

dynamic magnification factor D.M.F. as the ratio of absolute maximum dynamic vertical deflection of the central 

point of the plate to its maximum static response at the same point. The static deflection of the plate’s center point 

under a concentrated mass applied at the same point is equal to wstatic = 0.01651mega
2
/D [19]. Moreover let’s define 

the velocity ratio as α=T1/T=V/Vp in which Vp=a/T1=na/2, where T1, T and Vp denote the first natural period 

(fundamental period of transverse motion) of the plate, the total time taken by the moving load to cross from one 

side to the opposite side of plate and the velocity of a reference load that would take the time of T1 to traverse the 
plate of length a, respectively. Moreover, ωn is the natural frequency of plate given by:  

   
2 22 / /n ij i a i b      

 
 D/ρab , in which i, j = 1, 2, ..., n.  
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Based on the given data, the analysis for D.M.F. was conducted for both linear and nonlinear solutions and its 

variation vs.   for different values of the moving mass ratios while the mass has not left the beam is depicted in Fig. 

2. From this figure it can be seen that by increasing the magnitude of the moving mass, the dynamic deflection 

response of the plate grows in such away that does not follow the well-known linear trend. Moreover, the significant 

difference between the linear and nonlinear solutions is always seen. For example it can be observed that for me = 

0.5μab, the value of D.M.F. of the linear and nonlinear solutions yields 1.75 and 2.1 at  = 1.55 and  = 1.15, 

respectively. Meanwhile, in the region 0 <<0.5 another maximum is seen around  = 0.4 and similar differences 

between linear and nonlinear analyses as described above exists in this region. Briefly, in the under critical region ( 

≤  1.2) the nonlinear dynamic deflection of the plate generally increases by increasing the velocity of moving mass 

and in the overcritical region ( > 1.2) the nonlinear dynamic deflection decreases by increasing the velocity of 

moving mass. In addition, as a significant phenomenon, it can be observed that by increasing the magnitude of the 

moving mass ratios, the maximum D.M.F. for the linear and nonlinear solutions occurs in the lower values of  no 

matter what type of analysis is used. 
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Fig.2 

Variation of dynamic magnification factor (D.M.F.) vs. α 

for a rectangular plate affected by a moving mass of me 

(kg); (____) nonlinear analysis, (-----) linear analysis. 

 

By employing Eqs. (7), (8), (9), (13), (14) and (15) one can obtain the variation of the dynamic magnification 

factor DMF vs.  by changing the equivalent concentrated moving force F. Fig. 3 represents such variations of the 

D.M.F for the central point of a plate under the act of several equivalent moving forces using nonlinear and as well 

as the linear analysis. It can be seen that by increasing the magnitude of the vertical moving Force F, the dynamic 

displacement response of the plate grows in such a way that does not follow the well-known linear force-deflection 
relation in the linear systems , i.e., F = kδ. Also it can be observed that the dynamic displacement response of the 

linear and nonlinear solutions is almost the same for F ≤  0.05μgab N no matter what the value of  would be. For 

the same value of F the maximum D.M.F. for linear and nonlinear solutions are the same and equal to 1.48 and 1.47 

at  =1.3, respectively. Moreover, as the value of F increase, i.e., for F > 0.05μgab N, the difference between the 

linear and nonlinear dynamic response become more distinct whereas for F = μgab N at α ≈  1.5, this difference has 

its maximum value of 0.31 which have about 21% difference. In addition, it can be seen from this figure that for all 

value of F and , the linear solution predicts almost a lower value for D.M.F. Contrary to what is seen in Fig. 2 it 

should be noted that in Fig. 3 the linear equivalent moving force analysis always predicts a  unique value for D.M.F. 

no matter the value of F would be. Moreover, by increasing the magnitude of the moving force ratios, the maximum 

value of D.M.F. for the nonlinear solution occurs in the higher value of . Briefly, in the under critical region ( ≤  

1.8) the dynamic central point deflection of the plate generally increases by increasing the velocity of moving force 

and in the overcritical region ( > 1.8) the dynamic deflection decreases by increasing the velocity of moving force. 

It should be pointed out that similar behavior as can depicted in Figs. 2 and 3 can be seen in a beam traveled by 

moving loads as reported in literature [8, 10, 11, 12]. 
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Fig.3 

Variation of dynamic magnification factor (D.M.F.) vs. α 

for rectangular plate under motion of a concentrated 

moving force of F (N); (____) nonlinear analysis, (-----) 

linear analysis. 
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Figs. 4(a-b) show the effect of damping ratio on the dynamic behavior of central point of plate under moving 
mass of me = 0.25μab (kg) and an equivalent concentrated force of F = 0.25μgab (N) using nonlinear analysis, 

respectively. Three different values of  = 0 (undamped condition), 0.033 and 0.066 have been considered [8]. From 

this figure it can be observed that by increasing the value of damping ratio  the dynamic displacement decrease 

which is generally a natural phenomenon in any structural system [8]. Moreover, for the considered parameters, the 

maximum value of D.M.F. for the moving mass problem decreases from 1.86 (related to  = 0) to 1.77 (related to  

= 0.066) at  = 1.2 (see Fig. 4(a)), whereas for the moving force problem decreases from 1.64 (related to  = 0) to 

1.56 (related to  = 0.066) at  = 1.3 (see Fig. 4(b)). 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.352.35
0.8

1

1.2

1.4

1.6

1.8



D
.M

.F
.

 

 







 
(a) 

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7



D
.M

.F
.

 

 







 
(b) 

Fig.4 

Variation of dynamic magnification factor (D.M.F.) vs. α for central point of a rectangular plate under (a) a moving mass me = 

0.25μab (kg) and (b) an equivalent concentrated force of F = 0.25μgab (N) for various damping ratio using nonlinear analysis; 

(____)  = 0, (-----)  = 0.033, (-.-.-.-.)  = 0.066. 

 

In Fig. 5, the maximum dynamic response (w) variation of the central point of plate vs. different values of mass 
ratio η (η = me/μab) is shown for various velocity ratios of α = 0.25, 0.5, 0.75, 1, 1.25 and 1.5, respectively, using 

both linear and nonlinear solutions. It can be seen that the maximum dynamic deflection of the nonlinear analysis is 

always lower than the one obtained from the linear solution. This regressive incident which is known as the 

hardening behavior is mostly due to the existence of the coupled cubic-quadratic nonlinearity characteristic in the 

equations of motion of the plate where in the other literature it is known as the equivalent to a nonlinear hard spring 

[8]. In addition, it can be seen from Figs. 5(a-b) that the maximum dynamic displacement of central point of the 
plate using linear and nonlinear solutions are almost the same for value of η < 0.1 in lower velocity ratios. However, 

after this point the difference between linear and nonlinear analyses for dynamic displacement of central point grow 
slowly up to. η = 0.4 (see Figs. 5(c-d)). However, after this point, the magnitude of w of the nonlinear and linear 

solutions grows rapidly as the value of η increase (see Figs. 5(e-f)). Moreover, from this figure it can be observed 

that the difference between the linear and nonlinear solutions ha s an increasing trend up to the load velocity ratio of 
α = 1.25 and a reverse trend afterward. It should be noted that the maximum difference between linear and nonlinear 

solutions for all cases in this figure occurs at η = 1.5 at α = 1.25 (see Fig. 5(e)). 

The maximum dynamic displacement variation (w) of central point of plate vs. different value of the force ratios 
η (= F/μgab) for different velocity ratio of α = 0.25, 0.5, 0.75, 1, 1.25 and 1.5, respectively using both linear and 

nonlinear approaches are depicted in Figs. 6(a-f). It can be seen that the maximum deflection of the nonlinear 

analysis is always lower than the one obtained from the linear solution. As it was stated for Fig. 5, this incident is 

known as the hardening behavior. Also, it is seen from this figure that the maximum dynamic central point 
displacements of the plate using linear and nonlinear solutions are almost the same for the value of η < 0.1. 

However, after this point, the magnitude of w  of the nonlinear and linear solutions differs obviously and the 

difference grows rapidly as the value of η increases. Also, it can be observed from Fig. 6 that the difference between 

the linear and nonlinear solutions has an increasing trend up to the load velocity ratio of α = 1 and a reverse trend 

afterward. It should be noted that the maximum difference between linear and nonlinear solutions for all cases in this 
figure occurs at η = 1 at α = 1 (see Fig. 6(d)). Moreover by comparison of Figs. 5 and 6 it can be seen that variation 

of the linear solution almost mathematically follows a linear trend in Fig. 6, whereas this variation does not 

represent a linear trend in Fig. 5. 

Fig. 7 shows the variation of normalized vertical dynamic displacement (W = wd/wstatic) of a rectangular plate 
under the moving mass of me = 0.25μab and as well as an equivalent concentrated moving force of F = 0.25μgab vs. 

normalized instantaneous mass position, i.e., x = Vt/a, for different velocity ratios of α = 0.25, 1 and 1.25, 
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respectively using nonlinear analysis. From this figure, it can be seen that there are significant discrepancies 

between the deflection under the moving mass and the deflection under the equivalent concentrated moving force, 

especially toward the later part of the motion. Moreover, it can be observed from Fig. 7 that the maximum vertical 
dynamic displacement of the plate has an increasing trend up to velocity ratio α = 1.25. Also, it can be seen from this 

figure that the position of the maximum normalized vertical dynamic displacement of plate at velocity ratio α = 0.25 

occurs at the time when the moving mass or an equivalent concentrated moving force is in the middle of the plate 
length, whereas after this velocity ratio (α > 0.25), this position happens at the time of passing the middle point of 

the plate. 

In Fig. 8, the variation of the D.M.F. vs.  for different values of the rectangular plate’s aspect ratio AR= 3, 4 
and 5 (AR = a/b) subjected to a traveling mass size of me = 0.25μab (kg) using nonlinear analysis is depicted. From 

this figure it can be observed that by increasing the aspect ratio of the rectangular plate, the maximum value of the 

dynamic magnification factor decreases and occurs in the lower values of . Now, we investigate the case that any 

variation on the plate’s aspect ratio does not change the total mass of the plate. So, dimensions of a plate with AR = 

3, 4 and 5 is determined in such a manner that the total mass of the plate remains unchanged with respect to the mass 

of plate of AR = a/b = 2 as the reference. 

Fig. 9 shows the variation of the D.M.F. vs.  for different values of the plate’s aspect ratios AR = 3, 4 and 5 
subjected to the traveling mass size of me = 0.25μab (kg) using nonlinear analysis where the total mass of the plate 

remains unchanged. From this figure it can be observed that by increasing the aspect ratio of the rectangular plate, 

the maximum value of the dynamic magnification factor decreases and contrary to what is seen in Fig. 8 the 

maximum value of the dynamic magnification factor occurs in the higher values of . 
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Fig.5 

Variation of the dynamic response of the central point of plate w (m) vs. different values of the mass ratios η for different 

velocity ratios; (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, (d) α = 1, (e) α = 1.25, (f) α =1.5; (____) nonlinear analysis, (-----) linear 

analysis. 
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Fig.6 

Variation of the dynamic response of the central point of plate w (m) vs. different values of the force ratios η for different 

velocity ratios; (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, (d) α = 1, (e) α = 1.25, (f) α = 1.5; (____) nonlinear analysis, (-----) linear 

analysis. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

Vt/a

W

 
(a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

Vt/a

W

 
(b) 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

Vt/a

W

 
(c) 

 

 

Fig.7 

Variation of normalized vertical dynamic displacement W 

vs. normalized instantaneous mass position Vt/a under a 

moving load using nonlinear analysis; (a)  = 0.25, (b)  

=1, (c)  = 1.25; (___) rectangular plate affected by a 

moving mass, (----) rectangular plate affected by a moving 

force. 
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Fig.8 

Variation of dynamic magnification factor (D.M.F.) for 
central point of a rectangular plate vs. α affected by a 

moving mass of me = 0.25μab (kg) for various plate’s 

aspect ratios using nonlinear analysis. 
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Fig.9 

Variation of dynamic magnification factor (D.M.F.) for 
central point of a rectangular plate vs. α affected by a 

moving mass of me = 0.25μab (kg) for various plate’s 

aspect ratios when the total mass of the plate remains 

unchanged using nonlinear analysis. 

 

Figs. 10(a) and (b) represent the variation of w/a of the central point of plate under the moving mass value of me 
= 0.25μab and as well as an equivalent concentrated moving force value of F = 0.25μgab vs. Vt/a for different 

velocity ratios α = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 and 2.5 using linear and nonlinear analysis, respectively. 

From this figure, one can conclude that the results for the vertical dynamic displacement obtained by the nonlinear 

analysis almost represent smaller values that those calculated by linear analysis. Also, it can be seen that the peak 

value of each curve does not occur at the same Vt/a. Moreover, variation of the value of these peak points for 
moving mass and moving force problem have an increasing trend up to the velocity ratio α = 1.25 and a reverse 

trend afterward no matter what type of analysis is used. For the load velocity ratio of α ≥  0.75, the position of the 

peak point shifts to the right end as α increases. In addition, it is seen that for higher velocity ratio, i.e. α ≥  2.5, the 

vertical dynamic displacement of the plate’s central point yields to a small value at the time of leaving the plate 

which means the plate does not have enough time to respond accordingly against the fast speed of the moving 

mass/force. Another interesting observation from Fig. 10 is related to the interaction between the plate’s central 
point displacement and load speed for example with the load velocity ratio of α = 1 for the moving mass problem 

and moving force problem and there is a reverse (upward) displacement for the central point which happens usually 

when the load leaves the plate. 
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Fig.10 

Time histories for normalized central point deflection of a plate subjected to: (a) a moving mass of me=0.25ab (kg), (b) a 

moving force of F=0.25gab (N); (____) nonlinear analysis, (-----) linear analysis. 
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5    CONCLUSIONS 

Three nonlinear coupled PDEs of motion for the in-plane and out of plane displacements of a rectangular simply 

supported plate subjected to a traveling mass and as well as an equivalent concentrated force solved and the results 

are as follows: 

1. It can be seen that the size of D.M.F. using nonlinear analysis almost higher value than those given by 

linear analysis, hence the difference between the D.M.F. response of the nonlinear and linear theories 

increases. 

2. It can be observed that the dynamic of central point displacements of a moving mass/force problem using 

linear and nonlinear solutions are almost the same for the smaller values of me or F. However, the 

magnitude of the plate deflection of the nonlinear and the linear solutions differs gradually and the 

difference grows rapidly as the value of me or F increases, respectively. 

3. It can be seen that maximum dynamic displacement variation (w) of central point of plate vs. different 
value of the mass/force ratios η of the linear solution mathematically follows a linear trend in a moving 

force problem, whereas this variation does not represent a linear trend in a moving mass problem. 

4. It can be observed that by increasing the aspect ratio of the rectangular plate, the maximum value of the 

dynamic magnification factor decreases and occurs in the lower values of . 
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